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Abstract
Past management of exploited species and of conservation issues has
often ignored the evolutionary dynamics of species. During the 70s and
80s, evolution was mostly considered a slow process that may be safely
ignored for most management issues. However, in recent years, examples
of fast evolution have accumulated, suggesting that time scales of
evolutionary dynamics (variations in genotype frequencies) and of
ecological dynamics (variations in species densities) are often largely
comparable, so that complex feedbacks commonly exist between the
ecological and the evolutionary context (“eco-evolutionary dynamics”).
While a first approach is of course to consider the evolution of a given
species, in ecological communities, species are interlinked by interaction
networks. In the present article, I discuss how species (co)evolution in such
a network context may alter our understanding and predictions for species
coexistence, given the disturbed world we live in. I review some concepts
and examples suggesting that evolution may enhance the robustness of
ecological networks and then show that, in many situations, the reverse
may also happen, as evolutionary dynamics can harm diversity
maintenance in various ways. I particularly focus on how evolution modifies
indirect effects in ecological networks, then move to coevolution and
discuss how the outcome of coevolution for species coexistence depends
on the type of interaction (mutualistic or antagonistic) that is considered. I
also review examples of phenotypes that are known to be important for
ecological networks and shown to vary rapidly given global changes. Given
all these components, evolution produces indirect eco-evolutionary effects
within networks that will ultimately influence the optimal management of the
current biodiversity crisis.
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Introduction
In spite of the many examples presented by Darwin of fast  
evolution, especially in the context of artificial selection1, the  
potential for evolution to affect ecological dynamics has been  
largely ignored in the prediction and management of species 
exploitation or species conservation. Until recently, the time scale 
of evolution was often considered to be so long2 that it could be 
safely ignored for many applied topics in ecology. While this 
view dominated during the 70s and the 80s, many results in the 
past two decades have accumulated, showing that evolution alters  
ecological dynamics, even on short timescales. The evolution 
of species directly targeted by humans is easy to perceive. The  
development of modern medicine has led to the repeated evolu-
tion of resistance in bacteria3 and the intensification of agricul-
ture to the fast evolution of pesticide resistance in various pest 
species4. Such examples may give the false impression that fast 
evolution matters only for small, short-lived species. On the con-
trary, other examples clearly point out that such phenomena apply  
broadly, even for larger species. Large differences in the survival 
of different heritable phenotypes can, for instance, produce large 
evolutionary variations, even in one generation. Fast evolution 
of age and size at maturity in a cod fishery has been observed 
in just a few years5. This evolution eventually constrained cod  
recovery when fishing stopped. Evolution of leg morphology 
in cane toads has allowed this invasive species to propagate  
increasingly quickly in Australia6. Next to these particular  
examples, more general analyses show the impact of evolution 
on the demography of species as well as on the dynamics of 
their interactions. Reconsidering previously published species,  
Hairston et al.7 showed that the population growth rate of  
different species from different case studies was affected equally 
by (ecological) density or environment-dependent effects and 
by (evolutionary) changes in their phenotypes, suggesting 
that evolution happens on a time scale that is relevant for  
ecological dynamics. Classical predator–prey population cycles 
are similarly affected, with many datasets suggesting that  
evolution often shapes such cycles8–10.

Fast evolutionary dynamics should be all the more prevalent 
in the context of current global changes. Global changes are of  
political and societal importance because they cause impor-
tant declines in many species, affecting either their survival or 
their fecundity. Because these two quantities are the basic fitness  
components, global changes imply strong selective pressures11–13 
so that fast evolution is expected for any phenotype that would 
be heritable, variable, and associated with these variations in  
fecundity and survival. Fast evolution has been repeatedly shown  
in the case of invasive species, both in alien species6,14,15 and in  
species of the recipient community16,17. It then largely alters the 
dynamics of the invasion and its effects on invaded ecosystems. 
Evolution under climate change has been similarly observed. It 
modifies species phenologies18–21 and constrains changes in species 
distributions22–24. Evolution in response to overexploitation5,25,26 or 
in response to agricultural management27,28 has also been exten-
sively documented.

The question of the role of evolution in conservation issues is 
thus particularly important and increasingly recognized29,30.  

Evolution may help the conservation of diversity. For instance, 
the idea of evolutionary rescue31 proposes that, following a  
disturbance, if natural selection acts fast enough, it may allow  
local species adaptation and survival, as the evolving species’ 
growth rate is restored by evolution. While many instances of 
evolutionary rescue have been observed in nature30,32 and the  
conditions of its occurrence theoretically and experimentally  
investigated, its general importance for the overall maintenance 
of diversity is still unknown. Particularly, evolutionary rescue 
is a concept based on a monospecific approach31 and its impact 
on the dynamics of the network in which the evolving species 
is embedded is still largely unknown. However, experimen-
tal evidence highlights that such effects do exist. For instance, 
experimental evolution of plants depending on humidity con-
ditions alters the composition and structure of their microbial  
communities33, thereby affecting plant–soil feedbacks.

Other works suggest less optimistic impacts of evolution on  
species diversity. Evolution under frequency-dependent selection 
(i.e. the fitness of individuals of a particular phenotype depends 
on whether this phenotype is rare or common in the population) 
can drive the extinction of the evolving species (evolutionary 
suicide34–36). While frequency dependence may sometimes be 
beneficial from a fitness point of view, current evidence shows  
that it restricts the applicability of evolutionary rescue37.  
Evolution can also directly decrease population size (evolu-
tionary deterioration38), thereby increasing the probability of  
extinction of the species. Evolution of a species can also lead 
to the loss of another species in the network (evolutionary  
murder39,40). Ultimately, the overall effect of species evolution 
on the maintenance of diversity under global changes will depend 
on which of these processes (evolutionary rescue, suicide,  
deterioration, and murder) dominate.

In the present article, I focus on the implications of species 
(co)evolution within networks, given the context of our disturbed 
world. I tackle three questions: (1) what are the implications 
of evolutionary rescue in a network context? (2) Does the effect 
of evolution on diversity depend on the type of interaction  
(hence the type of network) that is considered? (3) Are the traits 
with documented variations linked to global changes important  
in a network context?

Evolutionary rescue in the context of ecological 
networks
Given current changes, the role of species adaptation is hotly 
debated. While some studies claim that niche conservatism 
should prevail41,42, others have pointed out that rapid evolutionary 
adaptation plays an important role in the maintenance of  
diversity18,21,43–45. Under evolutionary rescue, a species may adapt 
following a selection process born from a change in its environ-
ment and survive because of this adaptation. While such an  
outcome offers important hope given the current biodiversity  
crisis, it likely applies to a restricted set of species (Figure 1). 
Reviews on the conditions of application of evolutionary rescue 
have been published elsewhere (e.g. 30). Species with large 
populations are more likely to survive through evolutionary res-
cue (Figure 1). Large populations offer more time for evolution 
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Figure 1. Evolutionary rescue. (A) The black line shows the evolving species’ density. At the start, the species undergoes an alteration in its 
environment that leads to a negative population growth rate. However, natural selection favors adapted alleles in the population (the dashed 
line shows the adapted allele frequency). This adaptation increases the species’ growth rate. When this growth rate becomes positive, the 
species’ density increases again. The red line shows the population under which extinction is likely (e.g. due to demographic stochasticity). 
The longer the species spends under this threshold, the larger the probability of extinction. (B) Evolutionary rescue depends on population 
size. In this panel, the only difference between the black and the gray species is initial population size. Evolutionary rescue is more likely for 
the gray species, as its larger initial population leaves more time for evolution to act before the threshold is reached. (C) Evolutionary rescue 
depends on genetic variability. In this panel, the two species differ only in their genetic variability. The gray species initially has a larger 
genetic variability. This allows a faster evolutionary response, thereby facilitating rescue. Adapted from 30,31.

to act before the species abundance is dangerously low. Also, 
larger abundances often offer more genetic variability (e.g.  
more reproductive events, hence the possibility of transmission 
of more de novo mutations)46,47. Similarly, species that have  
faster life-cycles are more likely to be saved by evolutionary  
rescue, as the numerous reproductive events allow the accumu-
lation of new mutations. A higher genetic variability promotes  
evolutionary rescue (Figure 1). Because most species of con-
servation concern do not have high abundances and often have 
slow time cycles, evolutionary rescue is unlikely to save these  
species.

I do not want to focus on these already-reviewed aspects30;  
instead, I would rather question the implications of evolution-
ary rescue outside of the monospecific framework in which it has  
been grounded to bring it into a network context. Imagine that 
we have two species in a network undergoing a disturbance in  
their abiotic environment (e.g. a temperature change). Following 
this disturbance, imagine that the two species adapt to the change 
through natural selection (e.g. through modifications of their  
thermal niche). I want to stress here that the trait I consider is not 
directly selected for by species interactions but rather selected 
by the (abiotic) environment. Finally, imagine that one of the 
two species undergoes an efficient evolutionary rescue process  
(hereafter species A), while the other one does not (hereafter  
species B), for instance because of asymmetries in abundances or 
in initial genetic variabilities. Even though both species undergo 

evolutionary rescue and both would likely survive if one were 
to consider species separately (Figure 2A), the network con-
text may alter this prediction. If the species are in competition  
(Figure 2B), species B will likely be killed (evolutionary  
murder39,40,48,49) because the efficient evolutionary rescue in  
species A leads to a competitive asymmetry between the two  
species. Similarly, if we imagine that species A is now a preda-
tor of species B (Figure 2C), its efficient evolutionary rescue 
enhances the decline of species B, likely driving it to extinction. 
Species B indeed suffers simultaneously from the outside distur-
bance (evolutionary rescue being hardly efficient for species B) 
and from the ecological context (more predators, as species A 
has an efficient evolutionary rescue). Following the extinction 
of species B, species A may similarly go extinct if it is a spe-
cialist or may survive if it consumes other prey in the network. 
In the latter case, the efficient evolutionary rescue in species 
A will directly impact all of its prey in the food web. Now con-
sider the reverse case: species B is the predator (Figure 2D). The  
ecological context now enhances the positive effect of evolution-
ary rescue on coexistence. The very efficient evolutionary res-
cue in prey species A creates bottom-up effects on its predator  
(species B). Species B may then hardly suffer from the external 
change. Similar positive effects are expected if the two species 
have mutualistic interactions (Figure 2E). Effects extend beyond 
pairwise interactions. If one considers two prey species that 
share a predator (a classical “apparent competition” module50),  
efficient evolutionary rescue in species A will help to maintain  
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Figure 2. Evolutionary rescue, considering ecological interactions. (A) Starting from the classical, monospecific view of evolutionary 
rescue, direct effects of evolution are positive for the maintenance of diversity (black +). Note, however, that evolutionary rescue is more 
efficient for species A (gray) than for species B (black) (larger + sign). (B) When the two species compete, evolutionary rescue favors one 
of the two species, possibly leading to the loss of the other species (evolutionary murder). (C) Similarly, when species A is a predator of  
species B, evolutionary rescue may decrease diversity by increasing top-down effects. However, efficient evolutionary rescue in  
species A may actually help species B, for instance by increasing bottom-up effects (D) or when the two species have mutualistic interactions 
(E). Effects of evolutionary rescue may propagate further. If two prey species share a predator and one species has a very efficient 
evolutionary rescue, this helps to maintain the predator species (through bottom-up effect) but may lead to the evolutionary murder of the  
other prey species, as apparent competition is increased. In all panels, ecological interactions are in solid arrows, direct effects of evolutionary 
rescue on diversity maintenance are shown by a black +, and indirect effects of evolutionary rescue on diversity are depicted using green 
or red signs.

its predator but may be detrimental to the maintenance of the 
other prey species (Figure 2F). In conclusion, while evolutionary  
rescue may help the focal species to survive in deteriorated 
environments (at least under some conditions), its effect on  
diversity as a whole, accounting for community structure, is not 
likely to be systematically positive. Rather, it will lead to some 
important surprises, as evolutionary rescue modifies indirect  
effects happening within the ecological network.

Some empirical observations can be linked to these ideas. 
For instance, the evolution of resistance in agricultural pests 
incurs large losses in terms of agricultural productivity30,51. This 
clearly highlights how evolutionary rescue in consumer species 
reduces the abundance and productivity of lower trophic levels.  
Considering competition, several evolutionary models suggest 
that while species evolution can help the survival of some species 
through adaptation, as well as the colonization of new ranges, 
such winners are compensated by the extinctions of many other  
species that suffer from increased competition52,53. Observations 
suggest that the maintenance of mutualistic interactions is also 
affected by such rescue processes. In the case of coral bleach-
ing, evolutionary variations are likely to be highly important to  
determine the resilience of coral reefs54,55. Rapid adaptation is 
more likely to come from evolution in the symbionts, as they 
have larger population sizes and faster generations54. Such work 
suggests that rescue of one of the mutualistic partners helps the  
maintenance of the whole system, as proposed above. Note  
that because evolutionary rescue is more likely to happen in  
(small) species that have short generations and large popula-
tions, the cascading effects I introduce here are likely larger  

when such species have a dominant role in the network’s structure 
and functioning. Immediate candidates include pathogens, whose  
abundance and impact on ecological network structure is now  
well documented56.

An example: co-evolution of species phenology in 
plant–herbivore and plant–pollinator systems
As illustrated by Figure 2, how evolution and ecology interact  
and affect the maintenance of species diversity depends on the 
type of interaction that is considered (antagonism [competition 
or predation] versus mutualism). While many studies remain  
focused on either trophic networks or mutualistic networks, an 
increasing number of researchers are interested in understanding 
how mixing different types of interactions affects the stability 
and diversity of ecological networks57–60. In an evolutionary  
context, it has been shown that in a complex ecosystem where 
several interactions coexist, evolution does not systematically 
enhance the stability of the network61. Evolution is more sta-
bilizing when one considers the trophic part of the interaction  
network62,63, while evolution of the mutualistic interaction is more 
often destabilizing61. Given present disturbances, it is urgent 
to develop a more integrative understanding of how ecological  
networks function, considering the different interaction types  
they contain.

Particularly, expected evolutionary feedbacks differ depending 
on the type of ecological interaction57. To discuss this, I use the  
evolution of phenologies as a working example (Figure 3). I 
consider eco-evolutionary dynamics of plant–herbivore interac-
tions (Figure 3A and 3C) and of plant–pollinator interactions  
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Figure 3. Coevolution of plant–interactor phenologies under different scenarios. Scenarios differ in interaction type (antagonistic on the 
left [A and C] and mutualistic on the right [B and D]) and in the species with the higher evolutionary potential (e.g. genetic variability) to shift 
its phenology in response to climate change (top row: interactor potential higher; bottom: plant potential higher). In each panel, the initial 
phenology is shown in dark. Possible new phenologies given the evolutionary potential are shown in light. Arrows show the magnitude of the 
potential shift. A possible outcome for the evolution is proposed below each panel.

(Figure 3B and 3D) to contrast mutualistic and antagonistic  
interactions. I focus on phenology for several reasons. Changes 
in phenologies are one of the most prevalent consequences of  
climatic changes64. Also, previous studies suggest that species 
vastly differ in their ability to shift65,66, with important conse-
quences for the maintenance of interspecific interactions in  
ecological networks67–69. For instance, a recent review on 15 years 
in Texas showed that amphibians have shifted their phenologies 
in different ways, increasing competitive interactions in these  
communities70. In each case, I assume that the species evolve  
toward earlier phenologies, for instance because of climatic  
changes. One of the species (either the plant or its interactor) 
can evolve a phenological change fast while potential evolution 
is slower in the other species, for instance because its genetic  
variability is reduced. I also consider that the overlap of the 
two phenologies is a proxy of the intensity of the ecological  
interaction. The different situations are shown in Figure 3.

In Figure 3A, I assume that the herbivore population responds  
more easily so that its phenological shift is facilitated. Potential 
evolution for the plant is, on the contrary, assumed to be limited. 
Given these components, herbivores that emerge early will be 
resource limited, having little plant to consume. As a result, in 
such a situation, although the herbivore could in principle exhibit  
evolutionary rescue (as it is able to evolve fast), it will likely 
not because its evolution is constrained by the low evolution-
ary potential of its resource. If this evolution is too slow given  
current changes, the diversity may not be maintained. Now 

turn to the reverse scenario (Figure 3C), in which the plant has 
a high evolutionary potential while the herbivore cannot shift 
easily. The plant is now released from some of the top-down  
effects and its population may grow. This may in turn increase 
its evolutionary potential (e.g. because of the accumulation of 
new mutations), further facilitating the rescue process. Therefore, 
ecological release may speed up plant evolution, accelerating 
evolutionary rescue. The herbivore, on the contrary, is a victim 
of two distinct forces. On the evolutionary side, it has a low 
potential, so that evolutionary rescue is unlikely. On the eco-
logical side, its resource population does shift, so that it is left  
with little resource. Such forces interact to promote the extinction 
of the herbivore.

I now turn briefly to the right part of the figure (Figure 3B and 
3D) that shows mutualistic interactions. Regardless of the situ-
ation, the species whose evolutionary potential is higher will 
have no mutualistic partner when shifting its phenology. Assum-
ing the mutualistic interaction has a large impact on fitness, early 
emerging individuals will be counterselected, and the realized 
phenological shift will actually be close to the one observed for 
the slower species. Therefore, I expect that in the case of these  
mutualistic interactions, the evolutionary response will be close 
to the potential response of the slower species. This suggests that  
evolutionary inertia may commonly happen for such interac-
tions. This inertia limits the efficiency of evolutionary rescue and 
may play a part in the observed decline of pollinators and asso-
ciated plants observed in different places71–73. Also, this idea is in 
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line with other studies pointing out the evolutionary vulnerability 
of mutualisms given current changes12. While previous work  
suggests that mutualistic networks, involving intrinsically strong 
positive feedbacks, are prone to sudden collapse74, the present 
analysis suggests that they may also be less likely to evolutionarily 
adapt to external disturbances.

Superficially, it may seem that results from Figure 2E and  
Figure 3B and 3D are in contradiction, as the first points out 
how mutualism may be beneficial for evolutionary rescue while 
the other argues the contrary. The two figures actually show  
different processes. Figure 2 relies on an analysis of density- 
dependent effects. Indeed, when mutualism enhances densities, 
it may help evolutionary rescue. Figure 3 relies on the distribu-
tion of this density in times (phenologies). Possible mismatch 
may then limit the rescue process. In a mutualistic context, it is  
therefore important to understand which of these two processes 
(density-dependent effect versus mismatch effect) will dominate to 
properly analyze the fragility of the interaction.

Of course, other scenarios are possible. Analysis of Figure 3  
relies on a pairwise interaction, therefore implicitly assuming  
that both species are specialists (or at the very least that the  
particular interaction plays an important role in the fitness of both 
species). For more generalist species, phenological shifts can 
in fact lead to changes in interaction partners. Such interaction  
switches have been observed in several instances12,55,69. This 
does not preclude the possibility of negative evolutionary effects 
on diversity maintenance. Such a rewiring creates new indirect 
effects in the ecological network75 that may be positive or negative 
(see Figure 2 and related text). While the effects of evolution on  
biodiversity in the context of ecological networks require further 
theoretical developments (but see 76,77), we already know that 
some of the traits that largely drive ecological dynamics within 
these networks are currently varying fast under current changes.

Also, the analysis of Figure 3 relies on evolutionary variations 
in phenology. While variations in phenology have been widely 
observed64, the role of plasticity, of the evolution of plasticity,  
and of genetic changes in such variations is not always clear and 
likely varies depending on species and on the ecological con-
text. However, several studies have underlined that evolution 
can clearly be an important part of such shifts. For instance, vari-
ations in egg-laying date in great tits are largely explained by 
either genetic variations19 or evolution of plasticity18. Such a 
role of evolution in spawning dates has also been pointed out for 
amphibian species21. Similarly, the timing of bird migration has 
recently shifted, and part of these shifts is linked to evolutionary  
changes78.

Effects of current changes on phenotypes strongly 
impacting ecological networks
Many studies document the variations of different phenotypic 
traits under global changes. While the role of evolution versus  
plasticity is not always clear in these studies, several of these  
variations are widespread, consistent, and sustained, suggest-
ing a directional selective process whose influence on ecologi-
cal networks can be important. While a complete list of these  

phenotypes is beyond the scope of this article, I here discuss a 
few phenotypic traits satisfying two conditions: (1) documented, 
consistent variations given current changes and (2) documented  
impact on the structure or functioning of ecological networks.

Body size, for instance, has large effects on many aspects of the 
ecological dynamics of species, affecting not only life history  
traits79 but also the occurrence and intensity of ecological inter-
actions. Predator–prey interactions are largely affected by the 
distribution of body sizes80,81, predators being larger than their  
prey by a given ratio82,83. Differences in body size also affect  
competitive interactions84. Therefore, changes in the body size 
of different species in an ecological network likely impact its  
structure and functioning, as suggested by empirical data85 and 
theoretical models48,86–89. One of the key theoretical frameworks 
to understand the implications of body size for ecology is the  
metabolic theory of ecology90. It also allows some predictions on 
how increasing temperature (e.g. through climate change) may  
affect the selection of body sizes. Consistent with these predic-
tions, many empirical data show that current changes lead to  
decreasing body sizes within natural ecosystems. Evidence is  
particularly strong for aquatic systems91,92, where smaller body 
sizes are selected at different organizational levels, within spe-
cies and among species91. Selection of smaller body sizes is so  
prevalent in the empirical literature that it has been proposed as 
a general law of climate changes93. This leads to two important 
questions regarding ecological networks. First, what will be the  
implications of such phenotypic changes for the structure and  
functioning of these systems? If the various species change 
body sizes at different rates, modifications in interaction part-
ners are likely. Interaction strengths will also likely be modified,  
affecting the stability of future networks94. Second, how does 
the ecological network act as a selective agent on species body  
sizes? As body size affects ecological interactions, the ecological 
network may also constrain future body size variations in addi-
tion to or in interaction with climatic changes. Selection toward 
smaller body sizes may be accelerated or dampened. Body size  
dynamics may also depend on the position of the species within 
the network. For instance, recent theoretical results suggest that  
larger body size variations happen at higher trophic levels77.

I now get back to phenological changes. Phenology directly  
affects the occurrence of interactions within the network by the  
simple fact that for two species to interact, it is necessary that 
they co-occur (i.e. their phenologies match). I have already 
explained some of the evolutionary consequences of changes 
in phenology. I would like to turn to the consequences of such  
phenological changes for the ecological network. A first con-
sequence is that shifts in phenology, if constrained in different 
ways between different groups (for instance between plants and 
their pollinators), may lead to changes in interaction partners. An  
immediate consequence is that interaction patterns are altered, 
and network structures and energy pathways will likely be  
modified. Also, partners are of different quality, which has 
important implications for the evolution of such networks. In an  
interesting experiment published recently, Gervasi and Schiestl68 
manipulated the pollinators of different Brassica rapa plants,  
with one pollinator treatment (bumblebees) offering a better  
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service than the other (hoverflies). They showed that in just a 
few generations, the plants pollinated by hoverflies evolved a 
decreased investment in advertising traits (shorter plants, modi-
fied volatile compounds) and evolved toward more autonomous 
self-pollination. This study clearly shows possible consequences 
of partner switches in pollination networks due to phenologi-
cal changes. Other reproductive modes can be selected and the  
mutualistic interaction undermined. This is also consistent with 
other work suggesting that mutualisms can be evolutionarily  
threatened by current changes owing to partner switches12.

Changes in phenologies in a key interaction also potentially  
change the functioning of the whole system. Deacy et al.69 showed 
that, because of climate change, in Alaska, the phenologies of 
red elderberry (Sambucus racemosa) and of sockeye salmon  
(Oncorhynchus nerka) migration have progressively converged. 
As a result, Kodiak brown bears (Ursus arctos middendorffi) 
have relaxed their predation on salmon, as they prefer to eat the  
elderberries. Because in normal years bear predation is the 
major source of salmon mortality, and because salmon mortality 
is a huge part of the nutrient cycling in such ecosystems95, the  
phenological shift described by Deacy et al. likely affects the 
whole ecosystem’s functioning by changing the way nutrients are  
spatially distributed.

Other traits certainly deserve investigation. For instance,  
stoichiometric ratios are important constraints for interspecific 
interactions and ecosystem functioning96,97. Because nitrogen 
deposition and modifications of nutrient cycles by humans are  
important current changes98, the distribution of available nutri-
ents presently changes in major ways, possibly affecting the 

selection of stoichiometric ratios in many organisms. Such varia-
tions may constrain the transmission of energy within ecological  
networks, affecting their functioning and stability99. Global  
changes may also affect the selection on plant chemistry. Recent 
data show that the number of freezing days impacts the frequency 
of various thyme phenotypes that differ in their chemistry100.  
Because plant metabolites play an important role in plant– 
herbivore interactions101, plant–pollinator interactions, or in  
both102–105, such modifications may ultimately affect the structure of 
multiple interaction networks.

Understanding such eco-evolutionary aspects requires the  
development of theoretical models allowing a relevant com-
plexity (i.e. multiple species to study the diversity issues) and of  
relevant phenotypes and trade-offs. While the current devel-
opments in community evolution models48,49 offer proper 
tools to tackle these issues, such complex questions need time 
and investigation, which is at odds with the urgency of the  
situation.
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