
Kurdistan Journal of Applied Research (KJAR) | Print-ISSN: 2411-7684 – Electronic-ISSN: 2411-7706 | kjar.spu.edu.iq

Volume 2 | Issue 3 | August 2017 | DOI: 10.24017/science.2017.3.5

Applying Neural Network Approach with Imperialist

Competitive Algorithm for Software Reliability

Prediction

Shirin Noekhah

Faculty of Computing, Universiti Teknologi

of Malaysia, UTM,

81300, Johor, Malaysia

nshirin2@live.utm.my

Naomie binti Salim

Faculty of Computing, Universiti Teknologi

of Malaysia, UTM,

81300, Johor, Malaysia

naomie@utm.my

Nor Hawaniah Zakaria

Faculty of Computing, Universiti Teknologi

of Malaysia, UTM,

81300, Johor, Malaysia

hawaniah@utm.my

Abstract: Software systems exist in different critical

domains. Software reliability assessment has become a

critical issue due to the variety levels of software

complexity. Software reliability, as a sub-branch of

software quality, has been exploited to evaluate to what

extend the desired software is trustable. To overcome
the problem of dependency to human power and time

limitation for software reliability prediction,

researchers consider soft computing approaches such

as Neural Network and Fuzzy Logic. These techniques

suffer from some limitations including lack of

analyzing mathematical foundations, local minima

trapping and convergence problem. This study develops

a novel model for software reliability prediction

through the combination of Multi-Layer Perceptron

Neural Network (MLP) and Imperialist Competitive

Algorithm (ICA). The proposed model has solved some

of the problems of existing methods such as

convergence problem and demanding on huge number

of data. This model can be used in complicated

software systems. The results prove that both training

and testing phases of this model outperform existing

approaches in terms of predicting the number of
software failures.

Keywords: Soft computing, reliability of software,

Multi-Layer Perceptron Neural Network, Imperialist

Competitive Algorithm

1. INTRODUCTION

Recently, computers have become an essential part of

human life. They are exploited in widespread range of

domains including military, commercial and industrial

areas. The critical part of the computer is the software;

consequently, using the failure-free software which can

complete the desired task with high accuracy and quality

is vital. Software reliability as an important factor of

software quality applied to assess the system operations

profile. According to ANSI (American National

Standards Institute) definition, software reliability is the

possibility of failure-free software operation evaluated

during an accurate time period within an exact

environment (, ANSI 1991) [1].

During system analysis, two types of reliability have

been considered which include software reliability and

hardware reliability. There are significant differences

between the software and hardware failures. In fact, if

the software is not used, no failure will be occurred and

the system will remained reliable. While in hardware,

the reliability is threatened by passing the time, even

though the hardware is not used. Table 1 illustrates the

differences between these two types of reliability and

this study focuses on software reliability.

Table 1: Differences between Software Reliability and

Hardware Reliability

Software

reliability

Hardware

reliability

Failure cause
Design

defects
Physical defects

Wear-out any time
After a time

period

Repairable

system

Periodic

checking

Occurred

problem

Time

dependency

and life cycle

Not a

function of

time

Related to the

time

Environmental

factors

Effects on

program

inputs not

reliability

The main threat

Interfaces Conceptual Visual

Software is an inseparable part of many systems and

devices; therefore the failure prevalence of it is

widespread. It covers a wide range of devastations from

UI problems to the codding errors. There are many

factors cause unreliability in software such as human

design, coding error, fixing problems which (sometimes)

cause new problems to be arisen, running environment

changes, misinterpretation of the desired tasks and

insufficient testing. In software reliability (in terms of

correctness of the software), the expected outcome of the

system and the real software output will be compared for

the specific environment and condition.

There is a reverse relationship between software

failures and its reliability, which means that as the

number of faults increase, the software reliability will

decrease. Software reliability model should track the

changing of reliability by passing the time, so it can be

considered as time-series problem. Complexity of

mailto:naomie@utm.my

system increases the risk level of reliability in software

compared with simple system. So, the developers try to

transfer the complexity from the system into the

software, and improve the software instead of system

whenever it is needed.

Developing a general model which can be exploited in

variety domains of study is one of the main challenges in

software reliability prediction. To the best of our

knowledge, there is no generalized powerful single

model applied for all projects and circumstances. The

best solution to overcome this problem is proposing the

model which does not need any assumption about the

environment or external software parameters. In this

case, applying soft computing techniques and more

specific neural network (NN) is the best solution.

Software reliability can be considered as non-linear

problem. In this case, artificial neural network is an

efficient approach compared with traditional methods

due to having the ability of non-linear mapping and

using in time-series prediction domain.

On the other hand, inconsistency in data of failures

and their frequent changes cause the reliability

prediction techniques to be varied in different

conditions, and consequently, the traditional prediction

models cannot be suitable for them. In addition, the

existing method can only predict the time between

failures and cannot give the accurate prediction for

future. Some methods have been proposed to overcome

this limitation by combining the time and test coverage

to apply in software reliability prediction. But, since

traditional methods are based on simple and shallow

assumptions and the relationship between these factors

are so complicated, the numerical solution for adjusting

parameters of software reliability model is very hard.

Among variety NN architectures, most of researchers

exploit Multi-Layer Perceptron (MLP) along with

variety set of learning algorithms to efficiently perform

reliability prediction.

There are variety sets of learning algorithms exploited

for training the NN. BP (Back Propagation algorithm),

GA (Genetic algorithm) and various Evolutionary

algorithms are the most popular NN learning algorithms.

In BP, achieving full sampling of the model is hard. This

algorithm also suffers from trapping in local minima and

low convergence rate. On the other hand, PSO faces

other limitations including no solid analysis

mathematical foundation, limitation in real time

applications and initializing parameter problem and

determining the best solution. The aforementioned

weaknesses give motivation to use a more powerful

evolutionary algorithm (ICA) to train MLP network and

overcome most of these problems. It uses sufficient

parameters set and mathematical foundation. Due to the

robust structure, this algorithm avoids local minima

trapping and presents the most effective solution.

In the current study, a novel model has been proposed

to forecast the reliability of software by combining the

MLP NN and ICA algorithm to achieve high accuracy in

terms of predicting the large amount of failures data. It

would improve the conventional Software Reliability

prediction techniques with some intelligent solutions to

deal with unpredictable software system behaviors.

Hence, it can maximize working with no failure chance

occurred within a specific period of time. Moreover, this

study tries to evaluate the various strategies proposed by

previous works on software reliability prediction.

2. LITERATURE REVIEW

Neural Network-based models can be exploited

generally for various sets of non-linear applications with

respect of their desired accuracy. Karunanithi et al. [2]

proposed the first NN model of software reliability

prediction. Two other models were suggested by Adnan

et al. [3] and Park et al. [4] based on using neural

networks, and their results showed the effectiveness of

their approach compared with analytical models. In

existing techniques researchers exploit single-input

single-output neural network structure to develop the

software reliability models. Cumulative execution time

as the input and the number of failures as the output have

been considered by Karunanithi et al., in [2]. On the

other hand, [5] set the number of failures as input and

the time of failure as the output.

Cai et al., exploited the recent 50 times of inter-failure

in order to forecasting the next failure time. It showed

that the architecture of neural network, i.e. number of

hidden layers and neurons in each layer, influences on

the network performance [6]. They experimented with

variety set of neurons (20-50 neurons), while [3] applied

1-4 neurons as input. In [7] an online adaptive software

reliability model has been proposed based on exploiting

an evolutionary connectionist approach along with

genetic algorithm to enhance the number of neurons. In

addition, they modified LM (Levenberg-Marquardt)

algorithm with Bayesian regularisation to improve the

accuracy of prediction. In another evolutionary NN

model, [8] modelled the inter-relationship which exists

within software failure data instead of considering the

relationship between the time and the data of failures to

predict the future failure time.

Jun [9] developed a non-parametric ensemble method

based on neural network structure for reliability

prediction. He experimented variety sets of predictors

and showed the effectiveness of using the combination

of predicators compared with applying the single

predictor. Jin hybridized GA and SA algorithm

(simulated annealing algorithm) to train Support Vector

Regression (SVR) model for software reliability

prediction. This model decreased the error rate and

improved the performance of prediction [10]. As

selecting the best SVR's parameters is a very difficult

process, variety sets of optimization algorithms have

been suggested in terms of finding the most effective

combination of parameters. Similarly, Jin optimized

EDA (estimation of distribution algorithm) to keep the

variety of populations, and proposed IEDA-SVR model

that is the hybridization of EDA and SVR model to

improve the selected parameters of SVR. This

combination led to improve the performance of software

reliability prediction [11]. Park and Baik suggested a

novel model which made of the combination of various

software reliability models by exploiting decision tree

and using multiple criteria to decrease decision tree

pruning errors and improve the prediction accuracy [12].

Wu et al. proposed a model by using GRNN (General

Regression NN) and assessed the influence of test

coverage on predicting the reliability of software to

enhance the accuracy. They improved the prediction

ability of GRNN during working with small dataset [13].

The efficiency of NN structure compared with analytical

model for reliability prediction has been proved by Liu

et al. [14]. [15] designed a new model by using the

counter and back propagation NNs to estimate the

parameters of reliability prediction when the size of

dataset is small. Vapnik presented a new neuro-fuzzy

technique and the results showed the enhancement of the

accuracy of prediction compared with GRNN [16].

RNNBPTT was the new NN structure which proposed

by Bhuyan et al. and constructed by the combination of

RNN (Recurrent Neural Network) and BP Through Time

learning algorithm for predicting software reliability.

The results showed that RNN outperforms other existing

techniques with consistent behaviors to predict reliability

[17]. The ensemble of NNs method was proposed by Bal

et al. and the results were compared with existing

traditional models by exploiting three standard datasets

[18].

In terms of training the NN structure, variety sets of

algorithms can be exploited. BP, GA and Evolutionary

algorithm are common learning algorithms. Each of

them has some weaknesses which give motivation to

develop or exploit more powerful algorithm. For

example, in BP achieving final model full sampling,

local minima trapping and low convergence rate are the

main limitation. In addition, PSO suffers from lack of

solid analysis mathematical foundation, difficulty of

using in real-time application, initializing parameters and

the most effective solution finding. Finally, GA not only

traps in local minima, but also, suffers from convergence

problem. In addition, it has slow execution time and can

find the optimal solutions not the exact one.

These problems cause that a novel evolutionary

algorithm, ICA has been used which can overcome most

of those mentioned problems. Compared with the

existing algorithms, ICA solves some of their problems

by using adequate parameters and mathematical

foundation. Moreover, it avoids trapping in local minima

and results the best and optimal solution. Due to all these
advantages, ICA has been exploited to train MLP NN

and improve the accuracy of reliability prediction.

3. SOFTWARE RELIABILITY

PREDICTION METHODOLOGY

Different set of models have been developed to

accomplish variety tasks in software engineering

domain. Models help developers to have better

understanding of existing problem and assign resources

more efficient and complete the projects within a desired

time period. In addition, model reduces the software

design and development’s cost and risk. In this study, a

novel model has been proposed based on the

hybridization of MLP and ICA algorithm.

3.1. Software Reliability Dataset

In supervised learning approach, dataset play a critical

role in order to training and testing of proposed model.

In evaluation phase, the standard datasets should be

applied which are used by most of the researchers. The

credibility and efficiency of the prediction model depend

on the quality of input dataset. These factors can be

assessed based on the dataset nature and collection

method. Data can be collected for software reliability

prediction by using three popular methods:

• Data produced during testing phase of software.

• Failure data Simulation by using the information of

previous projects.

• Users’ feedback after releasing the product in the

market.

In software reliability domain, there is no specific

method for failure data collection. Different research use

variety set of software failure datasets, but most of

researchers have exploited two standard datasets

including DACS (Data and Analysis Centre for

Software) and Pham & Pham. We, also, used the same

datasets in our study. Size different is the main factor of

selecting these datasets to evaluate the proposed model

flexibility and reliability for predicting software failures.

Pham & Pham presents a software reliability dataset

according to the times of software inner failure. The

other dataset is SLED dataset which refers to the

Software Life Cycle Empirical/Experience Database

presented by DACS. DACS considers the time interval

of failures and contains failure data which belong to 16

various projects. From these categories, military dataset

(No.40) is exploited which includes 180000 instructions,

101 software failure numbers and collected during

system testing phase. Figure 1 plots the relationship

between failures’ number and time interval between the

failures.

For accuracy improvement and increasing the

convergence speed of the proposed model, the data

should be normalized before sending to the input layer,

so that data will be formed in the range of [-1,1]. In

addition, the output layer results will be deformalized

and converted into the original value. The details of

datasets and some samples are presented in [19].

Figure 1 Failure data for project 40

3.2. Software Reliability Framework

The framework of study describes different phases of

research methodology and explains how those phases are

implemented. In order to satisfy the objectives of

research, the methodology is divided into four main

phases including analysis, design, implementation and

testing and verification. Figure 2 presents the

framework of the proposed model framework.

Figure 2 The Framework of MLP-ICA Model

In analysis phase, the current software system will be

analyzed and if there is any similar software, it will be

identified to benefit of it failure history. The proper

dataset is collected in this phase and the most suitable

NN structure (in this study MLP) along with the best

learning algorithm (ICA) will be exploited. Design phase

includes dataset preparation for training and testing of

MLP, and also, designing the architecture and layout of

MLPNN along with setting the parameters of ICA

algorithm. In third phase, the proposed model has been

trained and tested with both datasets to evaluate the

effect of the characteristics of different types of dataset

on the performance of the model. In terms of model

assessment, the most accurate performance measurement

metrics have been used and the related diagrams, which

compare the output of the model and desired output,

have been generated. Finally, the accuracy of model will

be compared with existing statistical and soft computing

techniques.

3.3. ICA-MLP Prediction Model

ICA algorithm and MPL NN have been used to present a

hybridized model for software reliability prediction.

ICA-MLP as a data-driven model exploits the analysis of

time-series (due to the software failure’s nature and

applied datasets) to identify the future number of failures

occurred in the software. ICA algorithm is used as a

learning algorithm to train the neural network and update

its weights to improve the ability of failures’ prediction.

To reach the desired goal, the most two popular

aforementioned datasets have been used for NN training

and testing. As NN requires mathematical function to

adjust the connections’ weights, we exploit the tangent

hyperbolic function. The details of the algorithm and its

setting parameters have been explained comprehensively

in [19].

4. RESULT AND DISCUSSION

To assess the proposed MLP-ICA software reliability

prediction, testing and validation process have been

performed to calculate the evaluation metrics. MSE

(Mean Square Error) and Corrected Classification are

two important metrics widely used in software reliability

prediction techniques.

4.1. ICA-MLP Experimental Results

MSE is a function which identifies the performance of

the NN structure. The main goal of ICA algorithm is to

minimize the value of MSE not only to overcome

convergence problem, but also, to provide more accurate

prediction model. MSE can be calculated based on the

Formula 1.

 (1)

In this formula, ytarget is the desired output and ynet is

the output of the network. MSE is computed for both

training and testing process in this study. MSE for

training samples determines how the network can

classify the input data, while MSE for testing samples

specifies how the network can memorize or predict the

correct output based on the training patterns. On the

other hand, Corrected Classification specifies with which

probability the network classifies the training and testing

patterns correctly. The numerical results of proposed

model, performed on two datasets, have been presented

in Table 2.

Table 2: Results of ICA-MLP for Pham& Pham and
DACS dataset

Parameter Value Parameter

MSEtrain (Best Cost) 0.0133 0.0020

MSEtest 0.0078 0.0516

Correct Classification

Train (%)
0.9824 0.9987

Correct Classification Test

(%)
0.9914 0.9988

Precision (%) 0.631579 0.75

Recall (%) 0.571429 0.6

F-Measure (%) 0.6 0.6666667

The results’ comparison showed that there is a direct

relationship between the size of dataset and system

accuracy. The results indicate that increasing the size of

dataset and consequently the numbers of training

samples improves the accuracy of the system through the

minimizing of MSE. It happens due to this fact that a

high number of training data samples leads effectively

training the NN structure. Thus, in this condition, the

tolerance of network increases steadily and can

remember or classify testing data samples with high

accuracy.

Having less number of samples (as it is illustrated in

Table 2 for Pham & Pham) causes that the correction

classification and accuracy of the network to be

decreased and consequently MSE will be increased.

Correction classification (CC) value of training samples

identifies the network’s capability in order to classify the

training samples. In addition, in testing stage, CC

presents the network’s capability to remember the

training data samples and, according to this, classify the

testing data samples. The outputs of NN for both training

and testing data samples for DACS dataset are illustrated

in the Figures 3 and 4, respectively.

Figure 3 a) Real and network output, b) Desired and

network outputs’ deviation of the benchmark line

(DACS dataset as training samples).

As illustrated in Figure 3, the prediction accuracy is

higher as the circles are closer to the line. In Figure 3 (a),

the desired and network output similarity is very high

due to the proper size of training samples and adequate

number of decades parameter identified in the algorithm.

Figure 3 (b) proves that the results is near to the

benchmark, so the accuracy of the model is acceptable.

Similarly, in Figure 4, the output for testing samples for

DACS dataset is evaluated.

Figure 4 a) Real and network output, b) Desired and

network outputs’ deviation of the benchmark line

(DACS dataset as testing samples).

In Figure 4 (a), in comparison with training result the

accuracy is reduced, while the similarity is still high. In

NN the most vital issue is dividing training and testing

data samples effectively to improve the model prediction

in testing phase. Figure 4 (b) illustrates that the system

can memorize the training samples with high accuracy.

In next phase, the similar assessments are performed

for desired results and network’s outputs for Pham &

Pham dataset. The results showed that the proposed

model is more accurate for big datasets than the small

ones. Figure 5 (a) and (b) present the comparison of

desired and real output of NN and shows its deviation of

the benchmark line.

Figure 5 a) Real and network output, b) Desired and

network outputs’ deviation of the benchmark line (Pham

& Pham dataset as training samples).

From these figures, it can be concluded that the model

is more efficient for large dataset than the small dataset.

In Figure 5 (a) some points illustrate that the network is

not accurate for reliability prediction. In addition, in (b)

the results are different from desired output. This trend,

also, exists in testing samples as shown in Figure 6.

Figure 6 a) Real and network output, b) Desired and

network outputs’ deviation of the benchmark line (Pham

& Pham dataset as testing samples).

4.2. Analytical Models for Reliability Prediction

of Software

Statistical models for software reliability prediction

exploit complex computation formulas and a large

amount of datasets. Moreover, their predictability is very

low as they cannot memorize or to be trained for future

failures prediction. They only can estimate the current

failure status. Logarithmic, Inverse Polynomial,

Exponential, Power and Delayed S-shape are the most

popular statistical models applied for software reliability

prediction.

Logarithmic model never become stable and continues

with no bound, so this model cannot be efficient for

software reliability which needs convergence

phenomena. Exponential model mostly use in growth

population methods. Unlike logarithmic model, the trend

of exponential model is slow in beginning and then

increases rapidly, but their weaknesses are similar.

Polynomial model is used to solve non-linear problems

by optimizing parameters, but cannot be applied for

software reliability prediction due to requiring high

polynomial order. Power model is based on the NHPP

model. It needs high amount of data and computational

works to perform desired task which cause increasing

the risk and cost of the project and reducing the

accuracy. Finally, Delayed S-shape model improves the

exponential model by adding the experiments of the

project team’s member during growth model process.

This model makes wrong assumption which is the

software is stable and never changes until the failure is

occurred. Goel-Okumoto model and Ohba Model are

two types of analytical models which are based on non-

homogeneous Poisson process, so they have the same

problem as Power model and other NHPP based models

including high amount of computational formula and

slow speed. They cannot forecast the reliability without

having sufficient amount of data.

In the final analysis, the results of comparison among

proposed model and analytical models are presented in

Table 3.

Table 3: Comparison MSE between analytical models
and ICA-MLP model

Model Training Testing

Logarithmic 11.61 21.59

Inverse polynomial 7.88 11.97

Exponential 12.85 23.81

Power 14.32 19.65

Delayed S-shape 19.78 30.21

Goel-Okumoto Model 0.080 0.12

Ymada S-shaped Model 1.1467 3.0321

Ohba Model 0.19 0.10

ICA-MLP (proposed

model)
0.0014 0.013

As presented in Table 3, all the weaknesses mentioned

earlier caused that the analytical models have the lower

accuracy compared with proposed ICA-MLP model.

Among analytical models, Goel-Okumoto Model has

predicted the reliability with less MSE due to its

optimized parameters.

4.3. Evaluation of Neural Network Model for

Software Reliability Prediction

In this section, the proposed model will be compared

with other NN techniques based on their learning

algorithm and network architecture. Most of NN training

algorithms follow the randomization approach to

initialize the weights of connections of network.

Accordingly, different weights’ convergence at the end

of each training phase will be produces and the

prediction results maybe different but very close to each

other. Training should be repeated and the average result

of all outputs should be calculated. In section 4.2,

analytical models were evaluated and it has been found

that due to limitation of analytical models, soft

computing techniques especially NN approaches have

become more popular. There are some benefits of using

NNs and more specially MLP, which is a type of feed

forward NNs. In Table 4, some features of applying NN

for software reliability prediction have been compared

with analytical models.

The only disadvantage of using NN is variety results

during training process. But also with this weakness the

results and accuracy is better than any other analytical

approaches.

Table 4: Comparison between Analytical models and
Neural Network models

 Neural Network Analytical

Design 11.61 21.59

Inverse

polynomial
7.88 11.97

Function Scope 12.85 23.81

Adaptability 14.32 19.65

Assumption 19.78 30.21

Performance and

Efficiency
0.080 0.12

In this section, the proposed model is compared with

other NN models respect to the training algorithms and

NN architectures.

To achieve the best software reliability prediction

model, researchers proposed many different types of NN

architectures. Among these models four architectures

have become more popular including Multilayer

Perceptron, Redial Basis Function NN, Elman Recurrent

NN and Fuzzy NN. In this part the comparison between

proposed model and these models for software reliability

prediction is presented in Table 5.

Table 5: Comparison MSE among variety Neural
Network architectures

Model Training Testing

ICA-MLP 0.0020 0.0516

RBFN 1.6465 0.1591

Elman 0.1625 0.1394

ANFIS 1.3364 0.9079

The comparison in Table 5 proved that the proposed

model gives the best result for both training and testing

dataset as it benefits of the proper learning algorithm to

adjust the weights and to increase the convergence

speed. In the second position, Elman network give the

best result as this architecture considers the dynamic

behavior of the system and software reliability datasets.

RBFN assigns the equal priority (importance) to all input

samples which reduces the convergence rate. Moreover,

it takes longer time to run which leads to increase the

cost and risk of the projects.

ANFIS has given the worse results not only for

training, but also for testing due to complexity in its

architecture since it makes the combination of two heavy

structures including NN and Fuzzy Logic. This

composition method maybe useful for some other

domains, but for software reliability prediction, the

results show that it is not suitable. In conclusion the

results have proved that the ICA-MLP gives better

results compared with other architectures.

The proposed model also is compared with other NN

architectures. The experimental results based on the

NRMSE are presented in Table 6 and Figure 7. NRMSE

for individual methods can be calculated according to

Formula 2.

 𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ 𝑦𝑖
2𝑛

𝑖=1
 (2)

Table 6: Comparison NRMSE among Individual
Techniques for Neural Network training algorithm and

ICA-MLP

Model NRMSE

BPNN 0.145541

TANN 0.150355

PSN 0.157922

MARS 0.15267

GRNN 0.166883

MLR 0.147881

TreeNet 0.161121

DENFIS 0.147641

ICA-MLP 0.08574

Figure 7 Comparison between ICA-MLP and Soft

Computing models

Nowadays, researchers try to propose the models

which are based on the combination of different

techniques to impart all their advantages and overcome

their weaknesses. For software reliability prediction,

developers have proposed some ensemble models. In

these models, the output of each part is calculated and

then they are given into the desired methods as the input.

The experimental results based on the NRMSE are
presented in Table 7.

Table 7: Comparison NRMSE among Ensemble

Techniques for Neural Network training and ICA-MLP

Model NRMSE

Linear Ensemble (Average) 0.143424

Linear Ensemble (Mean) 0.143463

Linear Ensemble (Median) 0.143399

ICA-MLP 0.08574

In conclusion, the experimental results proved that the
ensemble methods are more accurate than individual
ones, but the difference is not noticeable as it increases
the cost and risk, and need many computational phases.
Obviously, in complex projects, these methods cannot be
used, since they are difficult to be implemented.

Randomization technique is used for NN training to
initialize the connections’ weights of network. For each
training phase, various weights’ convergence is
produced. Despite of the fact that the prediction results
are different due to different initialization of weights,
they are so close to each other. To overcome this
inconsistency, the training procedure is run for few
times, the results will be taken and, finally, the outputs’
average is computed. The investigations have proved
that soft computing techniques such as NN give more
accurate prediction than analytical methods which are no
longer effective.

In NN analysis, this fact should be considered that
output results will be different during each training
procedure. As the training methods randomly initialize
NN weights, even with same training algorithm, network
architecture and dataset, still the results will be different.
Despite of this weak point, their performance and
accuracy are more significant than other analytical
techniques.

5. CONCLUSION

In this study, the combination of MLP NN with ICA

algorithm is proposed. This model is exploited to predict

the future number of software failures to increase the

system reliability. In addition, the effectiveness and

performance of hybridized model for reliability

prediction were analyzed. The results showed that ICA-

MLP model is effective for both small and large

datasets, while existing models are usually suitable for

one type of dataset. The model has less complexity

compared with others, especially in mathematical

formulas, as the evolutionary pattern has been applied.

The results also proved that the model has the lowest

MSE and NRMSE in comparison with existing

analytical and soft computing techniques.

As in this study only NN technique has been exploited

for software reliability prediction, it has been suggested

due to uncertainty nature of software, the neuro-fuzzy

approach also applied to improve the accuracy.

6. REFERENCE

[1] http://webstore.ansi.org/RecordDetail.aspx?sku=R

-013-1992

[2] N. Karunanithi, D. Whitley and YK. Malaiya,

Prediction of software reliability using

connectionist models, IEEE Transactions on

Software Engineering, 1992.
[3] WA. Adnan and MH. Yaacob, An integrated

neural-fuzzy system of software reliability

prediction, In Software Testing, Reliability and

Quality Assurance, Conference Proceedings., First

International Conference, pp. 154-158, 1994.

[4] JY. Park, SU. Lee and JH. Park, Neural network

modeling for software reliability prediction from

failure time data, Journal of Electrical Engineering

and Information Science. 1999.

[5] N. Karunanithi, D. Whitley, YK. Malaiya, Using

neural networks in reliability prediction, IEEE

Software, 1992.

[6] KY. Cai, L. Cai, WD. Wang, ZY. Yu and D.

Zhang, On the neural network approach in

software reliability modeling, Journal of Systems

and Software, 2001.

[7] L. Tian and A. Noore, On-line prediction of
software reliability using an evolutionary

connectionist model, Journal of Systems and

Software, 2005.

[8] L. Tian and A. Noore, Evolutionary neural

network modeling for software cumulative failure

time prediction, Reliability Engineering & system

safety, 2005.

[9] Z. Jun, Prediction of software reliability using

connectionist models. Expert Systems with

Applications, 2009.

[10] C. Jin, Software reliability prediction based on

support vector regression using a hybrid genetic

algorithm and simulated annealing algorithm, IET

software, 2011.

[11] C. Jin and SW. Jin, Software reliability prediction

model based on support vector regression with

improved estimation of distribution algorithms,

Applied Soft Computing, 2014.
[12] J. Park and J. Baik. Improving software reliability

prediction through multi-criteria based dynamic

model selection and combination, Journal of

Systems and Software, 2015.

[13] Y. Wu and R. Yang. Study of software reliability

prediction based on GR neural network, In

Reliability, Maintainability and Safety (ICRMS),

9th International Conference, pp. 688-693, 2011.

[14] MC. Liu, W. Kuo and T. Sastri, An exploratory

study of a neural network approach for reliability

data analysis, Quality and Reliability Engineering

International, 1995.

[15] PT. Chang, KP. Lin and PF. Pai, Hybrid learning

fuzzy neural models in forecasting engine system

reliability, In Proceeding of the fifth Asia Pacific

industrial engineering and management systems

conference, pp. 2361-2366, 2004.
[16] VN. Vapnik and V. Vapnik, Statistical learning

theory, New York: Wiley, 1998.

[17] MK. Bhuyan, DP. Mohapatra and S. Sethi,

Prediction strategy for software reliability based

on recurrent neural network. In Computational

Intelligence in Data Mining, pp. 295-303, 2016.

[18] PR. Bal, N. Jena and DP. Mohapatra, Software

reliability prediction based on ensemble models,

In Proceeding of International Conference on

Intelligent Communication, Control and Devices,

pp. 895-902, 2017.

[19] S. Noekhah, AA. Hozhabri and HS. Rizi,

Software reliability prediction model based on

ICA algorithm and MLP neural network, In e-

Commerce in Developing Countries: With Focus

on e-Security (ECDC), 7th International

Conference, pp. 1-15, 2013.

ACKNOWLEDGMENTS
This work is supported by Ministry of Higher Education

(MOHE) and Research Management Centre (RMC) at

the Universiti Teknologi Malaysia (UTM) under

Research University Grant Category

(R.J130000.7828.4F719).

