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Unmanned aerial vehicle (UAV) based active canopy sensors can serve as a promising

sensing solution for the estimation of crop nitrogen (N) status with great applicability

and flexibility. This study was endeavored to determine the feasibility of UAV-based

active sensing to monitor the leaf N status of rice (Oryza sativa L.) and to examine the

transferability of handheld-based predictive models to UAV-based active sensing. In this

3-year multi-locational study, varied N-rates (0–405 kg N ha−1) field experiments were

conducted using five rice varieties. Plant samples and sensing data were collected at

critical growth stages for growth analysis and monitoring. The portable active canopy

sensor RapidSCAN CS-45 with red, red edge, and near infrared wavebands was used

in handheld mode and aerial mode on a gimbal under a multi-rotor UAV. The results

showed the great potential of UAV-based active sensing for monitoring rice leaf N status.

The vegetation index-based regression models were built and evaluated based on Akaike

information criterion and independent validation to predict rice leaf dry matter, leaf area

index, and leaf N accumulation. Vegetation indices composed of near-infrared and red

edge bands (NDRE or RERVI) acquired at a 1.5m aviation height had a good performance

for the practical application. Future studies are needed on the proper operation mode

and means for precision N management with this system.

Keywords: active canopy sensor, RapidSCAN, red edge, ultra low-level airborne, sensing distance evaluation

INTRODUCTION

Nitrogen (N) plays a vital role in improving crop growth and productivity (Novoa and Loomis,
1981; Ata-Ul-Karim et al., 2016). Over 200 million tons of N fertilizers are estimated to be used
in 2018 and continue to increase at 1.8% per year (FAO (Food and Agriculture Organization of
the United Nations), 2015). However, over-application of N fertilizers is the alarming issue that
has caused low N use efficiency, leading to N deposition and water eutrophication (Conant et al.,
2013; Liu et al., 2013; Huang et al., 2017). Therefore, it is imperative to develop highly efficient,
reliable and practical methods for monitoring crop N status to meet the demand for precision N
management (Miao et al., 2011). Several traditional methods, such as the leaf color chart (Alam
et al., 2005) or destructive chemical analysis (Asner and Martin, 2008) are limited by low efficiency,
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small-scale applicability, and professional experience
requirements for accurate diagnosis. With the advances of
optical sensors and remote sensing technology, crop N-status
monitoring, and management based on the spectrum has been
widely used in different crops (Saberioon et al., 2014; Padilla
et al., 2018).

Many studies have been conducted on the utilization of
spaceborne and airborne passive remote sensing for crop
monitoring. Satellite remote sensing provides great possibility for
large-scale crop growth monitoring and precision management,
for example, satellites images of FORMOSAT-2 were used
for rice (Oryza sativa L.) N-status monitoring (Huang et al.,
2015); however, the quality of remote sensing images from
passive sensor-based satellites would be affected by bad weather
conditions like cloud and fog, leading to the lack of applicable
in-season sensing datasets for crop monitoring. The unmanned
aerial vehicle (UAV) emerges as a promising remote sensing
platform owing to its flexibility (Yang et al., 2017), and it was
widely investigated for crop monitoring with imaging sensors
(Maresma et al., 2016). Rice grain yield and leaf area index
(LAI) were predicted by multi-temporal vegetation indices (VIs)
from UAV-based multispectral imagery (Zhou et al., 2017), and
the red edge (720 nm) and near-infrared (800 nm) band-based
VIs were found to be more effective in the prediction of yield
and LAI. However, despite the development of semi-automatic
procedures, image processing, and analysis have still been too
specialized and challenging for ordinary consumers until now.

Non-imaging optical canopy sensors directly collect
standardized spectral reflectance with great flexibility in
data achievement and processing over imaging sensors. Sensitive
wave bands and VIs have been previously utilized for crop
N-status estimation using passive hyperspectral canopy sensors
(Tian et al., 2014). In addition, passive multispectral sensors were
also developed for crop monitoring (Ni et al., 2016), and some
of them were mounted on ground vehicle platforms (Pei et al.,
2014). Ni et al. (2017) designed a UAV-mounted crop-growth
monitoring system based on a passive sensor with a red band
and a near-infrared band, and it was proved to have potential for
predicting wheat leaf nitrogen status with Normalized Difference
Vegetation Index (NDVI) and Ratio Vegetation Index (RVI).

Active sensors were developed with an internal light source
to avoid the calibration requirements for illumination and the
light angle (Holland et al., 2012). One of the superiorities is
their potential to solve the problems of cloud cover and time
limitations for measurements, which limit the use of passive
sensors under such conditions (Stamatiadis et al., 2010). Most
studies focus on traditional two-band active canopy sensors
(Danielw and Johne, 2010; Samborski et al., 2016), but three-
band active canopy sensors like Crop Circle ACS-470 (Holland
Scientific Inc., Lincoln, NE, USA) were reported to improve
the estimating performance of winter wheat or rice N status
as compared to two-band sensors (Cao et al., 2015; Shi et al.,
2015). RapidSCAN CS-45 (Holland Scientific Inc., Lincoln, NE,
USA) is a small-sized portable three-band active sensor which
has been used in precision agriculture. The previous study on
rice indicated that VIs calculated from RapidSCAN wavebands
could diagnose the rice N nutrition index well (Lu et al., 2017).

In addition, studies on wheat, maize, soybean, and potato and
soybean also showed the potential of the handheld RapidSCAN
sensor to monitor crop N-status, to predict grain yield, and
for cultivar selection, as well as for making nitrogen fertilizing
recommendation (Bonfil, 2016; Aranguren et al., 2018; Miller
et al., 2018).

Consequently, UAV-based active sensing is expected to
offer flexibility, affordability, and applicability for large-scale
monitoring compared to handheld active sensing. In addition,
researchers paid much attention to combining different sensing
data for establishing universal sensing approaches which are
suitable for a better sensing performance or wider scale
application (Gevaert et al., 2015; Schirrmann et al., 2017). With
a unique character of using the same kind of sensor with a
similar sensing height, UAV-based active sensing has implied a
hypothesis of transferring handheld-based predictive models to
UAV-based active sensing.

However, considering previous studies with manned aircraft
(Lamb et al., 2009, 2014) and unmanned aerial vehicles (Krienke
et al., 2017), still, little attention has been paid to investigate
the possibility of applying active sensors on ultra low-altitude
aerial vehicles. A potential issue for these studies was the effective
sensing distance to accurately collect crop canopy reflectance. A
unique feature of the RapidSCAN CS-45 is its ability to conduct
height-independent spectral reflectance measurements named
Pseudo Solar Reflectance (PSR) measurements introduced by its
manufacturer. Based on this sensor specialty, Krienke et al. (2017)
utilized the RapidSCAN CS-45 on a UAV platform for testing its
applicable mode and proving its performance when evaluating
maize N variability. In spite of the technical potential, sensing
distance evaluation for practical application is still necessary.

Although the active canopy sensor RapidSCAN CS-45 has
been proved to have applicability for diagnosing rice N-status
using handheld mode (Lu et al., 2017), the potential of UAV-
based active sensing for rice N-status monitoring has not yet
been tested. Therefore, the objectives of the current study were
two-fold: (1) to determine whether UAV-based active sensing
is feasible to monitor rice leaf N-status and (2) to examine
the transferability of handheld-based predictive models to UAV-
based active sensing.

MATERIALS AND METHODS

Study Area and Experimental Design
Field trials were carried out over three rice growing seasons
(June–October 2015–2017) in Jiangsu Province of east China,
which is a traditional rice-farming area with a long rice planting
history (Figure 1). Trials were established at Rugao Experimental
Station (32.27◦N and 120.75◦E, central-eastern Jiangsu) in 2015
and 2016, Sihong Experimental Station (33.37◦N and 118.26◦E,
northern Jiangsu) in 2016, and Lianyungang Experimental
Station (34.56◦N and 119.32◦E, northern Jiangsu) in 2017.
Detailed information is presented in Table 1.

Experiment 1 was conducted at Sihong Experimental Station
in 2016, which covered four N rates (0, 120, 240, 360 kg N
ha−1) and three rice varieties. Experiment 2 was conducted at
Lianyungang Experimental Station in 2017, which covered four
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FIGURE 1 | Study site: rice experiments conducted at Sihong, Lianyungang, and Rugao Experimental Station in Jiangsu Province of China.

TABLE 1 | Description of field experiments conducted for calibration and validation.

Experiment Sensing

mode

Location Varieties Number of

samples

Transplanting date Growth stages of sensing

and sampling with DAT

(d)

CALIBRATION EXPERIMENTS

Experiment 1 2016 Hand-held Sihong Lianjing-7,

Wuyunjing-24,

Ningjing-4

288 25 June TI (27, 33), SE (39, 47), BT

(54, 60), HD (76), FI (96)

Experiment 2 2017 Hand-held Lianyun

gang

Lianjing-15,

Zhongdao-1

336 19 June TI (27), SE (38, 45), BT (52,

62), HD (80), FI (90)

VALIDATION EXPERIMENTS

Handheld Sensing

Experiment 3 2015 Hand-held Rugao Wuyunjing-24 72 15 June TI (29), SE (39, 45), BT (52,

57, 62)

Experiment 4 2016 Hand-held Rugao Wuyunjing-24,

Ningjing-4

96 15 June SE (40), SE (48), BT (57),

HD (67)

UAV-Based Sensing

Experiment 2 2017 UAV-based Lianyun

gang

Lianjing-15,

Zhongdao-1

192 19 June SE (45), BT (52, 62),

HD (80)

DAT represents days after transplanting of each sensing and sampling procedure. TI, SE, BT, HD, and FI represent the growth stage of tillering, stem elongation, booting, heading, and

filling, respectively.

N rates (0, 135, 270, 405 kg N ha−1), two transplanting ways
(pot-seedling and carpet-seedlingmechanical transplanting), and
three rice varieties. Experiment 3 was conducted at Rugao
Experimental Station in 2015, which covered four N rates (0,
60, 150, 240 kg N ha−1) and one rice variety. Experiment 4 was
conducted at Rugao Experimental Station in 2016, which covered
four N rates (0, 100, 250, 400 kg N ha−1) and two rice varieties.

All field experiments were arranged in a randomized complete
block design with three replicates. Each plot size was 56 m2 (7
× 8m) in Experiment 1, 120 m2 (8 × 15m) in Experiment
2, and 35 m2 (5 × 7m) in Experiment 3 and Experiment 4.

N fertilizer in all field experiments was applied in the form
of granular urea as three splits: 50% before transplanting, 30%
at the tillering stage, and 20% at the booting stage. For each
plot, based on soil analysis and recommendations from the
local agriculture department, 127 kg P2O5 ha−1 was applied
before transplanting in the form of Ca(H2PO4)2 and 225 kg
K2O ha−1 was applied as two splits: 50% before transplanting
and 50% at the stem elongation stage. Carpet rice seedlings
(for all the experiments) and pot rice seedlings (for Experiment
2) were prepared in seedling fields and transplanted into the
experimental fields.
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Active Canopy Sensor Data Collection
The active optical crop canopy sensor RapidSCAN CS-45 with
three wavebands, including red (R, 670 nm), red-edge (Re,
730 nm), and near-infrared (NIR, over 780 nm) regions, was
used in this study. Spectral reflectance (%) of each band and
GPS data can be automatically collected and recorded in the
memory module of the sensor at 2.5Hz (one reading per 0.4 s)
by modifying the logging method of the sensor. Data can be
exported as a .csv file by PC software. Owing to the lightweight
(0.8 kg) and wide measurement range (0.3 to 3m height above
the rice canopy) of the sensor, it is theoretically feasible to mount
it on the UAV for practical application.

The multi-rotor UAV Spreading Wings S1000+ (DJI-
Innovations Inc., Shenzhen, China) with DJI D-RTK GNSS
system was used to provide a stable flight condition with accurate
centimeter-level 3D positioning (Figure 2). The RapidSCAN CS-
45 sensor was mounted on a customized gimbal in a fixed
sensing posture under the UAV. In Experiment 2, controlled
by the ground station program, the UAV aviated automatically
according to the pre-concerted flight path along the central axis
in the row direction of each plot with heights of 1.5 and 2m above
the canopy (resulting in 0.33 and 0.58 m2 view area), respectively.
The heading speed of the UAV was set as 2 m/s.

Handheld sensing in all experiments was conducted by the
operator on approximately the same path as that of the UAV-
based sensing using RapidSCAN CS-45. Sensor readings were
collected ∼1–1.5m above the rice canopy (resulting in 0.15–0.33
m2 view area).

Sensor data were processed in ArcMap 10.5 (ESRI, Redlands,
CA, USA) and assigned to different sampling plots with the GPS
position of each reading point. A buffer of 1m was utilized to
exclude data near the plot boundary. The average reflectance
values collected by RapidSCAN CS-45 were computed to
represent each plot both in UAV and handheld-based sensing.
Calculated spectral vegetation indices used in this study are listed
in Table 2.

Plant Sampling and Measurement
Rice plant samples were acquired right after collecting sensing
data. Destructive plant samples of above-ground parts were
randomly collected (three hills per plot) from the sensed plants

TABLE 2 | Summary of the calculated spectral vegetation indices (VI) selected for

this study.

VI Formula References

Normalized difference red edge

(NDRE)

(NIR–Re)/(NIR+Re) Barnes et al., 2000

Red edge ratio vegetation index

(RERVI)

NIR/Re Jasper et al., 2009

Normalized difference vegetation

index (NDVI)

(NIR–R)/(NIR+R) Rouse et al., 1973

Ratio vegetation index (RVI) NIR/R Jordan, 1969

R, Re, and NIR indicate reflectance (%) collected by RapidSCAN at the band region of

red, red edge, and near infrared, respectively.

FIGURE 2 | Overview of the sensing equipment used in this study. (A) Spreading Wings S1000+ used as the sensing platform for low-altitude rice monitoring; (B)

Flight controller module with DJI D-RTK GNSS system; (C) RapidSCAN CS-45 sensor mounted on a customized gimbal under the UAV; (D) RapidSCAN CS-45

sensor in handheld mode for data acquirement.
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according to the average number of tillers. The samples were
separated into leaves and stems. The separated leaves were
scanned by Li-3000c (Li-Cor., Lincoln, NE, USA) to determine
the leaf area index (LAI). Each sampled component was put
into the oven for enzyme deactivation under 105◦C for half an
hour, and then under 80◦C for 72 h for weighing. The weight
of each leaf sample was used to determine the leaf dry matter
(LDM). Leaf nitrogen concentration (LNC) was determined by
the micro-Kjeldahl method (Bremner and Mulvaney, 1982). Leaf
nitrogen accumulation (LNA) was calculated by multiplying
LDM and LNC. LDM, LAI, and LNA were selected as the
nitrogen indicators in this study.

Data Analysis
As shown in Table 1, to test the possibility of building universal
predictive models for different applications, the handheld
datasets from Experiment 1 and Experiment 2 were used for VI-
basedmodel calibration. The handheld datasets from Experiment
3 and Experiment 4 were used to validate the regression models.
For examining the transferability of the models from handheld
to UAV sensors, the models derived from the handheld data
were applied to the UAV data from Experiment 2. Besides, the
validation on UAV data were performed for two sensing heights
(1.5 and 2m above the canopy) to evaluate the stability of the
UAV system over two sensing distances.

The mean value, standard deviation (SD), and coefficient of
variation (CV, %) of rice agronomic parameters were calculated
using SPSS 25 (SPSS Inc., Chicago, IL, USA). For simplicity and
VI comparison purpose, N indicators were first predicted with
single VI-based models. Therefore, linear and three types of non-
linear models (quadratic, exponential, and power) were built and
evaluated between each VI and each N indicator (LDM, LAI, and
LNA). The basic function forms of linear (Equation 1), quadratic
(Equation 2), exponential (Equation 3), and power (Equation 4)
regressions are given by:

y = a0 + a1x (1)

y = b0 + b1x+ b2x
2 (2)

y = c0e
c1x (3)

y = d0 x
d1 (4)

where the response variable y represents the predicted N
indicator (LDM, LAI, or LNA), and x represents the VI used
for N-status estimation (NDRE, RERVI, NDVI, or RVI). The
parameters a0, a1, b0, b1, b2, c0, c1, d0, and d1 were estimated
using the least square method implemented in the R language
environment (R Core Team).

The coefficient of determination (R2) for each model was
calculated to assess the calibration performance. R2 provides a
measure of how well-observed outcomes are replicated by the
model, based on the proportion of total variation of outcomes
explained by the model (Draper and Smith, 2014). However, R2

is not suitable to evaluate the predictive and fitting performance
among models with different forms and different numbers of
parameters, due to the risk of overfitting for models with higher
R2 but more parameters.

Therefore, the Akaike Information Criterion (AIC) were
further used for model selection in this study. The basic
viewpoint of AIC is that the selected model is intended to
accurately predict future data rather than to infer the “true
distribution” of the calibration data (Akaike, 1974; Shmueli,
2010). Since the true predictive performance of a fitted model
depends largely on the number of free parameters of the model,
the AIC can be used to select model by penalizing for a large
number of parameters and discouraging overfitting (Akaike,
1974; Bozdogan, 1987). The AIC is calculated using Equation 5.

AIC = 2k− 2ln(L̂) (5)

where k is the number of estimated parameters in the model.
In this study, including the terms of residual, k was 3 for
linear, exponential, and power regressions and 4 for quadratic
regression. L̂ is themaximum likelihood of themodel for the data.

AICs of all the single VI-based regression models were
calculated using function AIC in R language environment, which
were further verified using self-complied function. The lowest
value of AIC indicates the preferable model. The scatter diagrams
of the selected VI-based models were plotted using GraphPad
Prism 6 (GraphPad Software Inc., San Diego, CA, USA). With
R2 and AIC, stepwise multiple linear regression models based on
spectral reflectance of R, Re, and NIR bands were also evaluated
to estimate LDM, LAI, and LNA.

Prediction for N indicators was further conducted in the
independent validation datasets using the models above. The
practical validation performance of the models was estimated by
comparing R2, relative root mean square error (RRMSE, %) and
relative error (RE, %) between the predicted variable and the true
observed variable. The higher the R2 and the lower the RRMSE
and RE, the higher the precision and accuracy of the model for
predicting plant N indicators. The formulas of RRMSE and RE
are listed as below:

RRMSE (%) =
100

Oi

×

√

√

√

√

1

n
×

n
∑

i=1

(Pi − Oi)
2 (6)

RE (%) = 100 ×

√

√

√

√

1

n
×

n
∑

i=1

(
Pi − Oi

Oi
)2 (7)

where Pi and Oi are the predicted and observed value of the N
indicator (LDM, LAI or LNA), respectively. Oi is the mean of
observed value of the N indicator. n is the number of samples.

RESULTS

Variability of Rice Leaf N-Status Indicators
Nitrogen-status indicators (LDM, LAI, and LNA) of rice varied
greatly across different N rates, management practices, varieties,
growth stages, sites, and years (Table 3). For the calibration
dataset, the LNA exhibited the most significant variation, with
a CV of 73.92%, followed by LAI and LDM with a CV of
60.84 and 59.63%, respectively. Similar results were observed for
the calibration dataset and validation datasets of handheld and
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UAV-based sensing. In total, 624 samples which have a wide
range of LDM (51.93 kg ha−1 to 5313.40 kg ha−1), LAI (0.13 to
10.34), and LNA (0.96 kg ha−1 to 192.61 kg ha−1) were involved
in the calibration experiments. The large variability of these
parameters was supposed to cover the major possible situation
and make it conceivable to evaluate the potential of using
the RapidSCAN sensor for estimating and diagnosing rice leaf
N status.

Relationship Between N-Status Indicators
and VIs Derived From Handheld System
The relationships between each N-status indicator and each VI
were built using handheld data acquired from Experiment 1 and
Experiment 2 (Table 4). The performance of using individual
VIs to estimate rice LDM, LAI, and LNA varied with the
form of selected VI (NDRE, RERVI, NDVI, or RVI) and

model type (linear, exponential, power, or quadratic regression
model) across different growth stages, treatments, sites, and
years.

Based on the AIC values of the models in Table 4, the VIs
calculated from NIR and Re reflectance (NDRE and RERVI)
had preferable performance across different types of models as
compared to VIs calculated from NIR and R reflectance (NDVI
and RVI) for estimating LDM, LAI, and LNA, respectively.
By comparing the models of the same type (linear, quadratic,
exponential, and power models respectively), NDRE and RERVI
had higher R2 values over NDVI and RVI for estimating rice leaf
N indicators.

A total of 12 best models were selected for each N indicator
and each VI based on AIC. Scatter diagrams of the selected
models are presented in Figure 3. Overall, RERVI had great
potential for estimating LDM (R2 = 0.77) and LAI (R2 =

TABLE 3 | Descriptive statistics of leaf dry matter (LDM), leaf area index (LAI), and leaf nitrogen accumulation (LNA) across different growth stages, varieties, sites, and

years.

Parameters N Min Max Mean SD CV (%)

CALIBRATION DATASET

LDM (kg ha−1) 624 51.93 5313.40 1991.17 1187.40 59.63

LAI 624 0.13 10.34 3.60 2.19 60.84

LNA (kg ha−1) 624 0.96 192.61 58.57 43.29 73.92

VALIDATION DATASET (HANDHELD)

LDM (kg ha−1) 168 165.19 3589.63 1580.72 778.92 49.28

LAI 168 0.29 6.84 2.70 1.38 51.23

LNA (kg ha−1) 168 5.19 117.38 46.36 24.38 52.60

VALIDATION DATASET (UAV-BASED)

LDM (kg ha−1) 192 1238.73 5313.40 2906.11 895.18 30.80

LAI 192 2.25 10.34 5.54 1.74 31.40

LNA (kg ha−1) 192 41.75 187.36 97.81 35.50 36.29

TABLE 4 | R2 and AIC of the regression models between single VI (NDRE, RERVI, NDVI, or RVI) calculated from handheld sensing data (Experiment 1 and Experiment 2)

and each rice N-status indicators (LDM, LAI, or LNA) across different stages of rice growth.

N Indicator Model R2 AIC

NDRE RERVI NDVI RVI NDRE RERVI NDVI RVI

LDM L 0.73 0.76 0.62 0.72 9797.46 9714.13 10015.26 9814.69

Q 0.77 0.77 0.71 0.72 9700.58 9689.73 9837.87 9816.58

E 0.77 0.76 0.72 0.67 9690.36 9724.91 9813.97 9912.96

P 0.76 0.77 0.71 0.72 9711.62 9693.34 9837.56 9818.67

LAI L 0.73 0.79 0.57 0.69 1938.76 1829.15 2223.73 2024.99

Q 0.79 0.79 0.68 0.69 1790.44 1773.23 2062.38 2023.95

E 0.79 0.77 0.69 0.66 1783.84 1774.63 2053.46 2061.91

P 0.78 0.79 0.67 0.69 1872.64 1774.85 2123.53 2025.00

LNA L 0.74 0.79 0.54 0.69 5646.06 5494.90 6000.31 5755.80

Q 0.82 0.83 0.67 0.70 5395.70 5368.26 5785.49 5735.20

E 0.83 0.82 0.70 0.66 5365.18 5400.18 5732.86 5797.87

P 0.82 0.83 0.69 0.70 5400.34 5366.70 5748.31 5731.78

L, Q, E, and P represent linear, quadratic, exponential, and power regression models, respectively. The numbers in bold represent the best model form for each VI to predict each N

indicator based on AIC.
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0.79) with quadratic regression models, and the NDRE had
the lowest AIC in exponential model for LNA prediction (R2

= 0.83). On the other side, obvious saturation effect and
relatively poor predictive results were shown by NDVI in
the scatter diagrams. For practical application, the predictive
models were further evaluated in the following validation
analysis.

Validation of the Relationships Between
N-Status Indicators and VIs Using
Handheld Data
The regression models between VIs and N-status indicators
selected in this study were further evaluated with other handheld
sensing data acquired from validation experiments (Table 5). The
scatter diagrams for the best handheld validation results of VI-
based predictions (determined by the lowest RE) are shown in
Figure 4.

In the validation results between the predicted and observed
N indicators, comparing NDRE with NDVI and RERVI with
RVI, the VIs calculated from NIR and Re reflectance had lower
RRMSE and RE than the VIs calculated from NIR and R
reflectance. This showed the great potential of NDRE and RERVI
for N-status estimation.

Considering the relatively slight variation of RRMSE across
different VI-based models to estimate each N-status indicator,

REs were compared to evaluate the models for the best handheld
data-based validation (Figure 4). For LDM, RERVI performed
the best using a quadratic regression model (RRMSE = 30.0%,
and RE = 32.0%) in validation. While for LAI estimation, using
an exponential regression model, NDRE performed better than
other selected models (RRMSE = 28.6%, and RE = 32.7%).
RERVI had the best validation performance by using a power
regression model to estimate LNA (RRMSE = 36.9%, and RE =

29.2%).

Validation of the Models Between N-Status
Indicators and VIs Using UAV-Based Data
All the selected models were also evaluated with UAV-based data
from validation experiments for testing the feasibility of applying
the UAV-based RapidSCAN CS-45 for monitoring rice leaf N-
status with models derived from handheld data (Table 6). The
UAV-based data contain two parts which were achieved from
the UAV-based sensing with a 1.5 and 2m height above the rice
canopy, respectively. Scatter diagrams for UAV-based validation
results of VI-based predictions with the best models (determined
by the lowest RE) are shown in Figure 5.

Compared with the validation performance of models from
2m UAV-based data, VIs calculated from the same bands of
1.5m UAV-based data better estimated LDM, LAI, and LNA.
Hence, the best validation results were all from 1.5m UAV-based

FIGURE 3 | The best relationships based on AIC between each rice leaf N indicator [LDM (A–D), LAI (E–H), and LNA (I–L)] and each VI by active canopy sensor

RapidSCAN CS-45 across different growth stages, sites, and N treatments from the calibration experiments.
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datasets. This showed that the height of 1.5m above the rice
canopy is a suitable flight height for monitoring rice leaf N-status
with the UAV-based RapidSCAN CS-45 sensor.

Similar to the validation results of handheld data, the results
of R2, RRMSE, and RE reveal that NDRE and RERVI had better
performance than NDVI and RVI from the 1.5m height sensing
dataset. Determined by the REs, the best validation result for
LDM estimation was presented in Figure 5 with NDRE-based
exponential model (RRMSE = 15.9%, and RE = 18.3%). While
RERVI performed the best for LAI (RRMSE = 18.1%, and RE =

19.2%) and LNA (RRMSE= 20.0%, and RE= 20.8%)monitoring
in the UAV-based validation result based on the quadratic model
and power model, respectively.

Stepwise Multiple Linear Regression
Analysis
The handheld sensing data from the calibration experiments
were pooled together to build stepwise regression models with
reflectance of NIR, R, and Re bands to estimate N-status
indicators in the calibration experiments (Table 7). The results
indicated that 74.6% of LDM variability could be explained with
NIR and Re bands. The first chosen band for LAI was also the
NIR band, followed by the Re band (R2 = 0.751). In contrast to
the results of LDM and LAI, the R band was also chosen in the
stepwise multiple linear regression models to estimate LNA after
NIR and Re bands, and 77.6% of the variability of LNA could be
explained. As one of the input selection rules of stepwise multiple

linear regression, the AIC of the models decreased following the
steps for LDM, LAI, and LNA estimation. The calibration and
validation results (Table 8) based on AIC indicated that these
models did not perform better than the best VI-based models,
as shown above.

DISCUSSION

Potential of UAV-Based Active Sensing for
Rice N-Status Monitoring
UAV-based active sensing, as a new exploration of the low-
altitude sensing method, is expected to be outstanding for
crop N-status monitoring. But for testing the feasibility of
the sensing system, it is critical to consider its superiorities
compared to traditional methods and its actual performance
from experimental results.

Ground-based sensing using handheld or ground vehicle-
mounted spectrometers is recognized to be capable of describing
crop trait expression and nutrient monitoring (Saberioon
et al., 2014; Yang et al., 2017); however, the data collection
instability, low sensing efficiency, and high cost are its limiting
factors (Yang et al., 2017). The paddy field condition has an
influence on the sensing speed stability of ground-based sensing,
which leads to spectral data variability and instability, and
the footprints or wheel ruts may increase the influence and
cause roots injured. The low sensing efficiency was shown
in an example where more than 40 h were needed to collect

TABLE 5 | Validation results of the selected single VI-based models for estimating N-status indicators with handheld sensing data.

VI LDM LAI LNA

Type R2 RRMSE RE Type R2 RRMSE RE Type R2 RRMSE RE

NDRE E 0.73 30.5% 36.0% E 0.75 28.6% 32.7% E 0.78 37.2% 29.8%

RERVI Q 0.73 30.0% 32.0% Q 0.75 29.2% 33.1% P 0.78 36.9% 29.2%

NDVI E 0.47 42.4% 55.2% E 0.41 50.0% 64.6% E 0.48 45.7% 55.3%

RVI L 0.46 41.8% 56.2% Q 0.40 48.4% 65.0% P 0.47 42.8% 51.7%

L, Q, E, and P represent linear, quadratic, exponential, and power regression models, respectively.

FIGURE 4 | Validation results of LDM (A), LAI (B), and LNA (C) for single VI-based predictions using validation datasets of handheld (HH) sensing.
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20,000 plots’ spectral data on single rows using a single vehicle
at speed about 0.56m per second, and it would be more
time-consuming by handheld sensing (about 0.5m per second
walking in paddy fields; White et al., 2012). By contrast, UAV-
based sensing has advantages regarding the sensing stability
(controlled with an automatic ground station program), high
sensing efficiency (e.g., with a 2m per second heading aerial
speed in this study), and relatively low cost (Yang et al.,
2017).

Traditional UAV-based sensing focuses on image-based
utilization, and relevant studies differ a lot over the sensor use
and crop species. UAV image-based sensing for crop monitoring
is related to several issues like image capturing and mosaicing,
geometric correction, spectral radiation processing, and useful
feature extraction (Zhang and Kovacs, 2012; Yang et al., 2017).
These complex processes have critical effects on the data
compatibility, are time-consuming, and are closely related to the
operator’s experience (Zhang and Kovacs, 2012). The standard
utilization process and data output form are still lacking for
the practical utilization of UAV image-based sensing for crop
nitrogen estimation, which limits the eurytopic model building

and high throughout plant-phenotypic data analysis using
diverse datasets from different studies. By collecting standard
spectral reflectance directly without data processing, UAV-based
active sensing has convenience regarding data collection, and
it is easy-to-use for common consumers compared to image-
based sensing. In addition, a low sensing height offers the
UAV-based active sensing with potential ability to collect more
spectral information under canopy surface compared to UAV-
based passive monitoring (Holland et al., 2012; Yang et al., 2017).

For testing the actual performance of UAV-based active
sensing for rice leaf N monitoring, RapidSCAN CS-45
was chosen in this study. According to the manufacturer’s
instructions, the sensor can distinguish its own light signal
from that of surrounding ambient light by modulating the
light source (by rapidly pulsing the light source on and off
many times a second). Therefore, this technology named PSR
measurement ensures a degree of data stability within an effective
sensing distance (0.3–3m above the canopy as introduced by
the manufacturer), and this leads to the possibility of building
universal predictive models for handheld and UAV-based
sensing.

TABLE 6 | Validation results of the selected single VI-based models for estimating rice N-status indicators with UAV-based sensing data.

VI LDM LAI LNA

Type R2 RRMSE RE Type R2 RRMSE RE Type R2 RRMSE RE

VALIDATION DATA: UAV-1.5 M

NDRE E 0.74 15.9% 18.3% E 0.67 18.0% 19.7% E 0.71 19.8% 21.0%

RERVI Q 0.74 16.0% 18.6% Q 0.67 18.1% 19.2% P 0.71 20.0% 20.8%

NDVI E 0.49 23.0% 24.9% E 0.46 24.5% 25.6% E 0.48 29.5% 31.6%

RVI L 0.51 23.9% 25.1% Q 0.48 25.8% 26.4% P 0.49 31.7% 32.5%

VALIDATION DATA: UAV-2 M

NDRE E 0.45 24.7% 28.8% E 0.35 26.7% 32.5% E 0.38 30.6% 37.0%

RERVI L 0.45 23.8% 28.7% Q 0.35 26.3% 31.5% P 0.38 31.0% 36.9%

NDVI E 0.31 26.4% 26.6% E 0.25 29.1% 30.1% E 0.30 33.0% 31.7%

RVI L 0.31 26.7% 26.6% Q 0.25 29.6% 30.4% P 0.30 33.9% 31.4%

L, Q, E, and P represent linear, quadratic, exponential, and power regression models, respectively.

FIGURE 5 | Validation results of LDM (A), LAI (B), and LNA (C) for single VI-based predictions using validation datasets of UAV-based sensing.
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TABLE 7 | Stepwise multiple linear regression models based on RapidSCAN

CS-45 bands (R, Re, and NIR, %) for estimating rice N-status indicators across

growth stages.

N Indicator Step Regression equation R2 AIC

LDM 1 199.902 * NIR-5466.137 0.734 9784.10

(kg ha−1) 2 154.231 * NIR-182.546 * Re-136.377 0.746 9757.17

LAI 1 0.370 * NIR-10.189 0.739 1915.78

2 0.285 * NIR-0.336 * Re-0.379 0.751 1888.42

LNA 1 7.393 * NIR-217.223 0.755 5599.62

(kg ha−1) 2 5.834 * NIR-6.229 * Re - 35.348 0.766 5574.12

3 6.932 * NIR-6.767-Re + 2.259 * R-84.355 0.776 5549.28

R, Re, and NIR represent reflectance (%) of red (670 nm), red edge (730 nm), and

near-infrared (780 nm) bands, respectively.

TABLE 8 | Validation results of the stepwise multiple linear regression models

based on spectral reflectance of RapidSCAN CS-45 wavebands (R, Re, and NIR)

for estimating rice N-status indicators with data acquired from handheld sensing,

and UAV-based sensing of a 1.5 or 2m height above the rice canopy.

N-status indicators R2 RRMSE RE

VALIDATION DATA: HANDHELD (EXPERIMENT 3 AND EXPERIMENT 4)

LDM (kg ha−1) 0.73 27.6% 32.2%

LAI 0.74 26.9% 32.4%

LNA (kg ha−1) 0.80 38.9% 58.2%

VALIDATION DATA: UAV-1.5M (EXPERIMENT 2)

LDM (kg ha−1) 0.71 18.1% 20.7%

LAI 0.65 20.8% 21.3%

LNA (kg ha−1) 0.69 22.5% 23.1%

VALIDATION DATA: UAV-2M (EXPERIMENT 2)

LDM (kg ha−1) 0.38 24.9% 29.8%

LAI 0.29 27.0% 32.3%

LNA (kg ha−1) 0.27 31.4% 39.5%

From the study of Krienke et al. (2017), a highly significant
linear relationship was found between NDRE from handheld
and UAV-based RapidSCAN sensing on a maize canopy, yet,
the handheld data showed less variation as compared to UAV-
based data collected with a fluctuating height from 0.5 to 1.5m.
Therefore, in this study, AIC-based optimum predictive models
were built based on handheld datasets to estimate rice LDM
(R2 = 0.77), LAI (R2 = 0.79), and LNA (R2 = 0.83), and it
was also validated by independent handheld and UAV-based
data for testing the model performance and the transferability of
handheld-based sensing models to the UAV-based active sensing.
The results showed great potential both for handheld and UAV-
based sensing.

Evaluation of N-Status Prediction and
Analysis for Saturation Effect of NDVI
An obvious saturation effect was observed with NDVI for crop
N-status prediction as shown in Figure 3. NDVI saturation is a
common view in previous studies. For example, NDVI achieved
by the active canopy sensor GreenSeeker (Trimble Navigation
Limited, Sunnyvale, CA, USA) could explain 80% of wheat

biomass variability (Cao et al., 2015); however, the saturation
effect of NDVI is obviously existent. The applicability of NDVI
for crop nutrition monitoring is probably due to the high
transmittance of the NIR band and a degree of function of the
red band (Knipling, 1970). This leads to the saturation effect of
NDVI (Thenkabail et al., 2000).

Therefore, using wavelengths with similar penetration into
the plant canopy may be one of the methods employed to
overcome the NDVI saturation problems (Niel and McVicar,
2004). The existing research has shown that the saturation
problem could be reduced by the Re band, and Re-based VIs
could be better correlated with crop N status (Delegido et al.,
2013). Re-radiation penetrates deeper into crop canopies due
to lower absorption by chlorophyll compared to radiation at
the red waveband. Therefore, the sensitivity of Re reflectance
is higher than R reflectance (Kanke et al., 2012; Zhou
et al., 2018). Considering the four kinds of vegetation indices
selected in this study for rice N-status monitoring, the VIs
calculated from NIR, and Re reflectance (NDRE or RERVI)
performed better than the VIs calculated from NIR and R
reflectance (NDVI or RVI) both in handheld and UAV-based
datasets. With similar results, Re-based vegetation indices
using Crop Circle ACS-470 sensor and satellite remote sensing
images improved plant concentration and uptake estimation
for maize (Li et al., 2014). Moreover, NDRE and RERVI
also performed more stably in UAV-based experiments in this
study.

Another method consists in using ratio vegetation indices.
The saturation effect is related to the normalization effect from
the formula of normalized VIs, which could be avoided by
the ratio VI to some degree (Gnyp et al., 2014). According to
Cao et al. (2015), RVI significantly reduced the saturation effect
of NDVI for estimating aboveground biomass of wheat. Based
on linear models (Table 4), when comparing RVI with NDVI
and RERVI with NDRE, the ratio VIs performed better for
the N indicator prediction as compared to the normalized VIs
(calculated by the same wavebands) in this study.

The RVI based on NIR and Re band (RERVI) was a great
choice which combined two sides above. According to the
potato experiment conducted by Zhou et al. (2018), a linear
relationship was found between N concentration and RERVI,
and this agrees with the fact that RERVI increased linearly with
canopy chlorophyll content, as indicated by radiative transfer
models fromClevers and Kooistra (2012). RERVI also had a good
performance in calibration results compared to other VIs with
linear regression models in this study.

For considering the three wavebands together, stepwise
multiple linear regression analysis (SMLR) was conducted for N-
status monitoring. Nevertheless, the multiple regression models
did not perform significantly better than the best VI-based
models. As shown by the stepwise linear regression results from
the research by Cao et al. (2015), with Crop Circle ACS-470
employed on wheat across all growth stages, 53% of aboveground
biomass variability and 67% of plant N uptake could be explained
with two to three bands. However, the validation results also
indicated that the stepwise linear regression models did not
perform better than the best VI-based models. This is probably
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for the reason that only two or three bands were used for SMLR.
If four to ten discrete wavebands could be used for SMLR,
the performance of N-status monitoring would be significantly
improved (Nguyen et al., 2007; Cao et al., 2013).

Besides, not only SMLR, but also some other models or
methods such as support vector machines (SVM), artificial
neural networks (ANN), and random forest (RF), have also
been proved to have potential for monitoring crop N-status(Noh
et al., 2006; Wang et al., 2013; Liang et al., 2015). Superior
methods (e.g., SVM, ANN, or RF) need to be tested in future
studies of combining various spectral, spatial, and environmental
information for a better crop N-status prediction.

Considerations for Practical Utilization of
UAV-Based Active Sensing
This study has shown that the UAV mounted active canopy
sensor is feasible for monitoring rice N-status, yet some
points, including sensing distance, canopy perturbance from air
movement, and the slightly unstable flight condition caused by
the aerodynamic ground effect of a low-altitude flight, still need
to be addressed for the practical use of this sensing system.

The first issue is the suitable sensing distance which differs
a lot over sensor types. For instance, spectral data of Crop
Circle ACS-210 were befittingly collected on an aircraft at an
altitude of 3–5m above ground level on corn (Lamb et al.,
2009). The suitable measuring height was between 0.4 and
1.2m above the wheat canopy with a passive sensor mounted
on a sensor support on a UAV (Ni et al., 2017). The sensing
distance is directly reflected in the flight height above the canopy
in this study, as the sensor posture has been fixed by the
gimbal. Our validation results of the UAV-based dataset, which
indicates that the height of 1.5m above the rice canopy is much
more suitable for rice N-status monitoring than 2m, were in
consensus with the result of distance sensitivity study on the
turf grass canopy with UAV-mounted RapidSCAN CS-45 by
Krienke et al. (2017). And this shows that spectral reflectance
was affected by sensing distance and the UAV-based RapidSCAN
sensor operated effectively within a range of 0.5–1.5m above the
canopy.

Canopy perturbance from air movement generated by the
UAV is also crucial to be considered while using UAV based
data acquisition. The factors influencing canopy perturbance are
numerous, which include but are not limited to flight height,
speed, posture, surrounding air condition and air velocities
influenced by aircraft design. In the study of a UAV-based passive
sensor by Ni et al. (2017), after numerical computational fluid
dynamics simulations, solar sensors, and two-band sensors were
designed and fixed on the two ends of a long sensor support to
avoid the down-wash flow field below the UAV and the system
should be applied in a hovering state. However, long sensor
support is not suitable for this study considering the dynamic
flight state and the sensor character. In view of the technical
restriction, computational fluid dynamics simulations were not
conducted in this study. While, as shown in Figure 6, via several
attempts by visual checks, the perturbed canopy area (marked by
the yellow box) was at the back of the sensed area when the UAV

was controlled to aviate with a height of above 1.5m and heading
speed of over 2 m/s.

Besides, sometimes a slightly unstable flight condition would
be caused by the aerodynamic ground effect of a low-altitude
flight, even though the effect is much lighter on multi-rotor
UAVs than single-rotor helicopters (Sanchez-Cuevas et al., 2017).
Real-Time Kinematic GPS (RTK GPS) is a powerful technology,
which can provide centimeter-level high accuracy 3D positioning
of UAVs (Spockeli, 2015). Therefore, to overcome the unstable
condition caused by the aerodynamic ground effect, an RTK
system designed for UAV is highly recommended. As shown in
the UAV commissioning before the actual experiments in this
study, flight condition is much more stable with the DJI D-RTK
GNSS System than non-RTK utilization.

The height of 1m above the rice canopy was also considered
in the first test of UAV-based active sensing in Experiment 2.
However, obvious canopy perturbance was generated under the
UAV in that sensing mode. Moreover, the flight condition was
unstable with a 1m-height setting, and the flight height fluctuated
from about a 0.5 to 1.2m height above the canopy even with
the D-RTK GNSS system. For data stability and experiment
security, UAV-based sensing at a 1 m-height was canceled in
the following tests. This unstable flight condition was probably
caused by mixed reasons of the aerodynamic ground effect and
the technical lack of accurate aerial positioning for proximal
flight.

CONCLUSION

The calibration and validation results showed the great potential
of active canopy sensor RapidSCAN CS-45 to monitor rice leaf
N-status using both handheld and UAV-mounted modes. Great
transferability of handheld-based predictive models to UAV-
based sensing was verified by the UAV data-based validation
experiment. Based on model evaluation and selection by
AIC, 77, 79, and 83% of the variability in LDM, LAI, and

FIGURE 6 | Top view and practical sensing state of the UAV-based sensing

system with RapidSCAN CS-45. The height of the sensor under the UAV is

1.5m above the rice canopy and flight speed in the heading direction is 2 m/s.

The arrow symbol shows the heading flight direction of the UAV. The yellow

box with increased brightness shows the perturbed canopy area generated by

the UAV via a visual check.
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LNA were explained with the optimal VI-based regression
models derived from the calibration datasets, respectively.
Considering different data acquired fromUAV-based sensing and
handheld sensing, NDRE and RERVI exhibited a much better
performance in estimating rice N-status than the traditional R-
based vegetation indices (NDVI and RVI), which also displayed
great potential in overcoming the saturation problem of
NDVI.

The present study has put forward a novel way of monitoring
rice leaf N-status by the application of a multi-rotor unmanned
aerial vehicle with a portable active canopy sensor. The height
of 1.5m above the rice canopy with a heading speed of 2 m/s
was suitable for practical use. Future investigations are still
needed to consider the combined effect of flight height, speed,
canopy perturbance, ground effect, and new low-altitude location
technology. Additionally, the entire automation workflow
of data collection, processing for N status prediction, and
management need to be developed for this sensing system in the
future.
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