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A stochastic quantile approach for longevity risk  

Abstract 

This paper investigates the problem of quantifying longevity risk in a quantile perspective. In this field, the idea of 

deepening the expected changes of future mortality rates over a single year is gaining. In the following the authors 

propose an approach which combines a stochastic model for the evolution of mortality rates and a quantile analysis of 

the mortality distribution in order to capture the trend component of longevity. An ex post analysis is proposed, relying 

on the past mortality experience of the Italian male population measured in the period of 1954-2008. Numerical 

applications illustrate the results and their impact both on the survival probabilities and on the risk margin for the 

insurance company. 
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Introduction  

During the 20
th
 century, human life expectancy have 

considerably increased for the populations of many 

developed countries. Although the past trends 

suggest that further changes in the level of mortality 

are to be expected, the future improvements of life 

expectancy are uncertain and difficult to be predicted.  

This uncertainty about the future development of 

mortality give rise to longevity risk. The real 

challenge for public pension systems and for private 

insurance companies consists precisely in the design 

of products able to absorb any adverse events 

concerning the future mortality. In other words, the 

challenge is how to deal with the longevity risk. 

When we treat benefits depending on the survival of 

a certain number of individuals, the calculation of 

the present values, used both for pricing and for 

reserving, requires an appropriate projection of 

mortality in order to avoid an underestimation of 

future costs. Therefore, actuaries have to employ 

projected life tables incorporating a forecast of 

future trends of mortality. The insurer bears the risk 

that the projections of mortality turn out to be 

incorrect and the annuitants live longer than 

expected. Different approaches for the construction 

of the projected tables have been developed until 

now, (for a full report on this subject, see Pitacco 

2004), but no one turned out to be suitable for the 

problem solution. The problem is twofold. On the 

one hand, insurers have to make the annuities 

market attractive to the insured. At present, the risk 

borne out by insurers for insurance annuities, which 

is undoubtedly too high, is reflected in high premiums 

charged for these products that discourage individuals 

who are intending to purchase annuities. On the other 

hand, Solvency II regulation requires the constitution 

of appropriate margins that are difficult to bear for an 

insurance company. 
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For this reason, many insurance companies and 

pension funds providers focus in the issue of sharing 

the longevity risk. An ordinary way to solve this 

problem is through reinsurance, but this method 

often involves high costs. The securitization 

provides a viable alternative (see Denuit, Devolder 

and Goderniaux, 2007), but unfortunately the 

longevity bonds are not a very attractive business 

for investors. Denuit et al. in 2011 thought the 

reduction of annuity periodic payments in a similar 

way to what happens in the context of securitization. 

In this way the risk is shared between insurer and 

insured, but nevertheless we obtain a significant 

reduction of benefits for the insured. Richards et al. 

in 2014 proposed a very interesting idea based on 

the quantification of expectation of change in 

mortality over a one year horizon. Such an approach 

lies at the heart of the one year value at risk view of 

the actuarial liability. We try to develop this concept 

relying on past mortality experience of the Italian 

population measured in the period of 1954-2008. A 

computational tractable approach based on a CIR 

type stochastic process for modeling the future 

uncertainty about the force of mortality is used. 

Essentially we try to combine a stochastic model for 

mortality rates approach with a quantile simulation 

procedure for the short period survival probabilities 

in order to quantify the risk of the insurance position. 

This approach, which combines a stochastic model for 

the evolution of mortality rates and a quantile analysis 

for the mortality distribution, can be useful to capture 

the trend component of longevity. This also can help to 

minimize the security loading in order to front the 

insurer actuarial liability. 

The paper is organized as follows. In section 1 the 
general issue of modeling the uncertainty in future 
mortality is fronted and a CIR type model for 
describing the future evolution of hazard rates is 
described. In section 2 the quantile analysis and the 
stochastic simulation procedure is introduced. In 
section 3 the authors look for the conditions that allow 
to quantify the longevity risk via quantile analysis. The 
final section concludes and discusses the results. 
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1. The mortality model 

Let us consider an individual aged x in the calendar 
year t. px(t) = P(Tx(t) > 1) is the probability that an 
individual reaches the age x +1. Analogously kpx(t)
is the probability that an individual aged x in year t
reaches age x + k in the year t + k. If we consider the 
hazard rate for an individual aged x + t in the year t

x+t we have 

0

k

x s ds

k x
p t E e .      (1) 

We describe the evolution in time of mortality by a 
widely used stochastic mortality model (see Biffis, 
2005; Dahl and Moller, 2006), supposing that the 
force of mortality at time t for an individual aged 
x+t is given by: 

,x t x t x t td dt dB     (2) 

where  and  are positive constants,  is the long 
term mean and Bt is a standard Brownian motion. 
This model, referred as the CIR mortality model has 
the property that the mortality rates are continuous 
and remain positive. Moreover, for 2  

2
 the 

mortality rates does not reach zero, and the drift 

factor (   x+t) ensures the mean reversion of x+t

towards the long-term mean .

For convenience, we now introduce the centered 
version of the model. Let us consider the shifted 

*

x t x t . The process is then centred around 

 and the long term mean converges almost 
everywhere to zero: 

,* * *

x t x t x t td dt dB                       (3) 

with initial condition given by the known value of 

x+t. Its solution is given by: 

0

0

t

* t * t u *

x t x x u ue e e dB .       (4) 

The expected value, the covariance and the 
stationary variance functions immediately follow: 
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1.1. Parameter estimation procedure. Estimating 

the parameters of the stochastic mortality model 

requires the discrete representation of the model. 

To this aim, we refer to the covariance equivalence 

principle which requires that the expected values 

and the stationary variances of the continuous and 

discrete processes to be equal. 

The discrete model representation is given by the 

following equation: 

1 1

2

1

* * *

x t x t a x t ta .               (5) 

The expected value, the covariance and stationary 

variance functions of the previous equation are: 
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The estimation procedure starts by finding the value of 

 that minimizes the residual sum of squares function: 

2

1

1

( )
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RSS .

The least squares estimate of 
2

a  is given by 

RSS/N-1.

Finally the continuous model parameters are 

obtained by means of the parametric relationships 

between continuous and discrete models, derived by 

applying the covariance equivalence principle: 

2
2 2 1

2
a

e

e
.
                                                   (6) 

At this point, by the Pitman and Yor formula, we 

can compute: 

0

2

2

2

1 2

2

,

2 2

k

x sds

k x

coth w /
x wexp w

coth wk /
w

p t E e

cosh wt / / w sinh coth wk /

                                         (7) 
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where x = 0 e
2 22w .

Applying the described estimation procedure, the 

significant parameters of the mortality-CIR model 

are obtained and therefore the survival probabilities 

for each specific calendar year. 

Our set of data relates to the Italian male population 

with annual age-specific death counts ranging from 

ages 64 to 89 over the period of 1954 to 2008 (data 

source: Human mortality database www.morta-

lity.org).

We refer to the class of the forward mortality 

models. These models study changes in the 

mortality rate curve for a specific age cohorts and 

capture dynamics of each age cohort over time for 

all ages greater than x in a specific year t (for 

example age x in the year t, x + 1 in the year t + 1 

and so on). In this case, the mortality curves are 

modeled diagonally (for example see Dahl, 2004; 

Cairns et al., 2006; Bauer et al., 2008). In practice, 

on the basis of data available for the previous 25 

years, we can estimate the model parameters for the 

year t and, as a result, it is possible to get the 

forecasted survival probabilities. 

For example, with the data of the period of 1954-1978 

it is possible to obtain the column of the survival 

probabilities for the year 1979. This procedure is 

repeated thirty times in order to obtain the annual 

survival probabilities over the period of 1979 to 2008 

and ranging from ages of 64 to 89. 

These probabilities can be compared with the 

corresponding survival rates obtained from the 

tables of the Human Mortality Database. 

Regarding the choice of fixing the extreme age to 

89, recent studies (Khalaf-Allah et al., 2006) have 

shown that the most damaging effects in terms of 

annuities present values for the provider are in the 

age range of 73-80. Clearly this happens because 

the number of survival is still large at these ages. 

As a consequence, even modest improvements in 

the level of survival probabilities with respect to 

those used for pricing and reserving, result in 

large additional costs for the annuity provider. 

The results of the estimation procedure are 

summarized in the following table (Tab. 1). The 

parameters  and
2
 are obtained, for each year, 

by means of the relations (5), after the estimation 

of the discrete parameters in (4). We choose to 

calculate the long term mean  as the simple mean 

of each historical series used to estimate the 

parameters. 

 takes the same value for each calendar year. The 

reason can be found in the high autoregressive 

parameter of the discrete model  = 0.999, which is 

the same each year explaining the high correlation 

of each data of each series with the preceding one.  

Table 1. CIR-estimated mortality parameters. Data 

source: Human Mortality Database: Italian male 

population 

Year 2

1979 0.0010005 0.02154137 0.09879589 

1980 0.0010005 0.02218555 0.09870146 

1981 0.0010005 0.02196340 0.09855553 

1982 0.0010005 0.02125207 0.09849015 

1983 0.0010005 0.02006831 0.09848095 

1984 0.0010005 0.02260864 0.09951799 

1985 0.0010005 0.02051935 0.09773577 

1986 0.0010005 0.02120267 0.09732236 

1987 0.0010005 0.01981722 0.09758413 

1988 0.0010005 0.01874663 0.09654774 

1989 0.0010005 0.01883434 0.09567750 

1990 0.0010005 0.01846146 0.09354197 

1991 0.0010005 0.01880755 0.09122329 

1992 0.0010005 0.01876966 0.09087511 

1993 0.0010005 0.01765508 0.09013384 

1994 0.0010005 0.01824302 0.08918243 

1995 0.0010005 0.01765857 0.08768303 

1996 0.0010005 0.01786665 0.08616861 

1997 0.0010005 0.01748889 0.08443631 

1998 0.0010005 0.01756343 0.08338616 

1999 0.0010005 0.0182456 0.08166418 

2000 0.0010005 0.01765565 0.07982632 

2001 0.0010005 0.0170472 0.07782871 

2002 0.0010005 0.01693314 0.07627881 

2003 0.0010005 0.01732366 0.07500763 

2004 0.0010005 0.01858599 0.07417957 

2005 0.0010005 0.01731115 0.07317319 

2006 0.0010005 0.01812203 0.07046889 

2007 0.0010005 0.01662066 0.06851038 

2008 0.0010005 0.01709801 0.06566561 

Figures 1, 2 and 3 show the comparison between 

the estimated annual survival probabilities 

obtained by means of the CIR model and the 

corresponding probabilities of the Italian male 

population. The results are shown year by year 

over the period of 1979-2008.
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Fig. 1. Annual survival probabilities Px(t) with x  (64.89) for each calendar year t ranging from 1979 to 1988. Comparison 

between CIR model (upper line) and real data (lower line) 
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Fig. 2 Annual survival probabilities Px(t) with x  (64.89) for each calendar year t ranging from 1989 to 1998. Comparison 

between CIR model (upper line) and real data (lower line) 
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Fig. 3. Annual survival probabilities Px(t) with x  (64.89) for each calendar year t ranging from 1999 to 2008. Comparison 

between CIR model (upper line) and real data (lower line) 

Now, on the basis of mortality data for the last 25 

years, the model is able to provide a good fit to the 

real survival probabilites of the next year but, 

unfortunately, fails in projection. In other words, it 

is not able to capture the decrease in time of the 

parameters  and  because of the well known 

phenomena of rectangularization and expansion of 

the Lexis point. For this reason, we try to combine a 

stochastic model for the evolution of mortality rates 

with quantile analysis for the mortality distribution 

in order to capture the trend component of 

longevity. 

2. The quantile analysis 

The quantile estimation gives an important information 

to the insurer by quantifying the tail events. In our 

analysis we refer to a tail event as the event of a 

survival probability higher than the expected one. This 

is crucial for the insurer. As well as the uncertain 

phenomena on the life expectancy, it is necessary to 

quantify the effects due to possible unexpected tail 

events. Only the awareness of the additional element 

can help to fully address the longevity risk. 

We consider the survival probabilities t px, derived 

by the stochastic model described in the previous 

section. Fixing x we derive, in a one year horizon, a 

set of cumulative probabilities and we estimate the 

related quantiles. To this end we resort to a 

stochastic simulation procedure and derive, for the 

following year a set of cumulative probabilities. In 

particular, we simulate a large number N of sample 

paths, each of one producing a simulated set of t p
s
x

(S = 1,…, N).

The mortality risk measure we refer to is the 
quantile:

MRM = q ,

where  is the confidence level. 

In practice, we consider the stochastic differential 

equation (2) and implement a Monte Carlo simulation 

procedure for the demographic quantities. In order to 

perform the simulation procedure it is necessary to 

consider the discrete time equation for the chosen 

stochastic differential equation describing the 

evolution in time of the mortality rates. On the basis of 

the first order Euler discretization of equation (7), with 

a time interval [x + t, x + t + 1] we have: 

1
( ) ,

k k k k
x t x t x t x t k

k = 1, 2,.., n-1,                                                        (8) 

where  = 1/n is the sampling interval, with k being 

the increment Bk of the Wiener process between 

tk+1 = (k + 1)  and tk = k . The increments Bk are

N(0, ) distributed random variables. The discretized 

process is then represented by the sequence 

1 2
{ , ,......, }

nt t t . 

We know that the relation between the survival 

probabilities and the force of mortality is given by: 

Px(t), x  (64.89) 
t = 1999 t = 2000

t = 2001 t = 2002

t = 2003 t = 2004

t = 2005 t = 2006

t = 2007 t = 2008
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0 ,

k

x s ds

k x
p t E e                                        (9) 

with
1

1

( ) ( ).
k

n

k x t

k

p t exp                           (10) 

The following simulation procedure is carried out: 

1. generation of a sequence of n pseudo random 

numbers { k}k = 1, 2, …, nT, N(0, ) distributed; 
2. computation of one simulated path for the stochas-

tic mortality rates on the basis of equation (8); 
3. computation of the discounting factors by means 

of equation (10); 
4. computation of the survival probabilities using 

the estimated mortality table. 

The simulation procedure is repeated N times to 
gain N values for the survival probabilities. 

At this point, in a year by year valuation, we can 
estimate the survival probability quantiles at time t.

3. Longevity risk management via quantile 

analysis 

The above analysis shows that the model fails to 

capture the trend of longevity. Although there is a 

good fit to the data in a year to year perspective, 

using the probability of the model and comparing 

them with those available on the tables ex post, 

you get ratios that are significantly less than one, 

in the sense that the probability provided by the 

model are lower than those observed in reality. At 

this point, we combine the model chosen for the 

evolution of mortality with a quantile analysis for 

the mortality distribution. Referring to equation 

(2), a large number of paths for the force of 

mortality are simulated. Each path allows to 

compute a simulated set of probabilities, that is 

px+j(t + j) with x = 64, t = 1979, 1980, 1981, 1982, 

and j = 0, 1, 2,…, 24. For each simulated set, we 

study the ratio between the simulated survival 

probability and the “true” probability, that is the 

probability detected ex post by the life table. 

Clearly, it is desirable this ratio is equal to one, so 

that we study the confidence level that makes this 

value equal to one. This level will provide an 

estimate of the goodness of fit of the simulations but, 

above all, it will provide an estimate of the 

probability of underestimating the “true” probability. 

As one can see, the response of the model is good in 
the medium term. For all the years considered the 
results of the reports are quite close to 1 up to age 
78. The probability of underestimating the survival 
probabilities is negligible. The situation is different 
for age greater than 78. In this case the probability 
of underestimating grows up to 24%. Around this 
level the probability of underestimation stabilizes 
even for higher age. At this point it is possible to 
draw two conclusions. The first is that the 
combination between a stochastic model for the 
evolution of the force of mortality and a quantile 
approach allows to control the deviations of mortality 
from its expected trend due to the longevity and to 
limit the probability of underestimation within 
precise limits. The second is that the introduction of a 
single threshold to describe uncontrolled deviations 
of mortality from its trend looks wrong. The 
constitutions of the funds by the insurance company 
should be more responsive to its risk profile. 

Conclusive remarks 

In this paper we investigated the problem of 

quantifying longevity risk in a quantile perspective. In 

particular we proposed an approach which combines a 

stochastic model for the evolution of mortality rates 

and a quantile analysis for the mortality distribution in 

order to capture the trend component of longevity. We 

performed an ex post analysis relying on the past 

mortality experience of the Italian male population 

measured in the period of 1954-2008. We found that 

the combination between a stochastic model for the 

evolution of the force of mortality and a quantile 

approach allows to control the deviations of mortality 

from its expected trend due to the longevity and to 

limit the probability of underestimation of the survival 

probabilities within precise limits. The identification of 

these limits allows the insurance company to adapt its 

solvency margin to its risk profile. Further research on 

this subject could be oriented in deepening the topic 

of the choice of different mortality models in order 

to quantify the so called model risk. 
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Fig. 4a. Annual simulated survival probabilities Px(t) with x  (64.89) for each calendar year t ranging  from 2004 to 2007. 
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Fig. 4b. Annual simulated survival probabilities Px(t) with x  (64.89) for each calendar year t ranging from 2004 to 2007. 
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