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Abstract: Software systems exist in different critical 

domains. Software reliability assessment has become a 

critical issue due to the variety levels of software 

complexity. Software reliability, as a sub-branch of 

software quality, has been exploited to evaluate to what 

extend the desired software is trustable. To overcome 
the problem of dependency to human power and time 

limitation for software reliability prediction, 

researchers consider soft computing approaches such 

as Neural Network and Fuzzy Logic. These techniques 

suffer from some limitations including lack of 

analyzing mathematical foundations, local minima 

trapping and convergence problem. This study develops 

a novel model for software reliability prediction 

through the combination of Multi-Layer Perceptron 

Neural Network (MLP) and Imperialist Competitive 

Algorithm (ICA). The proposed model has solved some 

of the problems of existing methods such as 

convergence problem and demanding on huge number 

of data. This model can be used in complicated 

software systems. The results prove that both training 

and testing phases of this model outperform existing 

approaches in terms of predicting the number of 
software failures. 
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1. INTRODUCTION 

Recently, computers have become an essential part of 

human life. They are exploited in widespread range of 

domains including military, commercial and industrial 

areas. The critical part of the computer is the software; 

consequently, using the failure-free software which can 

complete the desired task with high accuracy and quality 

is vital. Software reliability as an important factor of 

software quality applied to assess the system operations 

profile. According to ANSI (American National 

Standards Institute) definition, software reliability is the 

possibility of failure-free software operation evaluated 

during an accurate time period within an exact 

environment (, ANSI 1991) [1]. 

During system analysis, two types of reliability have 

been considered which include software reliability and 

hardware reliability. There are significant differences 

between the software and hardware failures. In fact, if 

the software is not used, no failure will be occurred and 

the system will remained reliable. While in hardware, 

the reliability is threatened by passing the time, even 

though the hardware is not used. Table 1 illustrates the 

differences between these two types of reliability and 

this study focuses on software reliability. 

Table 1: Differences between Software Reliability and 

Hardware Reliability 

 
Software 

reliability 

Hardware 

reliability 

Failure cause 
Design 

defects 
Physical defects 

Wear-out any time 
After a time 

period 

Repairable 

system 

Periodic 

checking 

Occurred 

problem 

Time 

dependency 

and life cycle 

Not a 

function of 

time 

Related to the 

time 

Environmental 

factors 

Effects on 

program 

inputs not 

reliability 

The main threat 

Interfaces Conceptual Visual 

 

Software is an inseparable part of many systems and 

devices; therefore the failure prevalence of it is 

widespread. It covers a wide range of devastations from 

UI problems to the codding errors. There are many 

factors cause unreliability in software such as human 

design, coding error, fixing problems which (sometimes) 

cause new problems to be arisen, running environment 

changes, misinterpretation of the desired tasks and 

insufficient testing. In software reliability (in terms of 

correctness of the software), the expected outcome of the 

system and the real software output will be compared for 

the specific environment and condition. 

There is a reverse relationship between software 

failures and its reliability, which means that as the 

number of faults increase, the software reliability will 

decrease. Software reliability model should track the 

changing of reliability by passing the time, so it can be 

considered as time-series problem. Complexity of 
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system increases the risk level of reliability in software 

compared with simple system. So, the developers try to 

transfer the complexity from the system into the 

software, and improve the software instead of system 

whenever it is needed. 

Developing a general model which can be exploited in 

variety domains of study is one of the main challenges in 

software reliability prediction. To the best of our 

knowledge, there is no generalized powerful single 

model applied for all projects and circumstances. The 

best solution to overcome this problem is proposing the 

model which does not need any assumption about the 

environment or external software parameters. In this 

case, applying soft computing techniques and more 

specific neural network (NN) is the best solution. 

Software reliability can be considered as non-linear 

problem. In this case, artificial neural network is an 

efficient approach compared with traditional methods 

due to having the ability of non-linear mapping and 

using in time-series prediction domain.  

On the other hand, inconsistency in data of failures 

and their frequent changes cause the reliability 

prediction techniques to be varied in different 

conditions, and consequently, the traditional prediction 

models cannot be suitable for them. In addition, the 

existing method can only predict the time between 

failures and cannot give the accurate prediction for 

future. Some methods have been proposed to overcome 

this limitation by combining the time and test coverage 

to apply in software reliability prediction. But, since 

traditional methods are based on simple and shallow 

assumptions and the relationship between these factors 

are so complicated, the numerical solution for adjusting 

parameters of software reliability model is very hard. 

Among variety NN architectures, most of researchers 

exploit Multi-Layer Perceptron (MLP) along with 

variety set of learning algorithms to efficiently perform 

reliability prediction. 

There are variety sets of learning algorithms exploited 

for training the NN. BP (Back Propagation algorithm), 

GA (Genetic algorithm) and various Evolutionary 

algorithms are the most popular NN learning algorithms. 

In BP, achieving full sampling of the model is hard. This 

algorithm also suffers from trapping in local minima and 

low convergence rate. On the other hand, PSO faces 

other limitations including no solid analysis 

mathematical foundation, limitation in real time 

applications and initializing parameter problem and 

determining the best solution. The aforementioned 

weaknesses give motivation to use a more powerful 

evolutionary algorithm (ICA) to train MLP network and 

overcome most of these problems. It uses sufficient 

parameters set and mathematical foundation. Due to the 

robust structure, this algorithm avoids local minima 

trapping and presents the most effective solution.  

In the current study, a novel model has been proposed 

to forecast the reliability of software by combining the 

MLP NN and ICA algorithm to achieve high accuracy in 

terms of predicting the large amount of failures data. It 

would improve the conventional Software Reliability 

prediction techniques with some intelligent solutions to 

deal with unpredictable software system behaviors. 

Hence, it can maximize working with no failure chance 

occurred within a specific period of time. Moreover, this 

study tries to evaluate the various strategies proposed by 

previous works on software reliability prediction. 

2. LITERATURE REVIEW 

Neural Network-based models can be exploited 

generally for various sets of non-linear applications with 

respect of their desired accuracy. Karunanithi et al. [2] 

proposed the first NN model of software reliability 

prediction. Two other models were suggested by Adnan 

et al. [3] and Park et al. [4] based on using neural 

networks, and their results showed the effectiveness of 

their approach compared with analytical models. In 

existing techniques researchers exploit single-input 

single-output neural network structure to develop the 

software reliability models. Cumulative execution time 

as the input and the number of failures as the output have 

been considered by Karunanithi et al., in [2]. On the 

other hand, [5] set the number of failures as input and 

the time of failure as the output. 

Cai et al., exploited the recent 50 times of inter-failure 

in order to forecasting the next failure time. It showed 

that the architecture of neural network, i.e. number of 

hidden layers and neurons in each layer, influences on 

the network performance [6]. They experimented with 

variety set of neurons (20-50 neurons), while [3] applied 

1-4 neurons as input. In [7] an online adaptive software 

reliability model has been proposed based on exploiting 

an evolutionary connectionist approach along with 

genetic algorithm to enhance the number of neurons. In 

addition, they modified LM (Levenberg-Marquardt) 

algorithm with Bayesian regularisation to improve the 

accuracy of prediction. In another evolutionary NN 

model, [8] modelled the inter-relationship which exists 

within software failure data instead of considering the 

relationship between the time and the data of failures to 

predict the future failure time. 

Jun [9] developed a non-parametric ensemble method 

based on neural network structure for reliability 

prediction. He experimented variety sets of predictors 

and showed the effectiveness of using the combination 

of predicators compared with applying the single 

predictor. Jin hybridized GA and SA algorithm 

(simulated annealing algorithm) to train Support Vector 

Regression (SVR) model for software reliability 

prediction. This model decreased the error rate and 

improved the performance of prediction [10]. As 

selecting the best SVR's parameters is a very difficult 

process, variety sets of optimization algorithms have 

been suggested in terms of finding the most effective 

combination of parameters. Similarly, Jin optimized 

EDA (estimation of distribution algorithm) to keep the 

variety of populations, and proposed IEDA-SVR model 

that is the hybridization of EDA and SVR model to 



 

 

improve the selected parameters of SVR. This 

combination led to improve the performance of software 

reliability prediction [11]. Park and Baik suggested a 

novel model which made of the combination of various 

software reliability models by exploiting decision tree 

and using multiple criteria to decrease decision tree 

pruning errors and improve the prediction accuracy [12]. 

Wu et al. proposed a model by using GRNN (General 

Regression NN) and assessed the influence of test 

coverage on predicting the reliability of software to 

enhance the accuracy. They improved the prediction 

ability of GRNN during working with small dataset [13].  

The efficiency of NN structure compared with analytical 

model for reliability prediction has been proved by Liu 

et al. [14]. [15] designed a new model by using the 

counter and back propagation NNs to estimate the 

parameters of reliability prediction when the size of 

dataset is small. Vapnik presented a new neuro-fuzzy 

technique and the results showed the enhancement of the 

accuracy of prediction compared with GRNN [16]. 

RNNBPTT was the new NN structure which proposed 

by Bhuyan et al. and constructed by the combination of 

RNN (Recurrent Neural Network) and BP Through Time 

learning algorithm for predicting software reliability. 

The results showed that RNN outperforms other existing 

techniques with consistent behaviors to predict reliability 

[17]. The ensemble of NNs method was proposed by Bal 

et al. and the results were compared with existing 

traditional models by exploiting three standard datasets 

[18]. 

In terms of training the NN structure, variety sets of 

algorithms can be exploited. BP, GA and Evolutionary 

algorithm are common learning algorithms. Each of 

them has some weaknesses which give motivation to 

develop or exploit more powerful algorithm. For 

example, in BP achieving final model full sampling, 

local minima trapping and low convergence rate are the 

main limitation. In addition, PSO suffers from lack of 

solid analysis mathematical foundation, difficulty of 

using in real-time application, initializing parameters and 

the most effective solution finding. Finally, GA not only 

traps in local minima, but also, suffers from convergence 

problem. In addition, it has slow execution time and can 

find the optimal solutions not the exact one. 

These problems cause that a novel evolutionary 

algorithm, ICA has been used which can overcome most 

of those mentioned problems. Compared with the 

existing algorithms, ICA solves some of their problems 

by using adequate parameters and mathematical 

foundation. Moreover, it avoids trapping in local minima 

and results the best and optimal solution. Due to all these 
advantages, ICA has been exploited to train MLP NN 

and improve the accuracy of reliability prediction. 

 

 

3. SOFTWARE RELIABILITY 

PREDICTION METHODOLOGY 

Different set of models have been developed to 

accomplish variety tasks in software engineering 

domain. Models help developers to have better 

understanding of existing problem and assign resources 

more efficient and complete the projects within a desired 

time period. In addition, model reduces the software 

design and development’s cost and risk. In this study, a 

novel model has been proposed based on the 

hybridization of MLP and ICA algorithm. 

3.1. Software Reliability Dataset  

In supervised learning approach, dataset play a critical 

role in order to training and testing of proposed model. 

In evaluation phase, the standard datasets should be 

applied which are used by most of the researchers. The 

credibility and efficiency of the prediction model depend 

on the quality of input dataset. These factors can be 

assessed based on the dataset nature and collection 

method. Data can be collected for software reliability 

prediction by using three popular methods:  

• Data produced during testing phase of software. 

• Failure data Simulation by using the information of 

previous projects. 

• Users’ feedback after releasing the product in the 

market.  

In software reliability domain, there is no specific 

method for failure data collection. Different research use 

variety set of software failure datasets, but most of 

researchers have exploited two standard datasets 

including DACS (Data and Analysis Centre for 

Software) and Pham & Pham. We, also, used the same 

datasets in our study. Size different is the main factor of 

selecting these datasets to evaluate the proposed model 

flexibility and reliability for predicting software failures. 

Pham & Pham presents a software reliability dataset 

according to the times of software inner failure. The 

other dataset is SLED dataset which refers to the 

Software Life Cycle Empirical/Experience Database 

presented by DACS. DACS considers the time interval 

of failures and contains failure data which belong to 16 

various projects. From these categories, military dataset 

(No.40) is exploited which includes 180000 instructions, 

101 software failure numbers and collected during 

system testing phase. Figure 1 plots the relationship 

between failures’ number and time interval between the 

failures. 

For accuracy improvement and increasing the 

convergence speed of the proposed model, the data 

should be normalized before sending to the input layer, 

so that data will be formed in the range of [-1,1]. In 

addition, the output layer results will be deformalized 

and converted into the original value. The details of 

datasets and some samples are presented in [19]. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Failure data for project 40 

 

3.2. Software Reliability Framework  

The framework of study describes different phases of 

research methodology and explains how those phases are 

implemented. In order to satisfy the objectives of 

research, the methodology is divided into four main 

phases including analysis, design, implementation and 

testing and verification.  Figure 2 presents the 

framework of the proposed model framework. 

 

 
Figure 2 The Framework of MLP-ICA Model 

 

In analysis phase, the current software system will be 

analyzed and if there is any similar software, it will be 

identified to benefit of it failure history. The proper 

dataset is collected in this phase and the most suitable 

NN structure (in this study MLP) along with the best 

learning algorithm (ICA) will be exploited. Design phase 

includes dataset preparation for training and testing of 

MLP, and also, designing the architecture and layout of 

MLPNN along with setting the parameters of ICA 

algorithm. In third phase, the proposed model has been 

trained and tested with both datasets to evaluate the 

effect of the characteristics of different types of dataset 

on the performance of the model. In terms of model 

assessment, the most accurate performance measurement 

metrics have been used and the related diagrams, which 

compare the output of the model and desired output, 

have been generated. Finally, the accuracy of model will 

be compared with existing statistical and soft computing 

techniques. 

3.3. ICA-MLP Prediction Model  

ICA algorithm and MPL NN have been used to present a 

hybridized model for software reliability prediction. 

ICA-MLP as a data-driven model exploits the analysis of 

time-series (due to the software failure’s nature and 

applied datasets) to identify the future number of failures 

occurred in the software. ICA algorithm is used as a 

learning algorithm to train the neural network and update 

its weights to improve the ability of failures’ prediction. 

To reach the desired goal, the most two popular 

aforementioned datasets have been used for NN training 

and testing. As NN requires mathematical function to 

adjust the connections’ weights, we exploit the tangent 

hyperbolic function. The details of the algorithm and its 

setting parameters have been explained comprehensively 

in [19]. 

 

4. RESULT AND DISCUSSION 

To assess the proposed MLP-ICA software reliability 

prediction, testing and validation process have been 

performed to calculate the evaluation metrics. MSE 

(Mean Square Error) and Corrected Classification are 

two important metrics widely used in software reliability 

prediction techniques. 

4.1. ICA-MLP Experimental Results  

MSE is a function which identifies the performance of 

the NN structure. The main goal of ICA algorithm is to 

minimize the value of MSE not only to overcome 

convergence problem, but also, to provide more accurate 

prediction model. MSE can be calculated based on the 

Formula 1. 

 

 

                   (1) 

 

In this formula, ytarget is the desired output and ynet is 

the output of the network. MSE is computed for both 

training and testing process in this study. MSE for 

training samples determines how the network can 

classify the input data, while MSE for testing samples 

specifies how the network can memorize or predict the 

correct output based on the training patterns. On the 

other hand, Corrected Classification specifies with which 

probability the network classifies the training and testing 

patterns correctly. The numerical results of proposed 

model, performed on two datasets, have been presented 

in Table 2. 

 

 



 

 

Table 2: Results of ICA-MLP for Pham& Pham and 
DACS dataset 

Parameter Value Parameter 

MSEtrain (Best Cost) 0.0133 0.0020 

MSEtest 0.0078 0.0516 

Correct Classification 

Train (%) 
0.9824 0.9987 

Correct Classification Test 

(%) 
0.9914 0.9988 

Precision (%) 0.631579 0.75 

Recall (%) 0.571429 0.6 

F-Measure (%) 0.6 0.6666667 

 

 

The results’ comparison showed that there is a direct 

relationship between the size of dataset and system 

accuracy. The results indicate that increasing the size of 

dataset and consequently the numbers of training 

samples improves the accuracy of the system through the 

minimizing of MSE. It happens due to this fact that a 

high number of training data samples leads effectively 

training the NN structure. Thus, in this condition, the 

tolerance of network increases steadily and can 

remember or classify testing data samples with high 

accuracy.  

Having less number of samples (as it is illustrated in 

Table 2 for Pham & Pham) causes that the correction 

classification and accuracy of the network to be 

decreased and consequently MSE will be increased. 

Correction classification (CC) value of training samples 

identifies the network’s capability in order to classify the 

training samples. In addition, in testing stage, CC 

presents the network’s capability to remember the 

training data samples and, according to this, classify the 

testing data samples. The outputs of NN for both training 

and testing data samples for DACS dataset are illustrated 

in the Figures 3 and 4, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 a) Real and network output, b) Desired and 

network outputs’ deviation of the benchmark line 

(DACS dataset as training samples). 

 

As illustrated in Figure 3, the prediction accuracy is 

higher as the circles are closer to the line. In Figure 3 (a), 

the desired and network output similarity is very high 

due to the proper size of training samples and adequate 

number of decades parameter identified in the algorithm. 

Figure 3 (b) proves that the results is near to the 

benchmark, so the accuracy of the model is acceptable. 

Similarly, in Figure 4, the output for testing samples for 

DACS dataset is evaluated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 a) Real and network output, b) Desired and 

network outputs’ deviation of the benchmark line 

(DACS dataset as testing samples). 

 

In Figure 4 (a), in comparison with training result the 

accuracy is reduced, while the similarity is still high. In 

NN the most vital issue is dividing training and testing 

data samples effectively to improve the model prediction 

in testing phase. Figure 4 (b) illustrates that the system 

can memorize the training samples with high accuracy. 

In next phase, the similar assessments are performed 

for desired results and network’s outputs for Pham &  

Pham dataset. The results showed that the proposed 

model is more accurate for big datasets than the small 

ones. Figure 5 (a) and (b) present the comparison of 

desired and real output of NN and shows its deviation of 

the benchmark line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 a) Real and network output, b) Desired and 

network outputs’ deviation of the benchmark line (Pham 

& Pham dataset as training samples).  

 

From these figures, it can be concluded that the model 

is more efficient for large dataset than the small dataset. 

In Figure 5 (a) some points illustrate that the network is 

not accurate for reliability prediction. In addition, in (b) 

the results are different from desired output. This trend, 

also, exists in testing samples as shown in Figure 6. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 a) Real and network output, b) Desired and 

network outputs’ deviation of the benchmark line (Pham 

& Pham dataset as testing samples). 

 

4.2. Analytical Models for Reliability Prediction 

of Software  

Statistical models for software reliability prediction 

exploit complex computation formulas and a large 

amount of datasets. Moreover, their predictability is very 

low as they cannot memorize or to be trained for future 

failures prediction. They only can estimate the current 

failure status. Logarithmic, Inverse Polynomial, 

Exponential, Power and Delayed S-shape are the most 

popular statistical models applied for software reliability 

prediction.  

Logarithmic model never become stable and continues 

with no bound, so this model cannot be efficient for 

software reliability which needs convergence 

phenomena. Exponential model mostly use in growth 

population methods. Unlike logarithmic model, the trend 

of exponential model is slow in beginning and then 

increases rapidly, but their weaknesses are similar. 

Polynomial model is used to solve non-linear problems 

by optimizing parameters, but cannot be applied for 

software reliability prediction due to requiring high 

polynomial order. Power model is based on the NHPP 

model. It needs high amount of data and computational 

works to perform desired task which cause increasing 

the risk and cost of the project and reducing the 

accuracy. Finally, Delayed S-shape model improves the 

exponential model by adding the experiments of the 

project team’s member during growth model process. 

This model makes wrong assumption which is the 

software is stable and never changes until the failure is 

occurred.  Goel-Okumoto model and Ohba Model are 

two types of analytical models which are based on non-

homogeneous Poisson process, so they have the same 

problem as Power model and other NHPP based models 

including high amount of computational formula and 

slow speed. They cannot forecast the reliability without 

having sufficient amount of data. 

In the final analysis, the results of comparison among 

proposed model and analytical models are presented in 

Table 3. 

Table 3: Comparison MSE between analytical models 
and ICA-MLP model 

Model Training Testing 

Logarithmic 11.61 21.59 

Inverse polynomial 7.88 11.97 

Exponential 12.85 23.81 

Power 14.32 19.65 

Delayed S-shape 19.78 30.21 

Goel-Okumoto Model 0.080 0.12 

Ymada S-shaped Model 1.1467 3.0321 

Ohba Model 0.19 0.10 

ICA-MLP (proposed 

model) 
0.0014 0.013 

 

 

As presented in Table 3, all the weaknesses mentioned 

earlier caused that the analytical models have the lower 

accuracy compared with proposed ICA-MLP model. 

Among analytical models, Goel-Okumoto Model has 

predicted the reliability with less MSE due to its 

optimized parameters. 

 

4.3. Evaluation of Neural Network Model for 

Software Reliability Prediction  

In this section, the proposed model will be compared 

with other NN techniques based on their learning 

algorithm and network architecture. Most of NN training 

algorithms follow the randomization approach to 

initialize the weights of connections of network. 

Accordingly, different weights’ convergence at the end 

of each training phase will be produces and the 

prediction results maybe different but very close to each 

other. Training should be repeated and the average result 

of all outputs should be calculated. In section 4.2, 

analytical models were evaluated and it has been found 

that due to limitation of analytical models, soft 

computing techniques especially NN approaches have 

become more popular. There are some benefits of using 

NNs and more specially MLP, which is a type of feed 

forward NNs. In Table 4, some features of applying NN 

for software reliability prediction have been compared 

with analytical models. 

The only disadvantage of using NN is variety results 

during training process. But also with this weakness the 

results and accuracy is better than any other analytical 

approaches. 

 

 

 

 

 

 

 

 



 

 

Table 4: Comparison between Analytical models and 
Neural Network models 

 Neural Network Analytical 

Design 11.61 21.59 

Inverse 

polynomial 
7.88 11.97 

Function Scope 12.85 23.81 

Adaptability 14.32 19.65 

Assumption 19.78 30.21 

Performance and 

Efficiency 
0.080 0.12 

 

In this section, the proposed model is compared with 

other NN models respect to the training algorithms and 

NN architectures. 

To achieve the best software reliability prediction 

model, researchers proposed many different types of NN 

architectures. Among these models four architectures 

have become more popular including Multilayer 

Perceptron, Redial Basis Function NN, Elman Recurrent 

NN and Fuzzy NN. In this part the comparison between 

proposed model and these models for software reliability 

prediction is presented in Table 5. 

Table 5: Comparison MSE among variety Neural 
Network architectures 

Model Training Testing 

ICA-MLP 0.0020 0.0516 

RBFN 1.6465 0.1591 

Elman 0.1625 0.1394 

ANFIS 1.3364 0.9079 

 

The comparison in Table 5 proved that the proposed 

model gives the best result for both training and testing 

dataset as it benefits of the proper learning algorithm to 

adjust the weights and to increase the convergence 

speed. In the second position, Elman network give the 

best result as this architecture considers the dynamic 

behavior of the system and software reliability datasets. 

RBFN assigns the equal priority (importance) to all input 

samples which reduces the convergence rate. Moreover, 

it takes longer time to run which leads to increase the 

cost and risk of the projects. 

ANFIS has given the worse results not only for 

training, but also for testing due to complexity in its 

architecture since it makes the combination of two heavy 

structures including NN and Fuzzy Logic. This 

composition method maybe useful for some other 

domains, but for software reliability prediction, the 

results show that it is not suitable. In conclusion the 

results have proved that the ICA-MLP gives better 

results compared with other architectures. 

The proposed model also is compared with other NN 

architectures.  The experimental results based on the 

NRMSE are presented in Table 6 and Figure 7. NRMSE 

for individual methods can be calculated according to 

Formula 2. 

 

         𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ 𝑦𝑖
2𝑛

𝑖=1
    (2) 

Table 6: Comparison NRMSE among Individual 
Techniques for Neural Network training algorithm and 

ICA-MLP 

Model NRMSE 

BPNN 0.145541 

TANN 0.150355 

PSN 0.157922 

MARS 0.15267 

GRNN 0.166883 

MLR 0.147881 

TreeNet 0.161121 

DENFIS 0.147641 

ICA-MLP 0.08574 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 7 Comparison between ICA-MLP and Soft 

Computing models 

Nowadays, researchers try to propose the models 

which are based on the combination of different 

techniques to impart all their advantages and overcome 

their weaknesses. For software reliability prediction, 

developers have proposed some ensemble models. In 

these models, the output of each part is calculated and 

then they are given into the desired methods as the input. 

The experimental results based on the NRMSE are 
presented in Table 7. 

Table 7: Comparison NRMSE among Ensemble 

Techniques for Neural Network training and ICA-MLP 

Model NRMSE 

Linear Ensemble (Average) 0.143424 

Linear Ensemble (Mean) 0.143463 

Linear Ensemble (Median) 0.143399 

ICA-MLP 0.08574 



 

 

In conclusion, the experimental results proved that the 
ensemble methods are more accurate than individual 
ones, but the difference is not noticeable as it increases 
the cost and risk, and need many computational phases. 
Obviously, in complex projects, these methods cannot be 
used, since they are difficult to be implemented. 

Randomization technique is used for NN training to 
initialize the connections’ weights of network. For each 
training phase, various weights’ convergence is 
produced. Despite of the fact that the prediction results 
are different due to different initialization of weights, 
they are so close to each other. To overcome this 
inconsistency, the training procedure is run for few 
times, the results will be taken and, finally, the outputs’ 
average is computed. The investigations have proved 
that soft computing techniques such as NN give more 
accurate prediction than analytical methods which are no 
longer effective. 

In NN analysis, this fact should be considered that 
output results will be different during each training 
procedure. As the training methods randomly initialize 
NN weights, even with same training algorithm, network 
architecture and dataset, still the results will be different. 
Despite of this weak point, their performance and 
accuracy are more significant than other analytical 
techniques. 
 

5. CONCLUSION 

In this study, the combination of MLP NN with ICA 

algorithm is proposed. This model is exploited to predict 

the future number of software failures to increase the 

system reliability. In addition, the effectiveness and 

performance of hybridized model for reliability 

prediction were analyzed. The results showed that ICA-

MLP model is effective for both small and large 

datasets, while existing models are usually suitable for 

one type of dataset. The model has less complexity 

compared with others, especially in mathematical 

formulas, as the evolutionary pattern has been applied. 

The results also proved that the model has the lowest 

MSE and NRMSE in comparison with existing 

analytical and soft computing techniques.  

As in this study only NN technique has been exploited 

for software reliability prediction, it has been suggested 

due to uncertainty nature of software, the neuro-fuzzy 

approach also applied to improve the accuracy. 
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