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Here, we outline an overview of the mammalian immune system that updates

and extends the classical clonal selection paradigm. Rather than focusing on

strict self-not-self discrimination, we propose that the system orchestrates variable

inflammatory responses that maintain the body and its symbiosis with the microbiome

while eliminating the threat from pathogenic infectious agents and from tumors. The

paper makes four points:

1) The immune system classifies healthy and pathologic states of the body—including

both self and foreign elements—by deploying individual lymphocytes as cellular

computing machines; immune cells transform input signals from the body into an

output of specific immune reactions.

2) Rather than independent clonal responses, groups of individually activated

immune-system cells co-react in lymphoid organs to make collective decisions

through a type of self-organizing swarm intelligence or crowd wisdom.

3) Collective choices by swarms of immune cells, like those of schools of fish, are

modified by relatively small numbers of individual regulators responding to shifting

conditions—such collective inflammatory responses are dynamically responsive.

4) Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy

individuals function in a biological version of experience-based supervised machine

learning. Immune system decisions are primed by formative experience with training

sets of self-antigens encountered during lymphocyte development; these initially

trained T cell and B cell repertoires form a Wellness Profile that then guides immune

responses to test sets of antigens encountered later. This experience-based machine

learning strategy is analogous to that deployed by supervised machine-learning

algorithms.

We propose experiments to test these ideas. This overview of the immune system bears

clinical implications for monitoring wellness and for treating autoimmune disease, cancer,

and allograft reactions.
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THE IMMUNE SYSTEM MANAGES
INFLAMMATION

In the beginning, it was taught that the function of the immune
system was to distinguish between the self and the foreign—
whatever was foreign was to be rejected and, in contrast,
what belonged to the self was to be ignored (1). We need not
bother to define the tricky terms self and foreign (2) because we
now know that the functions of the immune system are much
more varied than a simple self-not-self binary distinction (3, 4):
The immune system clearly protects the body from invading
pathogens, but it also welcomes and manages our symbiosis with
the essential bacterial microbiome and viral components of the
body (5); the immune system also heals wounds and repairs
injuries to maintain us in the face of the accidents of life (6, 7); it
detects and destroys aged cells and transformed tumor cells (8, 9);
and it rejects tissues transplanted from allogeneic individuals,
while tolerating our foreign symbionts (10).

These complex functions of the immune system can be
reduced to a common process: in one way or another,
all the effects of immune activity involve the management
of what is called inflammation (6). Where grossly visible,
inflammation is marked by redness and swelling due to
changes in tissue blood flow and edema; microscopically,
inflammation is marked by accumulations of immune system
cells; by the death and growth of many types of cells; by
the proliferation of scar-forming connective tissues; and, often,
by the regeneration of blood vessels and damaged tissue
cells. The process of inflammation usually terminates when
the injury heals, but sometimes an inflammatory process
persists chronically or periodically exacerbates, or may develop
unnecessarily in otherwise healthy tissue. In these instances,
the inflammatory process itself can be the cause of disease—
autoimmune diseases result from such misguided inflammatory
processes.

THE IMMUNE SYSTEM CLASSIFIES THE
STATE OF THE BODY

In the beginning, it was thought that an adaptive immune
response was the exclusive property of individual antigen-specific
lymphocyte clones, each bearing an antigen receptor of a single
specificity (11). The population of mature lymphocytes was
presumed to be purged during development of receptors that
could possibly recognize molecules of the host (self-antigens);
mature lymphocytes could recognize only foreign antigens. But,
as we mentioned above, body maintenance obliges the immune
system to interact with self-molecules as well as with not-self-
molecules. Immunity is not merely a reflex to a foreign presence,
but an act of cognition (12).

Now, if we define computation as the ordered transformation
of input into output (13), we can perceive the immune system
to be a computational, living reactive system (4, 14); the
system gathers input about the state of the body, locally,
and generally, and reacts to arrange an output of appropriate
inflammatory procedures that feedback on the body to maintain,

FIGURE 1 | Immune cells compute the state of the body. Individual immune

cells bear receptors (blue corner on cell surface), innate receptors or antigen

receptors, which are activated by input signals from the body. The individual

responding cell, innate, or adaptive, then transforms the input signals into

outputs that can mediate inflammatory responses. The inflammatory state

then feeds back to heal or protect the body. The immune response also

provides feedback to immune system cells and tissues—thus, the immune

system organizes itself through experience.

heal, regenerate and protect it; immune experience also feeds
back to modify the immune system itself (Figure 1).

Immune computation differs in many ways from computer-
based algorithms and classifiers: First, note that the hardware
is the software; the programed activities of the molecules, cells
and organs comprising the physical system actually constitute
functioning algorithms. The performer and the program are
identical—a living cell is defined by the way the cell’s components
behave programmatically.

Secondly, computation is distributed throughout a living
body; each immune system cell computes in parallel; each cell
(lymphocyte, macrophage, dendritic cell, stem cell, endothelial
cell, etc.) receives whatever signals its array of receptors can
detect; each cell then responds to transform (compute) its
input information into an output of signal molecules, receptors,
metabolic reactants, antibodies, or other products that comprise
an inflammatory output (Figure 1). The response of the cell
and its outputs are determined by the state of the individual
computing cell; this state reflects the cell’s differentiation and
its history, along with the input to the cell from other cells and
molecules. In other words, immune system cells have no central
processor—each cell is its own information processor.

The clonal selection paradigm focuses on the behaviors of
individual, receptor-bearing lymphocytes, and clones. Individual
cells, however, must integrate their disparate behaviors to
generate a systemic decision; an ordered immune response
emerges from the way a collective of cells integrate their
behaviors—a type of swarm intelligence or crowd wisdom (15).
Immune crowd wisdom emerges from crowds of cells, including
T cells and B cells that bear each its own antigen receptor
along with other types of immune system cells that express only
innate receptors and do not recognize antigens at all. Moreover,
collectives of responding cells have to dynamically adjust their
system-wide behaviors as the inflammatory situation changes
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over time for better or worse. How do immune crowd behaviors
take place?

CO-RESPONDENCE, BYSTANDER CELLS,
AND IMMUNE ANATOMY

Each immune system cell is exposed to only a partial and limited
view of its surroundings—the cell’s perceptions are dictated by
the particular receptors expressed by the cell and the ligands
impinging on them. Even a specific antigen receptor can tell
only a partial story: any antigen receptor can see only an epitope
fragment or domain of the antigen that may or may not have
originated from an infection, a tumor, an injury, or a healthy
tissue. Moreover, a single T-cell receptor has been estimated
to be able to interact functionally with many different peptides
with varying avidity (3); how then can a T cell know which
of its potential antigen epitopes it is seeing? Innate receptors
borne by lymphocytes and other immune cells are also restricted
to particular domains of their ligand molecules. A lone cell,
necessarily, is blind to information that does not activate its
receptors—each cell is confined to a world compressed by its own
shortsightedness.

Moreover, just as a single clone has a limited view of the world,
a single clone is not sufficient to effect an immune response; an
appropriate inflammatory response requires the participation of
large collectives of a variety of different cells. The doubling time
of a T cell is about 10 h; a single T cell simply cannot generate
enough progeny in the time needed to respond to an infection or
potential tumor. How are individually limited views integrated
to generate a diagnostic consensus and how can a coherent and
dynamic multi-cellular inflammatory response be mobilized in a
relatively short time?

Co-respondence
Co-respondence helps (Figure 2). Co-respondence describes the
ability of lone immune cells to sense and respond to the states of
adjacent immune and body cells (3); this mutual responsiveness
generates a type of swarm intelligence or crowd wisdom. By
interacting with neighboring cells, a collective of immune cells
together can construct a relatively broad assessment of the
situation. A cell may not see the antigens or other signals
perceived by adjacent immune cells, but each cell can sense, by
its receptors for cytokines, metabolic products, and other innate
response mediators, the state and degree of activation of adjacent
cells. The collective of cells, one-by-one, is able to modify its
local behavior according to the output signals of the collective
crowd wisdom. An integrated crowd response arises from the
mutual summation of adjacent responses (16). The input string of
individual antigens and mediator molecules is thus transformed
into a collective computation.

This strategy for achieving system-wide integration of
piecemeal perceptions is common throughout nature. Schools of
fish, colonies of ants, migrating locusts, and flocks of birds (and
even relatively simple robots) can exhibit collective responses
that appear to be miraculously coordinated and highly complex
(Figure 3). Yet upon examination and mathematical modeling,

FIGURE 2 | Co-respondence between cells generates immune computation

at the systemic scale. An integrated immune response results from the ability

of individual immune cells to tune their inflammatory responses in the light of

the responses they sense from adjacent cells (the curved blue lines connecting

cells); this co-respondence is mediated by innate receptors. Bystander cells,

which may lack direct input signals from the body, are enlisted into the

response by co-respondence with adjacent immune cells.

these collective behaviors turn out to be the products of relatively
simple cues transmitted between adjacent individuals (16). Such
collective behaviors do not require an external, all-knowing
manager to impose its will on the group; the collective of
individuals self-organizes (17). A mutually interacting collective
of individuals may appear to define a goal, as it were, and
can manifest complex, seemingly goal-directed behavior merely
by the exchange of relatively simple signals between adjacent
individuals (Figure 3, dashed line inset). Local signaling then
spreads through the group as a kind of integrating epidemic
(from the Greek epi—upon; demos—the population). Biological
self-organization emerges, as it were, from crowd wisdom. The
epidemic spread of local cell responses, like the spread of
information in a school of fish or flock of birds, quickly leads to
highly coordinated group “decisions” that effectively integrate the
individual immune cell responses into a collective inflammatory
response—a few initiating immune cells mobilize bystander,
crowd support (Figure 4).

Integrated collective immune responses need to finetune
themselves as the environment changes—greater or lesser tissue
damage, many or few infectious agents, the evolving state of
a tumor, the mending of a broken bone, and so forth. This
integrated crowd behavior can be adjusted on the run by a
few regulator cells in the collective who have sensed a change
in the infection or in tissue healing; adjacent neighbors adjust
their responses, which then spread to the other participants in
the immune response. The immune system, like a school of
fish or a crowd of people, is dynamically adaptive. Figure 4
depicts an about-face shift in collective direction fromDestructive
Inflammation toHealing Inflammation, brought about by a small
number of regulatory individuals who have sensed the need for
change. Such manipulations of group inflammatory behavior
by small numbers of regulatory elements is termed “infectious
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FIGURE 3 | Schools of fish manifest self-organized behavior. A school of fish,

as an organized group, effectively flees from a predator fish. The dashed-line

inset shows that the shape and direction of the school of fish is actually

self-organized by a relatively small number of visual signals exchanged

between adjacent fish.

FIGURE 4 | Adaptable crowd wisdom. A swarm of immune cells is depicted

as a school of fish initially proceeding in the direction of Destructive

Inflammation; but a small number of Regulators (by spreading

Co-respondence; see Figure 3) can shift the behavior of the entire swarm

toward Healing Inflammation.

tolerance” (18); indeed, a few percent of Tregs are all that is
needed to influence major inflammatory decisions (19).

Bystanders
Bystander activation refers to the fact that most of the
activated lymphocytes and other leukocytes accumulating at an
inflammatory site do not bear antigen- receptors specific for
antigens borne by the agent that triggered the inflammation
(20). Unfortunately, the word bystander bears a negative
connotation—the cells that migrate to the site of the antigen
without receptors for the antigen, in the eyes of the classical
clonal selection theory, don’t belong there. They are merely
chance lookers on. But we now know that co-respondence is of
the essence—bystanders are the expression of crowd wisdom; it’s
the way the immune system works. The informed few who see
the antigens arouse a cohort of “bystander” cells to help mediate
the inflammation (Figure 2). Crowd wisdom is an integral part
of immune computation of body state.

Immune Anatomy
The functional anatomy of the immune system is a key factor
in integration and decision making. The immune system in
real life, unlike our laboratory experiments, is not a culture
of cells dispersed in a flask—the immune system is organized
anatomically into defined organs (lymph nodes, bone marrow,
thymus, spleen, Peyer’s patches, etc.), which are connected
by specific flows of molecules and cells in blood vessels,
lymph vessels, and extracellular fluids (3). Cells and molecules
do not meet merely by chance; immune interactions are
organized in space and time by anatomic structure, flow, and
signaled migrations—organized interactions are analogous to
“hard wired” connections. Thus, collective decision-making and
immune response phenotypes are decisively organized by the
anatomical infrastructure of the system—machine learning, as
we shall discuss below, emerges from this organization. The
anatomic details are beyond the scope of this bird’s-eye overview.
Here, we only direct attention to the importance of “anatomically
wired” influences on immune decision making.

IMMUNE MACHINE LEARNING

Mainstream immunology, steeped in the clonal selection theory
of adaptive immunity (21), has tended to attribute regulation of
the immune response to single clones of lymphocytes and their
antigen receptors; binding a specific antigen triggers a response—
no antigen or antigen receptor, no response (Figure 1). Our
present discussion of immunological swarm intelligence and
crowd wisdom (Figures 2–4) connects immune system behavior
by analogy to the collective behavior of schools of fish, flocks
of birds, and hives of bees along with other collective biologic
entities. What is the basis of this immune group behavior? Note
that the immune system is uniquely like the brain; both brain and
immune system develop fully, far beyond their genes, as a result
of somatic lifetime experience (3). In this section, we would like
to suggest that immune experience requires preliminary training
reminiscent of supervised machine learning.

What is machine learning? The term machine learning was
coined to describe the way an algorithm running on a computer
can be used to uncover meaningful patterns hidden in diverse
sets of data. Supervised Machine learning is a type of pattern
recognition in which previous training subsequently enables
detection of informative patterns buried in test sets of new
data (22). The computer algorithm is first educated by way
of primary interactions with selected training sets of model
data. The machine learns to identify correlations or statistical
associations between the component entities that comprise the
data included in its training sets.

Unlike a computer algorithm, the immune system does not
process electronic signals: Antigens, metabolic products, cell
interaction molecules, and other molecular signals make up the
sets of data perceived by the cells of the immune system. The
correlations between the components comprising a set of data
can be very subtle and obscure to the human observer, yet such
correlations are detectable by machine learning algorithms, and,
by analogy, by networks of cells and antibodies in the immune
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system. As a consequence of exposure to training sets of input, the
computer algorithm—and the immune system—can accumulate
a bank of learned correlations. These formative correlations can
then be used by the computer or the repertoire networks of the
immune system to interpret new test data.

Learning Similarities
Interpretation of new data emerges from the presence or absence
in the data of correlations previously learned during primary
training. A preexisting algorithm is not needed to learn each
individual pattern of components; the machine or the biologic
system need only be programmed generally to detect any patterns
shared by both the learning and test sets of data. A characteristic
feature of one type of machine learning—deep neural networks–
is the interaction between multiple sets of hidden networks that
process the input. The current science of deep learning does not
completely understand how such network architectures actually
work to interpret patterns of input, and we cannot get into the
arcane details here. The important point is that it works.

The new data may appear to the human observer to be new,
but the correlations, through prior training, are already familiar
to the computer or to the acquired repertoires of the immune
system; in a word, the new data are not new to the expert
system—artificial or biological. Similar patterns in the training
and test sets of input data are uncovered by a process involving
iterations within and between different levels of hidden, internal
networks organized within the deep neural network (Figure 5).
In other words, the immune responses to test sets of antigens are
supervised, as it were, by the training sets of immune activation
experienced during development.

The power of artificial deep neural networks to deal with
complexity is evident in image analysis and in natural language
processing. The ability of driverless cars to negotiate their
way through traffic requires precise, dynamic image analysis;
refinements are still needed, but the technology promises to
significantly change human transportation. Similarly, the ability
of computers to process natural language will significantly
influence human culture. Likewise, smart houses will use deep
neural networks to affect the way we live. As wementioned above,
experts are still not sure how deep neural networks work and how
they succeed where other methods have failed. Some have gone as
far as calling machine learning “alchemy” or “alien technology”
(23). We know how to build and use them, but we do not know
exactly how they do what they do.

Deep learning “black boxes” are now built using about 150
million parameters. This is a large parameter space, and it may
explain why such machine learning models have outgrown our
ability to understand precisely how they work. Note, however,
that networks comprising 150 million parameters express only
a fragment of the complexity available for computational use by
the immune system. For example, a milliliter of blood contains 2
million T cells; each T cell expresses tens of thousands of proteins
on its surface. Add to that the additional dimension of spatial
changes over time, and even a droplet of blood contains orders of
magnitude more complexity than one of the larger deep learning
networks, such as the VGG19 model (24).

Don’t let the term machine learning mislead you: living
systems do not use computer algorithms and are not machines in
the way that computers are machines (artificial computers made
of DNA are in very early stages of development). Fortunately,
your brain serves as a familiar example of a biological learning
machine. Consider the fact that you are able to recognize a
familiar three-dimensional face when you see it as a two-
dimensional cartoon because layers of networks deep in your
brain are able to detect a similar pattern of key face features
shared by both the real face and the caricature. You can use a
map to drive your car through a new environment because your
brain has learned to see common patterns shared by the map
and the real world perceived by your eye—a map is a caricature
of a landscape. Past experience has taught your brain to extract
essence from accident. Likewise, Google Photos uses machine
learning algorithms to recognize and catalog the photographed
faces of an individual as he or she proceeds from childhood into
old age; the person is identifiable both by computer algorithm
and our brains despite the marked changes in physiognomy
during aging. (Indeed, the Google algorithm can help reveal
relationships hidden in brains: one of us finds it most intriguing
that Google clustered photos of a daughter-in-law with photos of
one’s daughters—was a son’s spouse preference trained by early
visual input training from his sister or his mother?).

Learning Differences
Conversely, prior experience with learning sets of data can
also teach your brain to detect meaningful differences between
grossly similar signals. For example, the more familiar you
are with a set of monozygotic “identical” twins, the easier
it is for you to tell them apart, even when they are not
both present for side-to-side comparison. Indeed, very subtle
differences are often easiest to detect on a background of
close similarity—a minor difference in the strips or stars of
army rank is most visible when all the soldiers wear grossly
similar uniforms. Amotz Zahavi has claimed that the vividly
colored markings on bird species evolved to enable females to
see genetic differences between apparently similar male suiters
(25). We here propose that early training enables the immune
system, like the brain, to detect meaningful differences as well as
similarities.

The ability of your immune system to distinguish, for example,
a symbiotic bacterium from a pathogenic bacterium requires the
recognition and distinction of particular input patterns present
in the myriads of molecular signals impinging on your collectives
of immune cells. Both pathogenic bacteria and bacteria of
the symbiotic microbiome express LPS or peptidoglycans and
both types of bacteria share a great many other foreign
antigens and innate signals; but the invading pathogen damages
the host and so appears accompanied by signals produced
by damaged body tissues and by metabolic changes (5).
By profiling the mixture of bacterial and body signals,
your immune system can discriminate between very similar
bacteria by attending to informative differences in patterns of
signals—a lone antigenic signal rarely suffices for a definitive
diagnosis.
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FIGURE 5 | Supervised Machine learning from experience. (A) represents a simplified Architecture of computer Machine Learning in which Hidden Layers of

interacting networks are organized as Deep Neural Networks. Input information is interpreted by comparing the present test Input to training sets of information

previously experienced. The processing of test Input through hidden layers of networks generates an informative Output. (B) represents an analogous Immune

supervised Machine Learning Architecture. Input from the body—healthy or ill—is gathered by receptors of immune cells and processed through interactions

organized as hidden layers of networks of Innate cells, B cells, and T cells. By comparing the input data to the training data obtained during immune cell development,

the immune system generates an immune response suitable to the situation. The output feeds back to serve the needs of the body and to update the internal

organization of the immune networks themselves.

Your immune system can also sense patterns of antigens
compatible with general health; markedly different tissues like
lungs, hearts and kidneys can signal a pattern of health, despite
their obvious differences in molecular structure and behavior.
Just as there is a diagnostic profile difference between infectious
pathogens compared to similar symbionts, there is a profile of
similarity that designates health in highly dissimilar body organs.
Indeed, we have recently learned that growing tumors may trick
the immune system into tolerating them as normal tissue despite
their abnormalmutations—the tumors express health signals that
prevail over tumor signals and neoantigens that might otherwise
expose a state of pathology; the tumor, as it were, exploits profiled
signals of well-being that enable it tomasquerade as healthy tissue
(26). Fortunately, the tumors in some individuals, in due course,
can become targets for spontaneous immune destruction, or
medically engineered destruction in response to anti-checkpoint
immunotherapy (27).

Two Requirements for Immune System
Supervised Machine Learning
In summary, deep learning requires two elements: data for
training and networks for data processing. Training sets of
data provide the immune system with reference criteria for
interpreting new data; processing the data emerges from layers
of network interactions that take place deep within the system.
Experimental evidence shows that healthy individuals share
autoreactive TCR and autoantibody repertoires. The clonal
selection paradigm cannot explain the possible function of this
healthy, immune self-reactivity; here we propose that these
repertoires serve to supervise a type of immune machine
learning.

Training Sets
Immune supervised machine learning requires training sets of
antigen experience that initially prime the immune system for its
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subsequent performance in dealing with test immune challenges
that arise when confronting the real world. The initial T cell and
B cell training repertoires both arise early during development
in isolated body locations protected from the environment; this
adaptive learning is driven by healthy self-antigens.

The primal TCR repertoire develops in the thymus through
genetically programed experience with self-antigens expressed,
processed and presented by innate dendritic cells (28). Thymic
T-cell development has been studied in detail for some decades
and much is known about it (29). There is no need to recount
the details here; the bottom line is that programed thymic
selection to particular self-antigens is critical to the normal
development of the mammalian immune system (30); faulty
thymic T-cell development can lead to autoimmune disease and
immune system deficiency in dealing with pathogens (31). T-
cell experience with a healthy self-training set of antigens is
necessary (but, alas, not sufficient) for developing a healthy
immune system. The specificity of healthy self-antigen training
is exemplified by mutations in AIRE and other transcription
factor genes that lead to severe autoimmune disease resulting
from the lack of expression of certain tissue antigens by thymic
epithelial cells (32). Note that T-cell development in the thymus
is associated with TCR repertoires that are shared by different
individual humans; some of these public TCR structures are
identical in humans and mice and are organized in networks of
very similar amino acid sequences (33).

The primal B cell repertoire has been much less studied than
has the primal T-cell repertoire. Early studies of autoantibodies
in the bloods of healthy subjects were done using relatively
crude western blot technology (34). Most relevant to immune
system computation are recent antigen-microarray studies of
autoantibody repertoires in the bloods of young mothers and in
the cord bloods of their healthy newborns. The antibodies in cord
blood are important because they reflect initial training of the B-
cell repertoire with which the newborn faces life outside the safety
of mother’s womb. We have carried out two such studies: the first
used 10 mother-cord pairs (35) and the second used 71 mothers
and their 104 newborns; we measured IgG and IgM antibody
binding to 295 self-antigens, compared to 27 standard foreign
antigens (36). The results have been published; here we briefly
summarize the key findings:

1. The binding of some cord blood autoantibodies to self-
antigens is at least as strong as the binding of maternal
antibodies to some foreign antigens; thus, the congenital
autoantibody repertoire recorded by microarray technology
appears to reflect significant immune priming to healthy
self-antigens.

2. Because maternal IgG is actively transported across the
placenta to the developing fetus, the IgG repertoire of each
newborn is strongly correlated with that of its mother; there
is relatively less correlation between the IgG repertoires of
different newborns or different mothers.

3. Human newborns manifest a strong correlation of IgM
autoantibody repertoires amongst themselves as a group that
differ from the IgM repertoires of each of their mothers.
In contrast to maternal IgG antibodies, antibodies of the

IgM isotype do not cross the placenta from mother to fetus
(37). Hence, any IgM autoantibodies in cord blood had
to have been produced by the fetus during development
in the isolation of the womb. Thus, genetically diverse
human babies undergo B-cell training experience to develop
standard repertoires of IgM autoantibodies during pre-natal
life. Healthy autoantibody repertoires, like public T-cell
repertoires, manifest networks (38) of connectivity linking
certain dominant self-antigens (33).

At the present time, we do not know of early training experiences
of innate leukocytes, which do not bear receptors for antigens.
However, dendritic cells, epithelial cells and probably other
innate cells do participate in the training of the adaptive T-cell
and B-cell repertoires (39)—it remains to be seen if this early
innate-cell experience also trains innate leukocyte development.

Layers of Network Interactions
The second element essential to machine learning algorithms
based on neural networks is an architecture that features
multiple layers of interacting networks that process input
data (Figure 5A). In computer parlance these deep layers of
interacting networks have been termed “hidden”; the internal
networks in living systems such as the brain and the immune
system are molecular and they too are essentially “hidden”
from view. Figure 5B depicts network interactions between
innate cells, T cells and B cells as if they were deep layers
of immune processing. Advanced imaging technics can show
the movements and contacts of groups of individual cells, but
we have no way, yet, of observing the information transferred
between such interacting cells nor can we see the molecules
involved. Experiments teach us that innate antigen-presenting
cells interact with T cells and B cells, and that T cells and B
cells interact between themselves in various ways. Moreover, T
cells of various types interact with other T cells and B cells and
antibodies interact with each other (33, 40); through regulatory
(41), idiotypic (42), ergotypic (43), and other types of network
connections. The anatomy of lymphoid organs includes discreet
layers of interacting cell types, as we mentioned briefly above.
Here, we propose that this architecture of anatomically layered
immune networks has evolved to materialize a biologic version
of experience-based machine learning.

Classically, the existence of networks of interacting cells and
molecules has been explained ad hoc by the need to satisfy a list
of functional binary distinctions in the immune response: IgM
vs. IgG antibodies; innate vs. adaptive recognition; memory vs.
transience; helpers vs. killers; suppressors vs. effectors; Th1 vs.
Th2 helper types; and so on and so forth. Each newly discovered
cell or interaction was assigned to fulfill a singular need, a
particular goal, to account for its evolution. Immunology had no
single organizing principle, or fundamental strategy that would
make sense of all the system’s seemingly redundant complexity.

Here, we support the idea that these sets of interacting
immune elements serve immune decision-making by
constituting a multi-level network architecture that serves
experience-based supervised machine learning. Like a deep
learning machine learning contrivance, the immune system
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is organized to include multiple levels of interacting cells
and molecules triggered into motion by an immunological
experience, which is them interpreted by reference to early
training sets of data. Obviously, other explanations are
conceivable; experimentation is needed.

MACHINE LEARNING AND IMMUNE
WELLNESS

Note that the primary immune reference repertoires selected
during early development of B-cell and T-cell repertoires arise
through interactions with healthy tissues; we can reason that the
emerging repertoires of selected lymphocytes signify a pattern
of health—it is reasonable to hypothesize that healthy self-
antigens are what lymphocytes see in the thymus and in utero.
In other words, the adaptive immune system is first trained
to recognize relative wellness. Consequently, the similarity of
a profile of test antigens to the training set profile means that
all looks well and no destructive inflammation is needed. In
contrast, a functional dissimilarity of a test antigen pattern to
the healthy reference pattern should spur the immune system
into inflammatory action (Figure 5B). Hypotheses do their job by
inviting experimentation, and the existence of a positive wellness
profile needs experimental support. Below, we shall suggest some
novel experiments and predictions.

We can view the immune supervised machine learning
process as a wellness theory of adaptive immunity; the immune
process begins with a seminal perception of the healthy body.
The reference set of antigen receptors are tuned to the state of
wellness; disease is manifested by a significant fall, however slight,
from a healthy pattern.

Obviously, this wellness view is at odds with the disease-
oriented view developed byWestern biomedicine as a corollary to
the germ-theory of disease: According to the standard paradigm,
health is a given; health is freedom from pathogenic agents such
as bacteria, viruses, or malignant cells (44). The discovery of
the DNA genetic code has added mutant or abnormal DNA to
the causes of disease. Immune machine learning would suggest
that immune wellness is not merely the absence of a specific
disease but a particular body state, one that must be learned
during early immune repertoire development. This shifts our
perception of the immune response away from an exclusive
preoccupation with disease and adds to the immune system
the task of maintaining one’s state of health (3). Wellness
theory would suggest that a chronic or recurrent disease might
arise from replacement of a healthy reference set of immune
body data with an aberrant reference set; indeed, the chronic
autoimmune disease lupus appears to be characterized by an
aberrant autoantibody signature that is relatively stable (45)—the
sick immune system views a lupus immune profile as if it were
the patient’s normal state. If this is true, then treatment of an
autoimmune disease might aim at immune re-education toward
a healthy reference profile rather than primarily at suppression of
the autoreactivity. Likewise, successful allograft transplantation
might be advanced by educating the host immune system to
include key allo-antigens in the host’s reference repertoire of

health—this might explain the effect of allogeneic bone marrow
transplantation of the induction of tolerance to an allogenic
graft. Effective tumor immunotherapy, as we have mentioned
in passing, deprives the tumor of its resemblance to healthy
wellness—rejection then follows (27).

EXPERIMENTAL TESTING

Hypothesis and theory contribute to empirical science in two
important ways: First, they can help initiate new thinking
regarding known observations, and second, and most
importantly, they can inspire new experiments. We have
raised two related points that invite novel experimentation: the
concept of a Wellness Profile and its function as a training set of
data that guides the type of inflammatory immune response to
variable test data.

The Wellness Profile hypothesis proposes that healthy
individual humans (and by extension other mammals) share
common sets of autoantibodies and TCR repertoires. This
hypothesis was inspired by our finding that the cord bloods
of different newborns are highly correlated in their IgM
autoantibodies produced in utero. Healthy adults go on tomodify
their initial cord blood repertoires of IgM and IgG through
physiological immune experience.

If indeed there is a Wellness Profile in adult life, then we
predict that we will be able to discover a list of autoantibody
reactivities shared by most healthy people. Some antibodies in
this Wellness autoantibody list will be absent in people with
chronic autoimmune disease. Indeed, we predict that we will
find a number autoantibodies that are shared by people suffering
from different chronic autoimmune diseases—a type of Illness
Profile. We plan to carry out these experiments using the antigen
microarray device developed by one of us (45); informatic
analyses of sufficient numbers of samples will test whether our
prediction is borne out.

The Wellness Profile hypothesis also includes TCR
repertoires, which are technically more difficult to study.
Shared, public TCR receptors have already been published, and
we predict that public TCR sequences will include repertoire
features that are shared by healthy people and absent in the
TCR repertoires of people suffering from chronic autoimmunity
problems or tumors. We can carry out such a study by informatic
analysis of published TCR data from healthy “controls”
compared to samples from persons with chronic autoimmune
conditions or cancer.

We here have proposed that the immune inflammation
phenotype is influenced by training sets of autoantigen
reactivities arising during healthy development. This idea
can be tested by introducing, during development, otherwise
immunogenic antigens such as allogeneic cells to induce specific
lifelong “tolerance” to specific allografts in inbred mice. We
would predict that modified training sets of autoreactive
autoantibody and TCR repertoires would be detected in these
mice and would persist throughout adult life; these modified
training reactivities would be added to the standard, shared
profile of wellness present in the mice.
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These predictions can be tested using a model of alloantigen
tolerance induced in mice before birth in utero or shortly
after birth. The newborn mice exposed to allo-antigens during
development will manifest modified Wellness Profiles that
include specific allo-antibodies and modified TCR repertoires;
the mice with modified profiles should accept H2-specific
allografts, according to our proposed theory. Adoptive transfer
of modified TCR and autoantibody repertoires in inbred mice
would make it possible to isolate the key elements in the
transferred repertoires.

In contrast to inducing tolerance to foreign transplantation
antigens, it appears that enhanced autoimmune T-cell mediated
inflammation in adults can be induced in newborn mice by
injection of selected autoimmune T cells: adult rats of the Fischer
strain can mount T-cell proliferative responses to myelin basic
protein but they resist developing inflammation that causes
experimental autoimmune encephalomyelitis (EAE); however,
injecting newborn Fisher rats with anti-MBP T cells renders
the rats susceptible to inflammatory EAE induced by active
immunization later in adult life (46); the injected T cells did not
cause EAE in the newborn rats, but the injected T cells migrated
to the thymus and spleen and persisted there. These early findings
suggest that it might indeed be feasible to modulate a later

inflammatory immune response by manipulating the developing
T-cell repertoire. Some of the novel concepts outlined here do
stimulate novel research programs.

CODA

To summarize, the standard clonal selection paradigm fails to
account for new findings that confound simple binary, self-
non-self explanations of complex immune behavior. Here, we
propose immune system computation, swarm intelligence, and
experience-based training repertoires as strategies for intelligent,
self-organizing body maintenance, healing, and protection.
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