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ABSTRACT
The Hoatzin (Opisthocomus hoazin) is the only extant member of the order Opistho-
comiformes. This unique South American bird lives in the riparian lowland vegetation
characteristic of the Amazon and Orinoco basins. Hoatzins nest in communal social
units close to water bodies; they are strictly folivores being the only bird with pregastric
fermentation in the crop. Because of the complex logistics involved in capturing this
bird, there is a knowledge gap on its parasites. This study documents two distant
lineages of haemosporidian parasites (Plasmodium spp.) in a juvenile and two adults
sampled in the Cojedes state, Venezuela. Although negative by microscopy, the parasite
identification was possible by using molecular methods. We estimated the phylogenetic
relationships on the parasite cytochrome b (cytb, 480 bp) gene and the mitochondrial
DNA. We found one of the parasites lineages in two individuals (nestling and adult),
and the corresponding fragment of cytb was identical to a one found in Wood Stork
(Mycteria americana) from Brazil. The other lineage, found in an adult, has an identity
of 469 out of 478 bp (98%) with Plasmodium sp. GAL-2012 (isolate THAMB08) from
Brazil. Although a morphological description of these parasites was not possible, this
is the first molecular study focusing on Hoatzin haemosporidian parasites and the first
documentation of Plasmodium infections in theHoatzin fromVenezuela. Furthermore,
we reported microfilaria in two adults as well as hematological parameters for six
individuals. Information on hematological parameters could contribute to establishing
the necessary baseline to detect underlying conditions, such as infections, in this bird
species.

Subjects Biodiversity, Conservation Biology, Genetics, Parasitology, Zoology
Keywords Cytochrome b, Avian malaria, Erythrocyte measurements, Microfilaria, Differential
white blood cell, Phylogeny

INTRODUCTION
The Hoatzin (Opisthocomus hoazin), the only extant species of the Order Opisthocomi-
formes, is a unique bird native to the Orinoco and the Amazon basins in South America
that includes Bolivia, Colombia, Ecuador, Peru, Venezuela, Brazil, and the lowlands of the
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Guianas. Little is known about its ecology and evolution. The lack of information is due
in part to difficulties accessing its habitat, as well as the behavior and size of these birds
that makes them hard to capture. In Venezuela, this species is distributed along rivers of
the central savannas to the eastern Orinoco River. They live in colonies in riverine and
swamp forest, vegetation at edges of ponds, oxbow lakes, and other freshwater wetlands. It is
folivore bird that feeds on riverine tree species, and nests in communal social units building
their nest close to water bodies (Thomas, 1996). Its phylogenetic relationship remains an
enigma (Jarvis et al., 2014; Claramunt & Cracraft, 2015; Prum et al., 2015). However, given
that is the only bird with pregastric fermentation in the crop like that in ruminants (Grajal
et al., 1989), most of the knowledge about this species is on the crop microorganism’s
community structure and ecology (e.g., Godoy-Vitorino et al., 2010; Godoy-Vitorino et al.,
2012; Bardele et al., 2017). Indeed, there are only a few studies on ectoparasites (Hernandes
& Mironov, 2015; Bauchan et al., 2017) and hemoparasite infections in theHoatzin (Renjifo,
Sanmartin & De Zuleta, 1952; Gabaldon, 1998). Only filarial parasite infections have been
reported in the Hoatzin from Colombia (Renjifo, Sanmartin & De Zuleta, 1952), and no
haemosporidian parasites had been found before in this species using blood films (Renjifo,
Sanmartin & De Zuleta, 1952; Gabaldon, 1998).

In this study, we report two distant molecular lineages of haemosporidian parasites of
the genus Plasmodium (Family Plasmodiidae, Order Haemosporida, PhylumApicomplexa)
found in the Hoatzin from the Cojedes River, a tributary of the Orinoco River in central
Venezuela that is part of the Orinoquia. Plasmodiidae is a diverse group of vector-borne
haemoparasites found in many terrestrial vertebrate hosts (Garnham, 1966; Valkiūnas,
2005; Telford Jr, 2009), including the species of human (Cavalier-Smith, 2014) and
avian malaria (e.g., Plasmodium relictum; Bensch, Hellgren & Pérez-Tris, 2009; Atkinson &
Samuel, 2010). This is the first evidence of Plasmodium infections in the Hoatzin in South
America; additionally, we provided hematological parameters to generate information that
may help to assess the health status of this bird species.

MATERIAL AND METHODS
Study area and samples
We caught eight individuals in El Baúl massif along the Cojedes River near the town of El
Baúl located at the southwestern of the Cojedes state in the northcentral Venezuela. This is
considered part of the Orinoquia region at the north of the Guyana Shield. El Baúl massif
is about 720 km2; it is relatively isolated and mountainous with steep topography following
a northwest-southeast trend (Viscarret, Wright & Urbani, 2009). The vegetation is typical
of the Orinoquia sedimentary and alluvial plains (e.g., vegetation of savannas, gallery
forests, palm groves, and semi-deciduous forests). In the context of this study, the birds
were captured in the gallery forest, which is moderately intervened and subject to seasonal
flooding from the Cojedes River as well as forest fires (González-Fernández et al., 2007).

We trapped two individuals (one adult and one juvenile) in October 2010, and 6
individuals (two adult and four nestlings) in August 2015 in their nest during nighttime
using butterfly nets and transported to the field laboratory. From each bird, we obtained
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blood samples by brachial vein puncture, and then, immediately we prepared three to five
thin smears. We preserved the rest of the sample in protein saver cards (Whatman
903, WhatmanTM, Cardiff, UK) for molecular analysis. We collected the specimens
under permit number 0950 issued by the Venezuelan government (Oficina Nacional de
Diversidad Biológica, Ministerio del Poder Popular para Ecosocialismo, Hábitat y Vivienda).
All the animal protocols were approved by the ethics committees of Instituto Venezolano
de Investigaciones Científicas (IVIC, Venezuela) under the number COBIANIM Dir-
0885/1517/2014.

Examination of blood films
Smears were air-dried immediately after preparation, fixed in absolute methanol for 5 min,
and then stained with Giemsa (pH 7.2) for 45 min. Using a Leica DM750e microscope
(Leica Microsystems, Heerbrugg, Switzerland), we first examined blood slides at ×400 for
10min and then at×1,000 for 20min. For the capture of digital images, we scanned entirety
those slides with hemoparasites using a Leica EC3 digital camera and processed with the
LAS EZ (Leica Microsystems Suiza Limited, 2012). Then, we estimated the intensity of
infection as No. of parasites/10,000 erythrocytes from erythrocyte counts with an increase
of ×1,000, focusing on areas where blood cells formed a monolayer (Muñoz et al., 1999).
In addition, using ImageJ software (Schneider, Rasband & Eliceiri, 2012), we performed
morphometric analyses of the erythrocytes. We measured the maximum cell width and
length, as well as nuclear width and length for 30 erythrocytes per slide and per individual,
followingHartman & Lessler (1963). To estimate the percentage of each type of white blood
cell present in blood, we also measured a differential white blood cell (WBC) count per 100
cells using the blood samples collected in 2015 following the protocol by Clark, Boardman
& Raidal (2009). We obtained all these measures for only those individuals caught in 2015
(N = 6) because of the better quality of their blood films.

Molecular diagnostic of haemosporidian parasites
We extracted genomic DNA from whole blood using QIAamp R© DNA Micro Kit (Qiagen
GmbH,Hilden, Germany).We screened each sample for haemosporidian parasites by using
a nested polymerase chain reaction (PCR) protocol that targets the parasite mitochondrial
cytochrome b (cytb, 1,131 bp) gene using the primers described in Pacheco et al. (2011);
Pacheco et al. (2018). The cytb external primers were forward AE298 5′-TGT AAT GCC
TAG ACG TAT TCC 3′ and reverse AE299 5′-GT CAA WCA AAC ATG AAT ATA GAC
3′, and the internal primers were forward AE064 5′-T CTA TTA ATT TAG YWA AAG
CAC 3′ and reverse AE066 5′-G CTT GGG AGC TGT AAT CAT AAT 3′. The primary PCR
amplifications were carried out in 50µl volume reaction using 5-8µl of total genomic DNA,
2.5 mM MgCl2, 1 × PCR buffer, 1.25 mM of each deoxynucleoside triphosphate, 0.4 mM
of each primer, and 0.03 U/µl AmpliTaq polymerase (Applied Biosystems, Roche-USA).
The primary PCR conditions were: A partial denaturation at 94 ◦C for 4 min and 36 cycles
with 1 min at 94 ◦C, 1 min at 53 ◦C and 2 min extension at 72 ◦C, and we added a final
extension of 10 min at 72 ◦C in the last cycle. Then, the nested PCRs were also made in
50 µl volume reaction using only 1 µl of the primary PCRs, 2.5 mMMgCl2, 1× PCR buffer,
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1.25 mM of each deoxynucleoside triphosphate, 0.4 mM of each primer, and 0.03 U/µl
AmpliTaq polymerase. The nested PCR conditions were: A partial denaturation at 94 ◦C
for 4 min and 25 cycles with 1 min at 94 ◦C, 1 min at 56 ◦C and 2 min extension at 72 ◦C,
and we also added a final extension of 10 min at 72 ◦C in the last cycle. Both strands for
all the cytb fragments were directly sequenced using an Applied Biosystems 3730 capillary
sequencer. We identified all the cytb fragments obtained here as Plasmodium using BLAST
(Altschul et al., 1997).

For those samples that were positive using the cytb PCR protocol, we amplified
between 5,515 to 5,838 bp of the parasite mitochondrial genomes (mtDNA) using a
nested PCR with Takara LA TaqTM Polymerase (TaKaRa Takara Mirus Bio) following
manufacturers’ directions. This fragment of the mtDNA included the three nonprotein
coding regions between the ORFs (fragmented SSU rRNA and LSU rRNA) and the three
protein-coding genes (Cox3, Cox1 and Cytb) so only three tRNAs (7, 11, and 14) and
two fragments of small subunit ribosomal RNAs (5 and 7) are missing. Oligos forward
AE170 5′ GAGGATTCTCTCCACACTT CAATTCGTACTTC 3′ and reverse AE171 5′

CAGGAAAATWA TAGACCGAACCTTGGACTC 3′ were used for the primary PCR and
internal oligos forward AE176 5′ TTTCATCCTTAAATCTCGTAAC 3′ and AE136 reverse
5′ GACCGAA CCTTGGACTCTT 3′ for the inner PCR. The PCR conditions were a partial
denaturation at 94 ◦C for 1 min and 30 cycles with 30 s at 94 ◦C and 7 min at 68 ◦C and a
final extension of 10 min at 72 ◦C. Then, we excised two independent PCR products (50 ul)
from the gel (bands of approximately 6 kbp) and purified using QIAquick R© Gel extraction
kit (Qiagen, GmbH, Hilden, Germany). We cloned at least two independent PCR products
using pGEM R©-T Easy Vector Systems (Promega, Madison, WI, USA), and we sequenced
four clones from each individual. We sequenced both strands for PCR products and clones
using an Applied Biosystems 3730 capillary sequencer. Given that the cytb partial sequences
and the cytb gene from the mtDNA genome were 100% identical for each sample, we
only deposited the mtDNA genome sequences in GenBank under the accession numbers
KY653749 to KY653751.

Phylogenetic analysis of the cytb fragment and mtDNA genome
We performed two different nucleotide alignments by using ClustalX v2.0.12 and Muscle
as implemented in SeaView v4.3.5 (Gouy, Guindon & Gascuel, 2010) with manual editing.
The first alignment was constructed with 45 cytb partial sequences (480 bp) belonging to
three genera (Leucocytozoon, Haemoproteus, and Plasmodium). This alignment included
the sequences obtained in this study as well as sequences from well-known parasite species
based on morphology (Valkiūnas & Iezhova, 2018) that were available in GenBank (Benson
et al., 2012) and MalAvi (Bensch, Hellgren & Pérez-Tris, 2009) databases at the time of
this study. Sequences that showed a similarity >95% using BLAST (Altschul et al., 1997)
were also included even when they are not clearly linked to the described species. The
second alignment (5,286 bp excluding gaps) was done using 31 mtDNA genome sequences
belonging also to the three genera, including the sequences obtained in this study and
sequences from well-known parasite species (using morphology) available in GenBank.
Subsequently, the alignment was divided into six partitions corresponding to the three
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non-protein coding regions between the ORFs (fragmented SSU rRNA and LSU rRNA) and
the three protein-coding genes, keeping their order in the mtDNA genome (nonprotein
coding, cox3, nonprotein coding, cox1, cytb, nonprotein coding).

Then, we inferred phylogenetic hypotheses based on the first (partial cytb gene) and
second (mtDNAgenome) alignments using the Bayesianmethods implemented inMrBayes
v3.2.6 with the default priors (Ronquist & Huelsenbeck, 2003). To estimate the phylogenetic
hypothesis that best fit the data, we used the general time reversible model with gamma-
distributed substitution rates and a proportion of invariant sites (GTR +0+ I) on the
cytb alignment and for each partition in the mtDNA genome alignment. This model was
the one with the lowest Bayesian Information Criterion (BIC) scores for both alignments
and each partition as estimated by MEGA v7.0.14 (Kumar, Stecher & Tamura, 2016). We
inferred Bayesian support for the nodes in MrBayes by sampling every 1,000 generations
from two independent chains lasting 4 × 106 Markov Chain Monte Carlo (MCMC) steps.
The chains were assumed to have converged once the value of the potential scale reduction
factor (PSRF) was between 1.00 and 1.02 and the average SD of the posterior probability
was < 0.01 (Ronquist & Huelsenbeck, 2003). Then, we discarded 25% of the sample once
convergence was reached as a ‘‘burn-in’’. For both phylogenies, we used Leucocytozoon
species as out-group. Genbank accession numbers for all sequences used in the analyses
are given in the phylogenetic trees.

RESULTS
In this study, one sample was positive for haemosporidian parasites by microscopy (adult
caught in 2015). The individual had only Plasmodium sp. trophozoites in its blood films
(Fig. 1), so a morphological description of this parasite was not possible. Indeed, the
parasitemia was very low (<0.01), consistent with a subpatent infection. In addition,
the two adults caught in 2015 were infected with microfilariae, so one of the adults
has a coinfection of filarial parasites and Plasmodium sp. (Fig. 1). Unfortunately, the
identification of nematode microfilariae at species level is difficult given their high degree
of morphological and morphometric similarities (McKeand, 1998). None of the nestlings
were infected with hemoparasites. Morphometry of the uninfected erythrocytes is shown
in Table 1. We compared these measurements with those from the erythrocytes of other
avian species with similar body size. In addition, we provided differential white blood cell
(WBC) count profiles in Table 2.

Themolecular diagnostic detected that the two individuals caught in 2010 (one adult and
one juvenile) and one of the adults caught in 2015 (the one positive by microscopy) were
positive by nested PCR (3/8, 37.5%). In order to characterize these Plasmodium species,
for those individuals (N = 3) that were positive by nested PCR, we obtained the parasite
mtDNA genome sequences. We further examined these sequences by using phylogenetic
analyses (Fig. 2) yielding two estimated gene trees, one just with partial cytb sequences
commonly used to identify haemosporidia parasites (Bensch, Hellgren & Pérez-Tris, 2009;
Pacheco et al., 2018) and the other with mtDNA genome (Pacheco et al., 2018). These
phylogenies have similar topologies. We found two lineages of Plasmodium (identified as 1
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Figure 1 Microfilaria and Plasmodium sp. blood stage infecting the Hoatzins (O. hoazin) caught in
August 2015 at the Cojedes River, Venezuela. (A) Hoatzin individual infected only with filarial parasites.
(B*), (C*), and (D&) Hoatzin individual infected with filarial parasites and Plasmodium sp. *Microfilarial
stages of the filarial parasite (Scale bar= 20 µm) and &Plasmodium sp. trophozoite (Scale bar= 10 µm).
We indicated the hemoparasite stages by the black arrows.

Full-size DOI: 10.7717/peerj.6361/fig-1

and 2 in Fig. 2) in three individuals of Hoatzin. The individuals caught in 2010 (one adult
and one juvenile) were infected with the same Plasmodium lineage (KY653750–KY653751),
and their mtDNA genome sequences were 100% identical.

DISCUSSION
This is the first report of Plasmodium species in this bird and the first record of microfilarias
in Hoatzins from Venezuela. We have no sign of pathogenesis associated with these
infections. However, as numbers of heterophils and lymphocytes could be affected by
stress such as a parasitic infection, the ratio of one to the other (H:L) is commonly used
as a stress indicator (Gross & Siegel, 1983;Maxwell, 1993). Thus, we reported the H:L ratio
since it is expected to increase in response to stressors such as infectious diseases (Davis,
Maney & Maerz, 2008), especially in birds with high parasitemia (Granthon & Williams,
2017). Here, the bird infected with filarial parasites and Plasmodium sp. had an increase in
the number of lymphocytes and a decrease in the number of heterophils in comparation
with the haemosporidian negative birds (infected only with microfilaria and uninfected
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Table 1 Comparison of erythrocyte measurements from different bird orders including the values for Hoatzin. The values for Hoatzin (O.
hoazin) are from six individuals caught in August 2015 at the Cojedes River, Venezuela.

Cytosome Nucleus
Length (µm) Width (µm) Ratio (L/W) Length (µm) Width (µm) Ratio (L/W)

Opisthocomiformes
O. hoazin 15.3± 0.85 8.7± 0.71 1.76 6.2± 0.61 3.4± 0.47 1.82

Gruiformesa

Rallus elegans 14.5± 0.32 7.7± 0.17 1.89 5.7± 0.13 2.9± 0.12 1.97
Aramides cajanea 12.9± 0.78 7.2± 0.50 1.79 5.5± 0.40 3.3± 0.37 1.67
Fulica americana 11.4± 0.26 7.5± 0.22 1.51 4.2± 0.06 2.3± 0.07 1.83

Charadriiformesa

Jacana spinosa 13.7± 0.79 7.5± 0.52 1.83 5.9± 0.64 3.7± 0.33 1.59
Charadrius wilsonia 12.8± 0.27 7.3± 0.13 1.76 5.8± 0.11 2.4± 0.05 2.41
Himantopus mexicanus 12.8± 0.16 6.9± 0.18 1.85 5.8± 0.20 2.5± 0.99 2.32

Accipitriformesa

Accipiter cooperii 14.3± 0.27 8.1± 0.13 1.77 6.2± 0.14 2.4± 0.11 2.58
Buteo platypterus 13.4± 0.51 7.6± 0.34 1.77 6.2± 0.31 3.0± 0.32 2.07
Rupornis magnirostrisb 13.1± 0.72 7.4± 0.36 1.78 6.83± 0.38 2.84± 0.18 2.4

Notes.
aErythrocyte measurements are from Hartman & Lessler (1963).
bfrom Tostes et al. (2017).

Table 2 Differential white blood cell (WBC) counts and H:L ratio in the Hoatzins (N = 6) caught in
August 2015 at the Cojedes River, Venezuela.

Uninfected nestlings Infected adults
(N = 4) microfilaria (N = 1) microfilaria/Plasmodium (N = 1)

Heterophils 64.25± 2.75 67 53
Lymphocytes 27± 1.83 17 35
Monocytes 5± 0.82 8 5
Eosinophils 3.25± 0.5 7 5
Basophils 0.5± 0.58 1 1
H:L 2.4 3.9 1.5

individuals), and so a lower H:L ratio (1.5 vs. 2.4, Table 2). The opposite occurred in the
individual infected only with filarial parasites (H:L= 3.9 vs. 2.4, Table 2). WBC counts are
difficult to interpret within and between species (e.g., Ricklefs & Sheldon, 2007) so these
results should be taken with caution especially considering that these are a few individuals
from a small sample. Considering the paucity of data from this species, we provided the
WBC count measures for comparison in future studies.

It has been hypothesized an association between erythrocyte size and the species body
size as result of differences in their metabolic rates (Hartman & Lessler, 1963). As expected,
we found that erythrocyte size from Hoatzins was comparable to those reported from
putative sister taxa like Gruiiformes (Jarvis et al., 2014; Claramunt & Cracraft, 2015),
Charadriiformes (Claramunt & Cracraft, 2015), and Accipitriformes (Prum et al., 2015)
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Figure 2 A Bayesian phylogenetic hypothesis of Plasmodium parasites infecting the Hoatzins (O.
hoazin) caught at the Cojedes River, Venezuela. We constructed phylogenetic trees based on parasites
(A) partial sequences of the cytb gene (45 sequences and 480 bp excluding gaps) and mtDNA genomes
(31 sequences and 5286 bp excluding gaps). The values above branches are posterior probabilities
(see ‘‘Material and methods’’). Leucocytozoon genus (outgroup) is indicated in grey. We provided in
parentheses both lineages (as deposited in the MalAvi database) and their Genbank accession numbers for
all the sequences used in the analyses.

Full-size DOI: 10.7717/peerj.6361/fig-2

(Table 1). Furthermore, differential white blood cell (WBC) count profiles (Table 2) from
non-infected individuals showed marked similitude with those reported in nonpasserine
birds such as cranes, raptors, and vultures (Davis, 2009).

Wherever there are subpatent infections, it is difficult to determine the prevalence
of haemosporidian parasites since those infections are usually submicroscopic. In such
cases, parasites can only be detected by polymerase chain reaction using genes with
high copy number like cytb (Pacheco et al., 2018). The molecular diagnostic detected two
lineages of Plasmodium genus (Fig. 2) in these three individuals of Hoatzin. Interesting,
the lineage found in the individuals caught in 2010 (one adult and one juvenile) has been
only reported so far in Brazil (Villar et al., 2013; Ferreira Jr et al., 2017; Tostes et al., 2017)
suggesting that it is distributed solely in South America. In particular, its partial cytb
sequence match 100% with a parasite lineage reported in several bird species: MYCAME02
isolated from Wood Storks nestlings found in the northern region of Brazil (Mycteria
Americana, Pelecaniformes)(Villar et al., 2013), H2 isolate from Streaked Flycatcher found
in Southeastern Brazil (Myiodynastes maculatus, Passeriformes) (Ferreira Jr et al., 2017),
and lineages reported from birds belonging to the orders Strigiformes, Accipitriformes,
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and Falconiformes kept in captivity in Southeaster Brazil (Tostes et al., 2017). In the
phylogenetic analysis, this lineage appears as the sister taxon of Plasmodium nucleophilum,
parasite isolated from an Egyptian Goose in São Paulo Zoo, Brazil (Chagas et al., 2013).
Both parasites, the lineage reported here and P. nucleophilum, are part of a monophyletic
group that includes Plasmodium ashfordi and Plasmodium delichoni. This monophyletic
group is at the base of the mitochondrial phylogeny of the known Avian Plasmodium
parasites. Given the lack of gametocyte data, it is possible that the Plasmodium infections
in these two Hoatzin individuals were abortive, but the fact that the two individuals
(caught together) were infected with the same parasite suggests that its transmission is
occurring, and the parasite lineage is circulating in Cojedes State, Venezuela. Tostes et
al. (2017) re-described the parasite linked to this cytb lineage as Plasmodium (Novyella)
paranucloephilum, a species originally described by Manwell & Sessler (1971) in a South
American tanager of uncertain species likely from northern Brazil. However, given the
absence of morphological data in this study, and that there is no cytb neither other mtDNA
genome sequences belonging to the original parasite description, we consider that it is
premature to identify the lineage found in this study as P. paranucloephilum. The identity
of this lineage could be established when more samples from birds with high parasitemia
of this haemosporidian parasite become available.

Regarding the second lineage found infecting hoatzin (KY653749, Fig. 2), it appears as
the common ancestor of a clade that includes Plasmodium tejerai, Plasmodium matutinum
and Plasmodium lutzi. This clade forms a monophyletic group with P. elongatum (Fig. 2);
one of the most pathogenic and generalist avian malaria parasite worldwide (Palinauskas et
al., 2016). Given that we did not find any sequence with 100% similarity with our lineage
in the available databases, this result indicates that likely a new parasite is circulating in the
area. Considering the difficulty of catching this bird species, it is worth noticing that even
with this small sample size (only eight individuals including four nestlings) we found two
Plasmodium lineages infecting the Hoatzins.

Riparian zones from the Orinoco and Amazon basins are considered important in terms
of their biodiversity since they result from variable flood regimes, geographically unique
channel processes, altitudinal climate shifts, and upland influences on fluvial corridors.
Furthermore, these areas are treated as critical habitat to several endangered bird species,
refuges to the fauna inhabiting adjacent areas and, in some cases, hotspots and corridors
for bird migration and dispersal (Naiman & Decamps, 1997; Franchin et al., 2009). In the
Amazonia, the ability of avian malaria parasites to disperse geographically and shift among
avian hosts have been played a role in their radiation and have shaped their current
distributions and diversity (Sebaio et al., 2012; Fecchio et al., 2018a; Fecchio et al., 2018b).
Thus, the fact that one of the lineages reported in the Hoatzin has been found also in species
in Brazil is consistent with this notion of broad geographic distribution and multiple hosts.
This finding also indicate that the parasite communities in the Orinoquia and the Amazon
basin share species so, at this point, we can only speculate that similar processes may shape
the parasite communities in both areas.

Riparian ecosystems in the Orinoquia are in a state of dynamic flux due to human
interventions, seasonal flooding, and fires. In addition, these areas are suitable for insects

Pacheco et al. (2019), PeerJ, DOI 10.7717/peerj.6361 9/15

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=KY653749
http://dx.doi.org/10.7717/peerj.6361


that could act as vectors. Considering all these factors, the Orinoquia should be given
special priority for future research in order to document its parasite-avian host ecology
and biodiversity.
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