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There are currently no treatments that hinder or halt the inexorable progression of
Parkinson’s disease (PD). While the etiology of PD remains elusive, evidence suggests
that early dysfunction of mitochondrial respiration and homeostasis play a major role in
PD pathogenesis. The mitochondrial structural protein Mic60, also known as mitofilin,
is critical for maintaining mitochondrial architecture and function. Loss of Mic60 is
associated with detrimental effects on mitochondrial homeostasis. Growing evidence
now implicates Mic60 in the pathogenesis of PD. In this review, we discuss the data
supporting a role of Mic60 and mitochondrial dysfunction in PD. We will also consider
the potential of Mic60 as a therapeutic target for treating neurological disorders.
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INTRODUCTION

Parkinson’s disease (PD), the most common neurodegenerative movement disorder, was first
described in 1817 by James Parkinson in “An Essay on the Shaking Palsy.” (Parkinson, 1817) In the
200 years that have passed since recognition of this neurological disorder, great strides have been
made to characterize disease pathology, distinguish clinical symptoms, and develop a therapeutic
treatment. However, the causes of PD neurodegeneration are still unknown, and there is no cure
nor are there any available neuroprotective therapies to hinder disease progression. Identifying and
understanding the etiology of PD progression is key to the development of new therapeutics for
disease treatment.

Epidemiological studies and laboratory research have long sought to find potential causes
of this prevalent disease (Khandhar and Marks, 2007; Delamarre and Meissner, 2017). Though
the underlying mechanism of PD pathogenesis remains elusive, current ideology suggests that a
combination of environmental exposure and genetic predisposition are responsible for most cases
of PD (Horowitz and Greenamyre, 2010; Ritz et al., 2016). Genetic and epidemiological studies have
identified multiple biological pathways that promote PD pathogenesis, many of which converge on
the function of the mitochondria, the “powerhouses” of the cell (Schapira, 2008; Cieri et al., 2017;
Ammal Kaidery and Thomas, 2018; Zanon et al., 2018).

Mitochondrial dysfunction is a known contributor to PD pathophysiology, with impaired
mitochondrial respiration, morphology, and fission/fusion/transport dynamics all associated with
PD (Van Laar and Berman, 2013; Bose and Beal, 2016). The connection between PD and
mitochondria is reinforced by heritable forms of the disease, wherein monogenetic PD-causing
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mutations in nuclear-expressed proteins such as PINK1, Parkin,
LRRK2, and alpha-synuclein have all been shown to affect
mitochondrial function (Narendra et al., 2010; Sanders et al.,
2014; Di Maio et al., 2016; Verma et al., 2017). In recent years,
independent studies from multiple labs have associated the inner
mitochondrial membrane protein Mic60, also known as mitofilin,
with PD pathogenesis (Van Laar et al., 2008, 2009, 2016; Akabane
et al., 2016; Tsai et al., 2018). Mic60 is a core component of
the mitochondrial contact site and cristae junction organizing
system (MICOS) (Zerbes et al., 2012b; Pfanner et al., 2014;
Kozjak-Pavlovic, 2017). The MICOS is a large, multi-protein
complex of the mitochondrial inner membrane that maintains
cristae structure, forms inner-outer mitochondrial membrane
contact sites, organizes respiratory complexes, and regulates
protein import (Bohnert et al., 2012; Zerbes et al., 2012a; Harner
et al., 2014; Pfanner et al., 2014; Friedman et al., 2015; Horvath
et al., 2015; Kozjak-Pavlovic, 2017; Figure 1A). Growing evidence
places the MICOS complex, and in particular the protein
Mic60, in a central role in regulating PD-relevant mitochondrial
processes. Here, we will review the role of Mic60 in mitochondrial
function and will review evidence for a role for Mic60 in PD
neurodegeneration and as a potential therapeutic target in PD.

MITOCHONDRIAL DYSFUNCTION,
MITOCHONDRIAL DYNAMICS, AND
OXIDATIVE STRESS IN PD

PD is a progressive neurodegenerative disorder. A pathological
hallmark of PD is a loss of the dopamine (DA) neurons of
the nigrostriatal pathway, though other populations throughout
the midbrain, basal ganglia, and cortex degenerate as well
(Braak et al., 2003, 2004). Despite years of study, the cause of
this neurodegeneration is still unknown, but growing evidence
implicates mitochondrial respiratory dysfunction, oxidative
stress, and dysregulation of mitochondrial dynamics in the
neuropathogenesis of PD, as has been thoroughly reviewed
elsewhere (Murphy et al., 1999; Toescu et al., 2000; Friberg
and Wieloch, 2002; Beal, 2007; Schapira, 2008; Van Laar
and Berman, 2009; Exner et al., 2012; Cieri et al., 2017;
Ammal Kaidery and Thomas, 2018). To briefly summarize,
many studies have identified protein oxidation, DNA damage,
phospholipid oxidation, and decreased function of mitochondrial
respiration in brain tissue from PD patients (Dexter et al.,
1989; Schapira et al., 1990; Alam et al., 1997a,b; Good et al.,
1998; Sanders and Greenamyre, 2013). A low-grade deficiency
in mitochondrial electron transport chain (ETC) Complex I
(NADH dehydrogenase) activity has been found not only in
PD brain, but also other non-neuronal tissues throughout the
body (Parker et al., 1989, 2008; Schapira et al., 1989; Krige
et al., 1992; Yoshino et al., 1992; Barroso et al., 1993; Mann
et al., 1994; Taylor et al., 1994; Haas et al., 1995; Penn et al.,
1995; Blandini et al., 1998; Keeney et al., 2006), suggesting a
systemic mitochondrial respiration deficit associated with PD.
The discovery of the DA neuron-specific toxicant N-methyl-
4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in the 1980’s
further implicated mitochondria in PD (Davis et al., 1979;

Langston and Ballard, 1983; Langston et al., 1983). MPTP toxicity
is elicited through its metabolite MPP+, which is selectively
imported into DA neurons and acts as a Complex I inhibitor
(Nicklas et al., 1985; Ramsay et al., 1986; Mizuno et al., 1987).
MPP+ results in increased production of ROS (Rossetti et al.,
1988; Adams et al., 1993; Smith and Bennett, 1997) and a loss
of nigrostriatal DA neurons (Langston et al., 1999), suggesting
that environmental toxins affecting mitochondrial function
could also contribute to PD. These discoveries ultimately
led to the seminal finding that systemic administration of
low doses of rotenone, also a Complex I inhibitor, leads to
PD-specific neurodegeneration and pathology, despite rotenone
freely crossing all cell membranes (Betarbet et al., 2000; Sherer
et al., 2003; Cannon et al., 2009).

Mitochondrial Complex I is known to be the major site
for production of reactive oxygen species (ROS). Complex I
dysfunction or inhibition results in increased ROS production
(Lenaz, 2001; Votyakova and Reynolds, 2001), implicating
mitochondrially produced oxidative stress in PD pathogenesis.
A role for ROS in pathogenesis is bolstered by the fact that
many of the most susceptible neurons in PD contain dopamine
(DA), which produces ROS through its metabolism and through
oxidation to reactive quinones (Bindoli et al., 1992; Monks et al.,
1992; Hastings et al., 1996; Hastings and Berman, 2000). DA
quinones bind to sulfhydryl groups on free cysteine, glutathione,
and protein cysteinyl residues in the cell, and DA oxidation
products have been shown to alter mitochondrial respiration
and permeability transition pore opening (Hastings et al., 1996;
Berman and Hastings, 1999; Gluck et al., 2002; Gluck and
Zeevalk, 2004).

In addition to mitochondrial respiratory deficiencies and
oxidative stress, PD pathogenesis is associated with defects in the
dynamic properties of mitochondria that maintain mitochondrial
homeostasis (mitochondrial fission, fusion, transport, biogenesis,
and degradation) and are necessary for maintaining bioenergetic
function (for review, see (Chen and Chan, 2009; Van Laar and
Berman, 2009; McCoy and Cookson, 2012; Van Laar and Berman,
2013; Bose and Beal, 2016). This evidence arises not only from
studies of in vitro toxicant models of PD, but also from PD
patient-derived cell lines, and actions of familial PD-causing gene
products (Exner et al., 2007; Poole et al., 2008; Arnold et al., 2011;
Bose and Beal, 2016). Perhaps the most well studied is the shared
pathway of two PD-associated proteins PINK1 and Parkin, in
which evidence suggests that Parkin works downstream of PINK1
to signal damaged mitochondria for autophagic degradation
(Narendra et al., 2010; Pickrell et al., 2015).

The evidence suggests that regulation of mitochondrial
respiratory, morphologic, and maintenance functions plays
a critical role in PD pathogenesis. Proteins that integrate
these various and interrelated mitochondrial structural and
homeostatic functions are therefore uniquely positioned to play
an important role in PD-relevant mitochondrial dysfunction.
As we will detail below, Mic60 is emerging as central to these
integrated mitochondrial functions and, importantly, in PD
pathogenesis. Mic60 is integral in the maintenance of both
structural dynamics and respiratory function of mitochondria
and interacts with PD gene products. These functions place
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FIGURE 1 | Mic60: Mitochondrial cristae structure maintenance and proposed phospho-regulation. (A) Mic60 is an inner mitochondrial membrane protein and key
component of the MICOS and MIB protein complexes, which bridge inner membrane cristae junctions and inner-outer membrane contact sites, respectively.
Maintenance of cristae structure by MICOS also regulates function of the mitochondrial Electron Transport Chain Complexes (I, II, III, and IV) and ATP synthase
(F0-F1). (B) It is proposed that under normal conditions, Mic60 interacts with and is phosphorylated by PINK1 at a basal rate, thus regulating its ability to maintain
normal cristae structure. (C) Under conditions in which PINK1 expression is decreased, PINK1 kinase function is inactivated, or Mic60 expression is reduced, the
mitochondrial cristae structure is not maintained. This leads to mitochondria exhibiting characteristic onion ring-like whorls of the inner membrane or formation of

(Continued)
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FIGURE 1 | Continued
large vacuoles within the mitochondrion. This is accompanied by decreased membrane potential (1ψ) and respiratory function. (D) Under conditions in which PINK1
phosphorylation of Mic60 is increased or Mic60 expression is increased, mitochondria can exhibit increased numbers of inner membrane cristae structures and
cristae junctions. This is accompanied by highly coupled respiratory function. (E) One proposed mechanism of PINK1’s effects on Mic60 is that phosphorylation
increases the ability of Mic60 to oligomerize with itself and, presumably, the MICOS complex, leading to increased inner membrane structural integrity. (F) In a cellular
state in which cAMP levels and PKA activation are low, PINK1 can also interact with Mic60 and be stabilized on the surface of mitochondria, aiding in its function to
recruit Parkin to damaged mitochondria. (G) However, in apparent opposition to the PINK1-Mic60 interaction, PKA activation and phosphorylation of Mic60
destabilizes the MICOS complex and decreases the ability of PINK1 to stabilize on the mitochondrial surface, preventing the recruitment of Parkin to damaged
mitochondria.

Mic60 in a unique position to regulate mitochondrial response
to stress, particularly in mitochondria-dependent neurons, and
increasing evidence, as detailed below, links Mic60 to PD
pathogenesis.

Mic60, A PROTEIN AT THE
INTERSECTION OF REGULATION OF
MITOCHONDRIAL FUNCTION AND
STRUCTURE

Mic60 was first identified as “HMP,” heart muscle protein, due to
its abundance in cardiac tissue (Icho et al., 1994). Later renamed
“mitofilin” based on its structure and localization, subsequent
studies demonstrated that human Mic60 is a nuclear-expressed
mitochondrial protein that is targeted selectively to the inner
mitochondrial membrane (Odgren et al., 1996; Gieffers et al.,
1997). Human Mic60, which exists in both 88 kDa and 90 kDa
isoforms, contains a cleavable mitochondrial targeting sequence,
a transmembrane domain near the N-terminus that spans the
inner mitochondrial membrane with the bulk of the protein
jutting into the intermembrane space (Gieffers et al., 1997),
and three coiled-coil domains characteristic of involvement in
protein-protein interactions (Odgren et al., 1996; John et al.,
2005).

John et al. (2005) first described Mic60/mitofilin as a
critical protein for maintaining mitochondrial cristae structure
and mitochondrial respiration. Perhaps the most remarkable
characteristic that was noted in association with Mic60
was that loss of the protein resulted in the reorganization
of the mitochondrial cristae structure. Mitochondria in
Mic60/mitofilin-deficient cells exhibited concentric ring-like
structures or whorls in place of the normal inner membrane
cristae structure (John et al., 2005), an effect since noted by
others in various cell and animal models with aberrant Mic60
expression (Rabl et al., 2009; Mun et al., 2010; von der Malsburg
et al., 2011; Tsai et al., 2017; Tsai et al., 2018). John et al. also
found that Mic60/mitofilin not only formed a homo-oligomeric
structure with itself but also was present in a large multimeric
protein complex (John et al., 2005). Shortly thereafter, Xie et al.
demonstrated that Mic60/mitofilin associated with a protein
complex including Sam50, coiled-coil-helix coiled-coil-helix
domain-containing (CHCHD) proteins 3 and 6, and metaxins 1
and 2, proteins known to be involved in mitochondrial protein
import and assembly (Xie et al., 2007), thus linking Mic60 to
both structural and protein maintenance of the mitochondrion.

Subsequent studies confirmed that Mic60/mitofilin is indeed
a core component of a larger functional multi-protein complex
of the inner membrane, now known as the MICOS complex
(Pfanner et al., 2014; Kozjak-Pavlovic, 2017). As previously
noted, the MICOS complex is responsible for structural
organization of the mitochondria. MICOS subcomplexes
interact with mitochondrial membrane lipids to form cristae
junctions and organize respiratory complexes; and interact with
outer-membrane transport machinery to regulate mitochondrial
protein import and biogenesis (von der Malsburg et al., 2011;
Bohnert et al., 2012; Zerbes et al., 2012a; Harner et al., 2014;
Pfanner et al., 2014; Ding et al., 2015; Friedman et al., 2015;
Horvath et al., 2015; Eydt et al., 2017; Hessenberger et al.,
2017; Rampelt et al., 2017; Tarasenko et al., 2017). A uniform
nomenclature was established for the MICOS complex and its
subunits Mic10 through Mic60, the name given to mitofilin
(Pfanner et al., 2014). In metazoa, the MICOS complex also
interacts with the sorting and assembly machinery (SAM) protein
import complex to form the larger mitochondrial intermembrane
space bridging complex (MIB) at inner-outer membrane contact
sites (Ott et al., 2012, 2015; Guarani et al., 2015; Huynen et al.,
2016; Kozjak-Pavlovic, 2017). The organization and function of
the MICOS and MIB complexes has been thoroughly reviewed
elsewhere (Zerbes et al., 2012b; Pfanner et al., 2014; Kozjak-
Pavlovic, 2017; Rampelt et al., 2017). We will therefore focus
on Mic60 and its potential role in neurodegenerative disease
and PD.

Mic60 is a key component of both the MICOS and MIB
complexes, interacting either directly or indirectly with the other
known components of these complexes (Xie et al., 2007; Harner
et al., 2011; von der Malsburg et al., 2011; Ott et al., 2012), and
is possibly the oldest evolutionarily conserved component of this
structural system (Huynen et al., 2016). Loss of Mic60 leads to
destabilization and even loss of MICOS and MIB components
(Ott et al., 2015). Further, Mic60 analogs appear to be highly
conserved and expressed in all cells containing mitochondria—
including plant, yeast, and animal cells—as would be predicted
for a protein critical for mitochondrial functions (Odgren et al.,
1996; Gieffers et al., 1997; Munoz-Gomez et al., 2015a,b, 2017;
Michaud et al., 2016; Wideman and Munoz-Gomez, 2016;
Tarasenko et al., 2017).

Multiple studies have now shown that Mic60 is essential for
maintaining mitochondrial structure and respiration (John et al.,
2005; Rabl et al., 2009; Mun et al., 2010; von der Malsburg
et al., 2011; Bohnert et al., 2012; Yang et al., 2012, 2015; Ott
et al., 2015; Li et al., 2016; Van Laar et al., 2016; Tsai et al.,
2017, 2018). Mic60 loss detrimentally affects cellular viability,
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especially in response to stress. Viability may be affected by the
rearrangement of mitochondrial cristae, impaired mitochondrial
respiration, impaired homeostasis, impaired fission and fusion,
and disrupted protein import associated with Mic60 deficiency
(John et al., 2005; Rabl et al., 2009; von der Malsburg et al., 2011;
Bohnert et al., 2012; Zerbes et al., 2012a; Yang et al., 2015; Li
et al., 2016; Van Laar et al., 2016). Many of these effects appear
to be associated with the reorganization of the mitochondrial
membrane structures and protein complexes (Friedman et al.,
2015; Eydt et al., 2017; Kozjak-Pavlovic, 2017). In addition to
respiratory deficiency and dynamics dysfunction, loss of Mic60 is
also linked with mitochondrially associated apoptosis. Yang et al.
(2012) demonstrated that reduction of Mic60 expression in HeLa
cells resulted in a remodeling of mitochondrial cristae, correlating
with increased release of cytochrome c and decreased cell viability
in response to apoptosis inducers (Yang et al., 2012). Mic60
knockdown has also been shown to trigger increased calpain
activity and apoptosis-inducing factor (AIF) – poly(ADP-ribose)
polymerase (PARP) dependent apoptosis in H9c2 myoblasts
and HEK 293 cells (Madungwe et al., 2018). Of note, Rossi
et al. (2009) found that mitochondrial localization of PARP-1,
which they found also regulates mitochondrial DNA (mtDNA)
integrity, is dependent on an interaction with Mic60. Multiple
studies have now found that suppressed Mic60 affects mtDNA
stability, leading to aberrant nucleoid formation, accumulated
mtDNA damage, and attenuated mtDNA transcription (Rossi
et al., 2009; Yang et al., 2015; Li et al., 2016), and potentially
further impairing mitochondrial function. These functions of
Mic60 become particularly relevant to PD, where Complex I
dysfunction, ROS production, lipid membrane integrity, and
hindered mitochondrial quality control are major drivers of
pathogenesis. Thus, the stability of Mic60 becomes a key issue
in maintaining mitochondrial and cellular health, particularly in
cells such as neurons that highly utilize their mitochondria.

Mic60 IS A TARGET FOR ALTERED
EXPRESSION AND OXIDATIVE
MODIFICATION DURING CELLULAR
STRESS

Mic60 abundance is highly susceptible to oxidative stress (Magi
et al., 2004; Van Laar et al., 2008), which is of particular relevance
given that the mitochondrial environment produces high levels
of ROS. Exposure to ROS-generating photodynamic therapy, a
cancer-treatment method, demonstrated a marked decrease in
Mic60 protein levels in cultured HL60 and MCF-7 cells (Magi
et al., 2004; Kratassiouk et al., 2006). HL60 cells exposed to
the apoptosis-inducing compound homoharringtonine (HTT)
showed an initial decrease in Mic60 mRNA expression, followed
by a rapid increase (6-fold) in mRNA expression within 6 hrs
of treatment, one of only a few genes detected to behave in
this manner (Jin et al., 2004). Such a response may suggest
that the cells are attempting to recover following a toxic insult.
Along this line, Navet et al. (2007) found that expression of
Mic60 is significantly increased, along with altered expression of

other mitochondrial proteins, in rat brown adipocyte cells during
acclimation to colder temperatures, which requires high-energy
usage. Of relevance to PD pathogenesis, we demonstrated that
Mic60 abundance was significantly decreased in isolated rat brain
mitochondria following exposure to DA quinone, as well as in
mitochondria isolated from PC12 cells exposed to exogenous DA
(Van Laar et al., 2008).

In addition to regulation of Mic60 expression and abundance,
the protein itself is also highly susceptible to oxidative
modification under stress. Suh et al. (2004) found that exposure
of human hepatoma cells to alcohol led to oxidation of Mic60
cysteine residues (Suh et al., 2004). Taylor et al. (2003) examined
normal human cardiac tissue mitochondria for oxidative
modification of tryptophan residues and found oxidation of
selective Mic60 tryptophan residues, suggesting “hot spots” of
oxidative susceptibility (Taylor et al., 2003). Mic60 was also
found to be carbonylated in kainic acid excitotoxicity-induced
neuronal injury in hippocampal cells (Furukawa et al., 2011).
Recently, a study found that Mic60 in the brains of aged rats
exhibited an age-related increase in oxidative sulfonation of
cysteines, with implications for declining neuronal mitochondrial
function with age (Yang X. et al., 2018). As discussed in greater
detail below, we demonstrated that DA quinone covalently
modifies Mic60 in isolated rat brain mitochondria (Van Laar
et al., 2009). These studies demonstrate that Mic60 protein and
protein levels are highly susceptible to oxidative stress, including
PD-relevant oxidative stress. While the consequences of Mic60
protein loss are well documented, the functional consequences of
Mic60 oxidative modifications are not known. Modifications that
interrupt critical protein-protein interactions could significantly
impair Mic60 and MICOS function.

Mic60 has also been found to exhibit other post-translational
modifications that potentially regulate its function. In a rat model
of traumatic brain injury, Mic60 was found to undergo poly
ADP-ribosylation, though the significance of this modification
is undetermined (Lai et al., 2008). Studies have now shown that
Mic60 function is regulated under cellular and mitochondrial
stress via direct phosphorylation by protein kinase A (PKA) and
PD-associated mitochondrial kinase PINK1, altering interaction
between Mic60 and other proteins and its inner-membrane
structural shaping function (Akabane et al., 2016; Tsai et al.,
2018). The specific effects of this phospho-regulation and their
relevance to PD are further discussed below.

A ROLE FOR Mic60 IN MITOCHONDRIAL
DYNAMICS AND IMPLICATIONS FOR
NEURODEGENERATION

In addition to respiratory regulation and apoptosis signaling,
Mic60 also appears to be a key player in regulating the
mitochondrial dynamics of fission, fusion, transport,
degradation, and biogenesis (Weihofen et al., 2009; Ding
et al., 2015; Li et al., 2016; Van Laar et al., 2016; Akabane
et al., 2016; Cho et al., 2017; Tsai et al., 2017, 2018). Balance of
these dynamic properties is critical for mitochondrial health
and cellular viability, particularly in mitochondria-dependent
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neurons (Van Laar and Berman, 2013). We were the first to show
a functional relationship between mitochondrial fission-fusion
dynamics and Mic60 abundance in neurons, demonstrating that
increased Mic60 suppressed mitochondrial fission in neurites,
leading to longer neuritic mitochondria (Van Laar et al., 2016).
Loss of Mic60 in mammalian cell lines was associated with
decreased levels of multiple fission and fusion proteins, and
corresponding lower fission and fusion rates (Ding et al., 2015;
Li et al., 2016). Mic60 loss also impaired mtDNA nucleoid
formation and mtDNA transcription (Li et al., 2016), key steps
in mitochondrial division and biogenesis. Recent evidence shows
that Mic60 also regulates transport. Mic60 associates with a
complex containing Miro, a mitochondrial outer membrane
protein that regulates kinesin-based mitochondrial anterograde
axonal transport (Wang and Schwarz, 2009; Weihofen et al.,
2009). Recently, Tsai et al. (2017) demonstrated that Mic60
loss in Drosophila was associated with a loss of Miro, leading
to an arrest of neuronal mitochondrial movement. This was
also associated with functional and structural disruption of
neuromuscular junction synapses, suggesting that Mic60 loss has
a detrimental impact on axons and axonal mitochondrial health
(Tsai et al., 2017).

Mic60 also interacts with proteins involved directly in the
general regulation of mitochondrial dynamic processes, as well
as ones linked to neurodegenerative diseases. This places it
in a unique position to regulate the response to PD-relevant
stress. Mic60 interacts with the optic atrophy-linked protein
OPA1 (Darshi et al., 2011; Banerjee and Chinthapalli, 2014;
Barrera et al., 2016; Glytsou et al., 2016; Hering et al., 2017).
OPA1 regulates fusion of the inner mitochondrial membrane
between two mitochondria and has been implicated in cristae
remodeling (Frezza et al., 2006). Evidence suggests that the
relationship between Mic60 / MICOS complex and OPA1 is key
in regulating mitochondrial fusion (Cho et al., 2017). However,
there are conflicting results as to whether OPA1 plays an integral
role in the function of Mic60 and the MICOS complex to
organize cristae junctions (Barrera et al., 2016; Glytsou et al.,
2016). Mic60 has also been associated with PINK1, a protein
involved in regulating mitochondrial homeostasis and linked
to a familial form of PD (Weihofen et al., 2009; Akabane
et al., 2016; Tsai et al., 2018). This association is discussed in
further detail below. The effects of Mic60 specifically on neuronal
mitochondrial dynamics, along with the interactions of Mic60
with regulators of mitochondrial dynamics, support that Mic60
may play an important role in maintenance of neuronal health,
and potentially in neurodegenerative pathogenesis.

EVIDENCE ASSOCIATES Mic60 WITH PD
PATHOGENESIS

With such an important role in mitochondrial function, Mic60
is likely to be a key player in the health of post-mitotic
mitochondria-dependent neurons, especially in times of stress.
Indeed, Mic60 has previously been linked to neurological
disorders, including fetal Down syndrome (Bernert et al.,
2002; Myung et al., 2003), seizure (Omori et al., 2002;

Furukawa et al., 2011), schizophrenia (Millar et al., 2005; Park
et al., 2010; Atkin et al., 2011), Amyotrophic Lateral Sclerosis
(ALS) (Fukada et al., 2004), optic atrophy (Abrams et al., 2015;
Abrams et al., 2018), and neurodegeneration in animal models
(Wang et al., 2008). While the evidence for Mic60 and these
neurological disorders may represent a general effect of aberrant
Mic60 expression, protein modification, or protein-protein
interactions on neuronal health, little evidence has directly
implicated Mic60 itself as a major causative factor in these
diseases. However, emerging evidence from multiple studies has
begun to demonstrate a strong association between Mic60 and
the pathogenic processes in PD.

Mic60 as a Target of Covalent
Modification by DA Quinone, and Loss in
DA and MPTP Toxicity
Studies have demonstrated that Mic60 protein abundance is
affected by PD-relevant toxicants in vitro. We identified Mic60
in a proteomic screen for mitochondrial proteins sensitive to
oxidative stress in the DA oxidation model of PD. Following
exposure of isolated rat brain mitochondria to DA quinone,
Mic60 was found to be covalently modified by DAQ and its
abundance was decreased by more than half, amongst the
most decreased of all proteins identified in our study (Van
Laar et al., 2008, 2009). Similarly, in we found that Mic60
abundance was decreased and the protein covalently modified
by DA in neuronally differentiated dopaminergic cells exposed
to exogenous DA (Van Laar et al., 2008, 2009). Consistent with
our findings, Burte et al. (2011), found that exposing neuronally
differentiated dopaminergic mouse N2a cells to MPTP also lead
to decreased levels of Mic60 expression (Burte et al., 2011).

While the effects of loss of Mic60 on mitochondrial function
have been well demonstrated, the specific effects of covalent DA
modifications to Mic60 on cellular health are not clear. Notably,
we observed larger molecular weight bands immunopositive for
Mic60 in Western analysis of DA-treated cells, suggesting DA
oxidation-induced SDS-insoluble interaction of Mic60 proteins.
As cysteines are typically utilized in protein-protein interactions,
it is likely that such modifications disrupt the ability of Mic60 to
properly interact with and regulate the MICOS complex.

Mic60 Loss Exacerbates Vulnerability to
PD Toxicants, and Overexpression
Protects Against Models of PD
We recently demonstrated that a modest loss of Mic60 (−30%)
did not affect the basal cellular viability of dopaminergic neuronal
cells, but significantly exacerbated cellular vulnerability to the
PD-relevant toxicant exogenous DA. (Van Laar et al., 2016). This
suggests even a slight loss can greatly impact cellular response
to mitochondrial stress. Conversely, Mic60 overexpression in
dopaminergic cells in vitro increased mitochondrial respiratory
capacity and promoted cellular survival in response to both
toxicants rotenone and exogenous DA (Van Laar et al., 2016).
This was the first demonstration that Mic60 loss increased
the vulnerability of dopaminergic neuronal cells and the first
demonstration that increased Mic60 expression in dopaminergic
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cells was protective in a toxicant model of PD. In a recent study,
Mic60 also appeared to be protective in a genetic model of PD
(Tsai et al., 2018).

As noted previously, perhaps the most dramatic characteristic
associated with Mic60 loss is the severe reorganization of the
mitochondrial cristae structure, resulting in concentric ring-like
“onion” structures, or whorls (John et al., 2005; von der Malsburg
et al., 2011), and these have recently been seen in vivo in
Mic60 mutant flies (Tsai et al., 2017, 2018). Similar effects
of mitochondrial structural dysregulation have been noted in
other models of PD. PINK1 and Parkin knockout flies exhibit
mitochondria with abnormal morphology and disorganized
internal structures, including whorls (Park et al., 2006; Deng et al.,
2008; Poole et al., 2008; Tsai et al., 2018).

Excitingly, a recent study demonstrated that Mic60
overexpression was protective in a genetic PD model, the
PINK1 knockout model in flies (Tsai et al., 2018). Mic60
overexpression rescued the mitochondrial cristae disorganization
that is exhibited in this PD model, in addition to protecting
against multiple other parkinsonian phenotypes, including
mitochondrial complex 1 activity deficits, ATP levels, DA
neuron degeneration, and behavioral defects. In fact, Mic60
overexpression rescued the PINK1 PD phenotype to a
greater extent than overexpression of Parkin, another familial
PD-associated protein that functions downstream of PINK1
(Tsai et al., 2018). As Mic60 is a known interactor of PINK1
(Weihofen et al., 2009; Akabane et al., 2016; Tsai et al., 2018), this
finding strengthens the relationship between multiple genetic
forms of PD and a shared, convergent pathway in regulating
mitochondrial function.

In human studies, Tsai et al. identified rare mutations in the
mitochondrial targeting sequence of Mic60, some of which were
associated with PD patients (Tsai et al., 2018). The mutations
were shown to impair the mitochondrial targeting of Mic60 and
resulted in disrupted mitochondrial structure when expressed in
Drosophila (Tsai et al., 2018). These studies suggest a possible
genetic link between Mic60 deficiency and PD risk.

Mic60 Interacts With PINK1 and Is
Regulated via Phosphorylation by PINK1
and PKA: Implications for PD
Pathogenesis
Previous studies have found Mic60 interacts with PINK1, a
protein whose recessive mutations cause familial PD (Weihofen
et al., 2009; Akabane et al., 2016; Tsai et al., 2018). New
evidence suggests that the Mic60 interaction is regulated via
phosphorylation of Mic60, affecting its interaction with PINK1
and MICOS proteins. Both protein kinase A (PKA) and PINK1
itself have now been demonstrated to phosphorylate Mic60
directly and influence function (Akabane et al., 2016; Tsai et al.,
2018), which carries implications for Mic60 having a key role in
PD pathogenesis.

Protein kinase A is a tetrameric holoenzyme (Corbin
et al., 1978), and is sub-cellularly targeted, where binding
of cyclic-AMP (cAMP), a major activator of PKA, releases
catalytic subunits to act in several downstream pathways

(Herberg et al., 2000; Paulucci-Holthauzen et al., 2009; Christian
et al., 2011), some of which are directly relevant to PD
pathophysiology. Mitochondrially localized PKA (PKAmt)
has been shown to phosphorylate several targets involved
in mitochondrial homeostasis and function, regulating their
function, including subunits of Complex I (Papa et al., 2001;
Valsecchi et al., 2013), the pro-apoptotic protein BAD (Martin
et al., 2005), and the mitochondrial fission protein DRP1
(Chang and Blackstone, 2007), and promote mitochondrial
function under stress and even blunting mitophagy (Dagda
et al., 2011). But recently, direct links to PD neurodegeneration
were suggested by finding that PKAmt affects the stability
of the PINK1-Parkin complex at the mitochondria via its
phosphorylation of MICOS proteins Mic60 and Mic19, thus
potentially regulating Parkin-mediated mitophagy of damaged
mitochondria. Ackbane et al. found that the phosphorylation
status of Mic60 regulates the stability of PINK1 upstream of
the PINK1-Parkin mitophagy pathway (Akabane et al., 2016).
Specifically, PKA-mediated phosphorylation of Mic60 at serine
528 (S∗528) negatively affects MICOS complex assembly and
inhibits Mic60 interaction with PINK1. This prevents the
stabilization of PINK1 on the surface of damaged mitochondria,
thereby inhibiting Parkin recruitment (Akabane et al., 2016).
They also found that Mic19, another important MICOS
component, was similarly regulated by PKA phosphorylation.
These results reinforce the role of PKA signaling in regulating
mitochondrial function and homeostasis, clearly defining it as an
essential component and regulator of cellular metabolism.

Evidence suggests that in addition to PKA, PINK1 itself may
directly phosphorylate Mic60 and thus regulate function of the
MICOS complex. PINK1 is a nuclear-expressed mitochondrially
targeted kinase first identified as an autosomal recessive form of
juvenile-onset PD (Valente et al., 2004). Individuals possessing
homozygous or compound-heterozygous mutations for PINK1
exhibit mood and cognitive dysfunction similar to sporadic and
PDD/LBD (Gandhi et al., 2006; Steinlechner et al., 2007; Feligioni
et al., 2016) and are at increased risk for early onset Parkinson’s
disease. Under basal conditions, PINK1 is imported into the
mitochondria and processed by matrix processing peptidase
(MPP) and presenilin-associated rhomboid-like (PARL) (Jin
et al., 2010; Deas et al., 2011; Greene et al., 2012), then released
post-processing into the cytosol for further downstream signaling
(Dagda et al., 2014; Steer et al., 2015) and degradation (Yamano
and Youle, 2013). In vivo and in vitro studies have shown
PINK1 is neuroprotective (Haque et al., 2008; Dagda et al., 2014;
Khalil et al., 2015; Steer et al., 2015). Until 2007 PINK1 had
only been associated with mitochondrial oxidative stress and
dysfunction (Exner et al., 2007; Gautier et al., 2008; Weihofen
et al., 2008). Then in 2008, Poole et al. performed a series of
experiments in Drosophila that identified PINK1 and Parkin as
major players in mitochondrial fission, fusion, and morphology
(Poole et al., 2008). Shortly thereafter in 2009, Weihofen et al.
(2009) demonstrated that PINK1 interacts with MIRO and
Milton placing PINK1 in a position to regulate mitochondrial
trafficking. In this study, Mic60 was also found to associate
in a complex with PINK1. This seminal work was the first
to demonstrate that Mic60 may play a role in the observed
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changes in PINK1-deficient cells. However, how PINK1 and
Mic60 interact would remain elusive for nearly 10 years.

In 2010, multiple groups established that PINK1 was stabilized
on the mitochondrial outer membrane (OMM) following a
collapse of the mitochondrial transmembrane potential, leading
to accumulation of PINK1 on the OMM (Matsuda et al., 2010;
Narendra et al., 2010; Vives-Bauza et al., 2010). Once PINK1
aggregates on the OMM, it interacts with and phosphorylates
both Parkin and Ubiquitin to initiate mitophagy (Kondapalli
et al., 2012; Kane et al., 2014; Lazarou et al., 2015). PINK1
has since been extensively studied for its role as a sensor of
mitochondrial damage and in inducing mitophagy (Nguyen
et al., 2016). Although the PINK1-Parkin mitophagy pathway
can be activated under stress conditions in vivo (Pickrell et al.,
2015), more data are emerging that PINK1 is in some cases
dispensable for mitophagy and that PINK1 has other distinct and
uncharacterized functions (Lee et al., 2018; McLelland et al., 2018;
Yang W. et al., 2018).

In this regard, recent work has shown that Mic60 is a substrate
of PINK1, providing evidence that PINK1 may directly alter
mitochondrial architecture (Tsai et al., 2018). Tsai et al. showed
that PINK1 is necessary for mitochondria to maintain cristae
junctions in Drosophila, and that this function is mediated
by PINK1 directly phosphorylating Mic60. Phosphorylation by
PINK1 stabilized the oligomerization of Mic60 and increased
cristae junctions (Tsai et al., 2018). Further, Mic60 overexpression
could rescue multiple phenotypes of PD model PINK1 knockout
flies, as mentioned previously, demonstrating that PINK1
modulates the ability of Mic60 to regulate cristae structure
and mitochondrial function (Tsai et al., 2018). This regulatory
interaction was found to be preserved in human cells, as well, and
may be influenced by increased energy demands depending on
cell type and/or the location of the mitochondrion within the cell
(Tsai et al., 2018).

This phospho-regulation of Mic60 may provide insight into
the cellular control of mitochondrial function under various
bioenergetic and stress conditions. The evidence suggests that
while PKA phosphorylation appears to disrupt the function
of Mic60 to interact with and stabilize PINK1 on the OMM,
phosphorylation by PINK1 increases Mic60 stability within the
MICOS complex, allowing for increased mitochondrial function
(Figures 1B–G). This suggests a dual regulation based on the
stress status of the cell and on which stress pathways are activated.
Interestingly, overexpression of PKA has been observed to rescue
PINK1 deficiency, so it is possible that PKA is in part regulating
Mic60 in a manner similar and parallel to PINK1 (Dagda et al.,
2011; Kostic et al., 2015) The significance of these pathways to
PD pathology, or their relevance to one another, remains to be
elucidated.

A question regarding these findings is how these systems
work in balance to regulate mitochondrial structure and
degradation. In the studies by Akabane et al. (2016), PKA
phosphorylation of Mic60 affected PINK1-Parkin recruitment,
but not mitochondrial cristae structure. This observation
occurred despite the decrease in PINK1-Mic60 interaction
and the disruption of the MICOS complex. This seems
to be in opposition to the observations in Drosophila by

Tsai et al. (2018), where disrupted PINK1-Mic60 interaction
dramatically interrupted Mic60 oligomerization and cristae
organization. However, Tsai et al. also found that the function of
Mic60 in maintaining mitochondrial structure is, at least in part,
independent of PINK1, as overexpressing Mic60 compensated
for the loss of PINK1 on cristae organization in PINK1-null flies
(Tsai et al., 2018). Thus, any possible structural regulation effects
of Mic60 phosphorylation status at its PKA-phosphorylation
sites may be influenced by the level of overexpression of
the Mic60 protein in the studies by Akabane et al. More
studies should be conducted to definitively address these
discrepancies.

Another issue is whether these pathways are relevant to all
tissues, or even all species. Tsai et al. noted differences in cristae
structure depending on the cell type or subcellular localization
of the mitochondria, suggesting the possibility of differential
regulation of cristae structure proteins depending on local energy
demands (Tsai et al., 2018). While Mic60 itself is shown to be a
highly conserved crucial component for mitochondrial structure
across species, its phospho-regulation may not be. While the
PINK1 phosphorylation sites on Mic60 seem to be preserved
across vertebrate and invertebrate species (Tsai et al., 2018), the
PKA site appears absent in Drosophila and C. elegans (Akabane
et al., 2016). On the other hand, the PKA site is conserved
across all examined species in another MICOS complex protein,
Mic19 (Akabane et al., 2016). This variation of phosphorylation-
sites carries implications for the evolution of MICOS complex
regulation across species and merits further investigation.

Mic60 AS A THERAPEUTIC TARGET FOR
PD AND OTHER DISEASES

The known functions of Mic60 and the reported findings on
altered Mic60 expression allow us to speculate on a potential
role for this protein in neuropathogenesis. The mitochondrial
cristae structures are known to undergo reorganization in times
of increased energy demands, cellular stress, and apoptosis
(Mannella et al., 2001, 2013; Scorrano et al., 2002; Mannella,
2006). It is likely that Mic60 is participating in this reorganization
due to oxidation- or phosphorylation-induced alterations
affecting its functions within the MICOS complex. Evidence now
exists for this process to be regulated by direct phosphorylation.
However, excess oxidative stress may either directly modify
Mic60, which could alter its structure, affect its ability to be
phosphorylated, or target it for degradation, further allowing
for detrimental cristae destabilization and reorganization. As
the MICOS complex also regulates mitochondrial protein
import (Xie et al., 2007; von der Malsburg et al., 2011; Bohnert
et al., 2012), a loss of Mic60, and thus mitochondrial protein
biogenesis, may further hamper efforts of the mitochondrion
to recover from excessive protein damage and loss, setting up
a deadly cycle of ROS generation and oxidative protein and
lipid damage, ultimately leading to mitochondrial collapse. In
dopaminergic neurons, this effect could be amplified by DA
oxidation and covalent modifications to Mic60, contributing to
the selective vulnerability of these neurons in PD.
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The crucial role of Mic60 in regulating so many aspects of
mitochondrial homeostasis, combined with a susceptibility to
oxidative modification and stress-induced loss of abundance,
make it an attractive target for investigating therapeutic strategies
for PD and other diseases. Our own evidence suggests that
increased Mic60 availability in dopaminergic cells is protective
against PD-relevant stressors in vitro, and Tsai et al. demonstrated
that Mic60 overexpression can rescue PD phenotypes in vivo
in PINK1-mutant Drosophila (Van Laar et al., 2016; Tsai et al.,
2018). Given the importance of Mic60 and the reliance of
neurons on mitochondrial health, a strategy targeting Mic60
may provide protection in multiple neurological disorders,
including PD.

Given the central role of Mic60 in mitochondrial
homeostasis and function, it is not surprising that Mic60
upregulation may protective in disorders other than neurologic
disorders. Studies in patients and models have also linked
Mic60 with obesity, diabetes, osteoporosis, and cardiac
dysfunctions (Baseler et al., 2011; Guo et al., 2013; Gutierrez-
Salmean et al., 2014; Gorr and Wold, 2015; Lindinger
et al., 2015; Wang et al., 2017; Lv et al., 2018), and
upregulation of Mic60 has shown to be protective in
models of diabetes and osteogenesis (Thapa et al., 2015;
Lv et al., 2018). Thus, there is likely a widespread effect
of improving mitochondrial stability in general via Mic60
upregulation. That being said, the direct links between
Mic60 and multiple specific PD gene products suggest the
likelihood of a more specific role in PD neurodegeneration.
Further study is needed to expound upon the protective
findings of Mic60 overexpression and examine the role

and function of increased Mic60 in cellular and neuronal
health.

CONCLUSION

The crucial role played by Mic60 at the intersection of
mitochondrial structure, function, and homeostasis make it an
exciting target to explore for therapeutic intervention in diseases
associated with mitochondrial dysfunction, such as PD. Multiple
studies have now linked Mic60 deficiency with PD-relevant
cellular stress and have clearly placed Mic60 as a player in the
PD-associated PINK1-Parkin cellular pathway. Further research
into the role of Mic60 in PD may yield exciting new avenues for
disease-altering therapeutic interventions.
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