
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 4, pp. 39–61. DOI:10.13154/tosc.v2018.i4.39-61

Adiantum: length-preserving encryption for
entry-level processors
Paul Crowley and Eric Biggers

Google LLC, Mountain View, USA
{paulcrowley,ebiggers}@google.com

Abstract. We present HBSH, a simple construction for tweakable length-preserving
encryption which supports the fastest options for hashing and stream encryption
for processors without AES or other crypto instructions, with a provable quadratic
advantage bound. Our composition Adiantum uses NH, Poly1305, XChaCha12, and
a single AES invocation. On an ARM Cortex-A7 processor, Adiantum decrypts
4096-byte messages at 10.6 cycles per byte, over five times faster than AES-256-XTS,
with a constant-time implementation. We also define HPolyC which is simpler and
has excellent key agility at 13.6 cycles per byte.
Keywords: super-pseudorandom permutation · variable input length · tweakable
encryption · disk encryption

1 Introduction
Two aspects of disk encryption make it a challenge for cryptography. First, performance is
critical; every extra cycle is a worse user experience, and on a mobile device a reduced
battery life. Second, the ciphertext can be no larger than the plaintext: a sector-sized read
or write to the filesystem must mean a sector-sized read or write to the underlying device,
or performance will again suffer greatly (as well as, in the case of writes to flash memory,
the life of the device). Nonce reuse is inevitable as there is nowhere to store a varying
nonce, and there is no space for a MAC; thus standard constructions like AES-GCM are not
an option and standard notions of semantic security are unachievable. The best that can
be done under the circumstances is a “tweakable super-pseudorandom permutation”: an
adversary with access to both encryption and decryption functions who can choose tweak
and plaintext/ciphertext freely is unable to distinguish it from a family of independent
random permutations.

1.1 History
Hasty Pudding Cipher [Sch98] was a variable-input-length (VIL) primitive presented to the
AES contest. A key innovation was the idea of a “spice”, which was later formalized as a
“tweak” in [LRW02]. Mercy [Cro01] was a tweakable length-preserving primitive designed
for sector encryption and cryptanalyzed in [Flu02].

[LR88] (see also [Mau93; Pat91]) shows how to construct a pseudorandom permutation
using a three-round Feistel network of pseudorandom functions; proves that this is not a
secure super-pseudorandom permutation (where the adversary has access to decryption as
well as encryption) and that four rounds suffice for this aim. BEAR and LION [AB96]
apply this result to an unbalanced Feistel network to build a VIL cipher from a hash
function and a stream cipher (see also BEAST [Luc96a]).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2018-09-01, Accepted: 2018-11-01, Published: 2018-12-13

https://doi.org/10.13154/tosc.v2018.i4.39-61
mailto:paulcrowley@google.com,ebiggers@google.com
http://creativecommons.org/licenses/by/4.0/

40 Adiantum: length-preserving encryption for entry-level processors

[Luc96b] shows that a universal function suffices for the first round, which [NR99]
extends to a four-round function to build a super-pseudorandom permutation.

More recently, proposals in this space have focused on the use of block ciphers. VIL
mode [BR99] is a CBC-MAC based two-pass variable-input-length construction which is
a PRP but not an SPRP. SPC mode [BD99] extends this to an SPRP. [HR03] gives the
concrete security definition for a tweakable, variable-length, length-preserving SPRP, and
defines CMC mode, a two-pass mode with a quadratic security bound. EME mode [HR04]
is similar but parallelizable, while EME* mode [Hal05] extends EME mode to handle
messages that are not a multiple of the block cipher size. PEP [CS06], TET [Hal07], and
HEH [Sar07] have a mixing layer on either side of an ECB layer.

XCB [MF07] is a block-cipher based unbalanced three-round Feistel network with an
ε-almost-XOR-universal hash function for the first and third rounds (“hash-XOR-hash”),
which uses block cipher invocations on the narrow side of the network to ensure that the
network is an SPRP, rather than just a PRP. HCTR [WFW05; CN08; Kum18], HCH [CS08],
HSE [MM07], and HMC [Nan08] reduce this to a single block cipher invocation within the
Feistel network. These proposals require either two AES invocations, or an AES invocation
and two GF(2128) multiplications, per 128 bits of input.

1.2 Our contribution
On the ARM architecture, the ARMv8 Cryptography Extensions include instructions
that make AES and GF(2128) multiplications much more efficient. However, smartphones
designed for developing markets often use lower-end processors which don’t support
these extensions, and as a result there is no existing SPRP construction which performs
acceptably on them.

On such platforms stream ciphers such as ChaCha12 [Ber08a] significantly outperform
block ciphers in cycles per byte, especially with constant-time implementations. Similarly,
absent specific processor support, hash functions such as NH [Kro00] and Poly1305
hash [Ber05b] will be much faster than a GF(2128) polynomial hash. Since these are the
operations that act on the bulk of the data in a disk-sector-sized message, a hash-XOR-hash
mode of operation relying on them should achieve much improved performance on such
platforms.

To this end, we present the HBSH (hash, block cipher, stream cipher, hash) construction,
which generalizes over constructions such as HCTR and HCH by taking an ε-almost-∆-
universal hash function and a nonce-accepting stream cipher as components. Based on
this construction, our main proposal is Adiantum, which uses a combination of NH and
Poly1305 for the hashing, XChaCha12 for the stream cipher, and AES for the single block
cipher application. Adiantum:

• is a tweakable, variable-input-length, super-pseudorandom permutation

• has a security bound quadratic in the number of queries and linear in message length

• is highly parallelizable

• needs only three passes over the bulk of the data, or two if the XOR is combined
with the second hash.

Without special cases or extra setup, Adiantum handles:

• any message and tweak lengths within the allowed range,

• varying message and tweak lengths for the same keys.

We also describe HPolyC, which does not use NH. HPolyC is 30% slower on large
messages, but simpler and much more key agile.

Paul Crowley and Eric Biggers 41

PL PR

HKH

EKE

T

SKS

HKH

CL CR

PM

CM

Figure 1: HBSH

procedure HBSHEncrypt(T, P)
PL‖PR ← P
PM ← PR �HKH (T, PL)
CM ← EKE (PM)
CL ← PL ⊕ SKS (CM)[0; |PL|]
CR ← CM �HKH (T,CL)
C ← CL‖CR
return C

end procedure
procedure HBSHDecrypt(T,C)

CL‖CR ← C
CM ← CR �HKH (T,CL)
PL ← CL ⊕ SKS (CM)[0; |CL|]
PM ← E−1

KE
(CM)

PR ← PM �HKH (T, PL)
P ← PL‖PR
return P

end procedure

Figure 2: Pseudocode for HBSH; PR, PM ,
CM , CR are n bits long

2 Specification
Notation: Partial application is implicit; if we define f : A × B → C and a ∈ A then
fa : B → C, and if f−1

a exists then f−1
a (fa(b)) = b.

• |X|: length of X ∈ {0, 1}∗ in bits

• λ: the empty string |λ| = 0

• ‖: bitstring concatenation

• Y [a; l]: the subsequence of Y of length l starting at the 0-based index a.

• padl(X) = X‖0v where v is the least integer ≥ 0 such that l divides |X|+ v

• int : {0, 1}∗ → Z: the standard little-endian map such that int(λ) = 0, int(0‖X) =
2 int(X), int(1‖X) = 1 + 2 int(X)

• binl(y) = X: the unique l-bit sequence such that int(X) ≡ y (mod 2l)

• n, lS : parameters which depend on the primitives from which HBSH is built; for
Adiantum and HPolyC, n = 128 and lS = 273

• T : the space of tweaks, which depends on the hash function used

• M =
⋃lS+n
i=n {0, 1}i: the space of plaintexts and ciphertexts

• L =
⋃lS
i=0{0, 1}i, R = {0, 1}n: messages are processed in two parts, L ×R

• H : KH × T × L → R: two-argument hash function with keyspace KH

• �,� : R×R → R: group operations

• E : KE ×R → R: n-bit block cipher with key space KE

42 Adiantum: length-preserving encryption for entry-level processors

• S : KS ×N → {0, 1}lS : stream cipher with key space KS and nonce space N

• HBSH : KS × T ×M → M: the HBSH construction takes a key, a tweak, and a
plaintext, and returns a ciphertext such that |HBSHKS (T,M)| = |M |

We map bytes to bitstrings with bin8. Where we have eg PL‖PR ← P with P ∈ M,
PL, PR is the unique pair of elements in L ×R such that PL‖PR = P .

HBSH: The HBSH construction is shown in Figure 1 and Figure 2. From plaintext
P of at least n bits and a tweak T , it generates a ciphertext C of the same length as P .
HBSH divides the plaintext into a right-hand part of n bits and a left-hand part with the
remainder of the input, and applies an unbalanced Feistel network.

Hash: H is an ε-almost-∆-universal (ε-∆U) function (as defined in Subsection 5.2)
yielding a group element represented as an n-bit string. � represents addition in a group
which depends on the hash function, and � subtraction.

Adiantum and HPolyC differ only in their choice of hash function. HPolyC is based
on Poly1305, while Adiantum uses both Poly1305 and NH; specifically little-endian
NHT [256, 32, 4] with a stride of 2 for fast vectorization. In both cases, the group used for
� and � is Z/2128Z. The value of ε depends on bounds on the input lengths. We defer
full details to Section 6.

Block cipher: The block cipher E is only invoked once no matter the size of the
input, so for disk-sector-sized inputs its performance isn’t critical. Adiantum and HPolyC
use AES-256 [NIS01], so n = 128 and KE = {0, 1}256.

Stream cipher: S is a stream cipher which takes a key and a nonce and produces a
long random stream. In normal use the nonce is an n-bit string, but for key derivation we
use the empty string λ, which is distinct from all n-bit strings; thus {λ} ∪ R ⊆ N .

Adiantum and HPolyC use the XChaCha12 stream cipher. The ChaCha [Ber08a] stream
ciphers take a 64-bit nonce, and RFC7539 [NL15] proposes a ChaCha20 variant with a
96-bit nonce, but we need a 128-bit nonce. The XSalsa20 construction [Ber11] proposed
for Salsa20 [Ber08b; Ber06] extends the nonce to 192 bits, and applies straightforwardly
to ChaCha [Arc18; Vai18; Den18]. We then construct a function that takes a variable-
length nonce of up to 191 bits by padding with a 1 followed by zeroes: SKS (CM) =
XChaCha12KS (pad192(CM‖1)) and N =

⋃191
i=0{0, 1}i. The maximum output length lS =

273, and keyspace KS = {0, 1}256.
Key derivation: HBSH derives KE and KH from KS using a zero-length nonce:

KE‖KH‖ . . . = SKS (λ). An earlier version of this paper used KH‖KE‖ . . . = SKS (λ) for
HPolyC.

A second, functional definition of HBSH is given in Subsection 5.1.

3 Design
Three-pass structure: Any secure PRP must have a pass that reads all of the plaintext,
followed by a pass that modifies it all. A secure SPRP must have the same property
in the reverse direction; a three-pass structure therefore seems natural. ε-∆U functions
are the fastest options for reading the plaintext in a cryptographically useful way, and
stream ciphers are the fastest options for modifying it. ε-∆Us are typically much faster
than stream ciphers, and so the hash-XOR-hash structure emerges as the best option for
performance. This structure also has the advantage that it naturally handles messages
in non-round sizes; many VIL modes need extra wrinkles akin to ciphertext stealing to
handle the case where the message is not a multiple of the block size of the underlying
block cipher.

Block cipher: [LR88] observes that a three-round Feistel network cannot by itself
be a secure SPRP; a simple attack with two plaintexts and one ciphertext distinguishes
it. A single block cipher call in the narrow part of the unbalanced network suffices to

Paul Crowley and Eric Biggers 43

frustrate this attack; the larger the message, the smaller the relative cost of this call. If the
plaintext is exactly n bits long, the stream cipher is not used, and the construction becomes
C = EKE (P �HKH (T, λ)) �HKH (T, λ) as per Subsection 3.1 of [LRW02]. Compared to
HCTR [WFW05] or HCH [CS08], we sacrifice symmetry of encryption with decryption in
return for the ability to run the block cipher and stream cipher in parallel when decrypting.
For disk encryption, decryption performance matters most: reads are more frequent than
writes, and reads generally affect user-perceived latency, while operating systems can
usually perform writes asynchronously in the background.

Components: It’s unusual for a construction to require more than two distinct
primitive components. More commonly, a hash-XOR-hash mode uses the block cipher to
build a stream cipher (eg using CTR mode [LWR00]) and also uses it directly on the narrow
side of the message. Using XChaCha12 in place of a block cipher affords a significant
increase in performance; however it cannot easily be substituted in the narrow side of
the cipher. [Sar09; Sar11; CMLS13; Cha+17] use only an ε-∆U function and a stream
cipher, and build a hash-XOR-hash SPRP with a construction that uses a four-round
Feistel network over the non-bulk side of the data broken into two halves. However if
we were to build this using XChaCha12, such a construction would require four extra
invocations of ChaCha per message, which would be a much greater cost than one block
cipher invocation.

KDM security: We do not consider an attack model in which derived keys are
presented as input. Length-preserving encryption which is KDM-secure in the sense
of [BRS03] is impossible, since it is trivial for the adversary to submit a query with a
g-function that constructs a plaintext whose ciphertext is all zeroes. Whether there is a
notion of KDM-security that can be applied in this domain is an open problem. Users
must take care to protect the keys from being included in the input.

Stream cipher: Users are highly sensitive to the performance of disk encryption;
an extra microsecond decrypting the contents of a sector can mean many users forgoing
encryption altogether. eBACS [BL18] tests a wide variety of stream ciphers on a wide variety
of architectures; ChaCha12 is consistently one of the fastest options for the “armeabi” (32-
bit ARM) architecture. ChaCha and its predecessor Salsa20 have seen intense cryptanalysis
in the decade or so since publication [Cro06; Fis+06; Tsu+07; Aum+08; IKM11; Ish12;
Shi+13; MPM15; Mai16; CM16; DS17; CM17; DS18]; the best attack breaks 7 rounds, a
landmark reached with [Aum+08] in 2008. Each round greatly increases the difficulty of
attack. We therefore feel confident selecting the 12-round variant as giving good confidence
in security while minimizing the cost to users.

Hash function: Since the ε-∆U is run twice over the bulk of the message, its speed is
especially crucial for large messages. One of the fastest such functions in software is NH,
and it’s also appealingly simple; however as discussed in Subsection 6.3 it generally has to
be combined with a second hashing stage, and for this purpose we use Poly1305. The 1KiB
input size we specify for NH means that a simple, portable implementation of Poly1305
can be used without a great cost in speed; in contrast, for HPolyC a vectorized Poly1305
implementation is important. We considered using UHASH (as defined for UMAC [Kro06])
rather than our custom combination of NH and Poly1305; however, available UHASH
implementations are not constant-time, and a constant-time implementation would be
significantly slower.

Key agility: For the 4KiB messages of disk encryption, the 1KiB NH key size has
only a small impact on key agility. Applications that need high key agility even on small
messages may instead use HPolyC, which uses Poly1305 directly. The main cost of a new
HPolyC key is a single XChaCha12 invocation to generate subkeys. ChaCha12 has no key
schedule and makes no use of precomputation; XChaCha12 requires one extra call to the
ChaCha permutation for each new nonce. No extra work is required for differing message
or tweak lengths for either Adiantum or HPolyC.

44 Adiantum: length-preserving encryption for entry-level processors

Table 1: Performance on ARM Cortex-A7

Algorithm Cycles per byte
(4096-byte sectors)

Cycles per byte
(512-byte sectors)

NH 1.3 1.4
Poly1305 2.9 3.3
ChaCha8 5.1 5.2
ChaCha12 7.1 7.2
Adiantum-XChaCha8-AES 8.5 13.2
Adiantum-XChaCha12-AES 10.6 15.8
ChaCha20 11.2 11.3
HPolyC-XChaCha8-AES 11.5 16.5
HPolyC-XChaCha12-AES 13.6 18.7
Adiantum-XChaCha20-AES 14.7 20.2
Speck128/128-XTS 15.0 16.1
Speck128/256-XTS 15.8 16.9
HPolyC-XChaCha20-AES 17.8 23.4
NOEKEON-XTS 26.9 27.9
XTEA-XTS 28.7 29.7
AES-128-XTS (encryption) 36.1 37.2
AES-128-XTS (decryption) 42.7 43.9
AES-256-XTS (encryption) 48.9 50.5
AES-256-XTS (decryption) 58.6 60.1

Constant-time: NH, Poly1305 and ChaCha12 are designed such that the most natural
fast implementations are constant-time and free from data-dependent lookups. So long
as the block cipher implementation also has these properties, Adiantum and HPolyC will
inherit security against this class of side-channel attacks.

Parallelizability: NH, Poly1305 and ChaCha12 are highly parallelizable. The stream
cipher and second hash stages can also be run in combination for a total of two passes
over the bulk of the data, unlike a mode such as HEH [Sar07] which requires at least three.
We put the “special” part on the right so that in typical uses the bulk encryption has the
best alignment for fast operations.

Naming: “Adiantum” is the genus of the maidenhair fern, which in the language of
flowers (floriography) signifies sincerity and discretion. [Tou19]

4 Performance
Efficient implementations of NH, Poly1305 and ChaCha are available for many platforms,
as these algorithms are well-suited for implementation with either general-purpose scalar
instructions or with general-purpose vector instructions such as NEON or AVX2. In Table 1
we show performance on an ARM Cortex-A7 processor in the Snapdragon 400 chipset
running at 1.19 GHz. This processor supports the NEON vector instruction set, but not
the ARM cryptographic extensions; it is used in many smartphones and smartwatches,
especially low-end devices, and is representative of the kind of platform we mean to target.
Where the figures are within 2%, a single row is shown for both encryption and decryption.

We have prioritized performance on 4096-byte messages, but we also tested 512-byte
messages. 512-byte disk sectors were the standard until the introduction of Advanced
Format in 2010; modern large hard drives and flash drives now use 4096-byte sectors. On
Linux, 4096 bytes is the standard page size, the standard allocation unit size for filesystems,

Paul Crowley and Eric Biggers 45

Table 2: Implementations

Algorithm Source Notes
ChaCha Linux v4.20-rc1 chacha20-neon-core.S, modified to support

ChaCha8 and ChaCha12
Poly1305 OpenSSL 1.1.0h poly1305-armv4.S, modified to precompute

key powers just once per key
AES Linux v4.17 aes-cipher-core.S, modified to prefetch

lookup tables
AES-XTS Linux v4.17 aes-neonbs-core.S (bit-sliced)
Speck128/256-XTS Linux v4.17 speck-neon-core.S
NOEKEON-XTS ours
XTEA-XTS ours

and the granularity of fscrypt file-based encryption, while dm-crypt full-disk encryption
has recently been updated to support this size.

For comparison we evaluate against various block ciphers in XTS mode [IEE08]: AES
[NIS01], Speck [Bea+13; Bea+15; Bea+17], NOEKEON [Dae+00], and XTEA [NW97].
We also include the performance of ChaCha, NH, and Poly1305 by themselves for reference.

We used the fastest constant-time implementation of each algorithm we were able to
find or write for the platform; see Table 2. As an exception, given the high difficulty
of writing truly constant-time AES software [Ber05a], for single-block AES we tolerate
an implementation that merely prefetches the lookup tables as a hardening measure. In
every case the performance-critical parts were written in assembly language, usually using
NEON instructions. Our tests complete processing of each message before starting the
next, so latency of a single message in cycles is the product of message size and cpb.

Adiantum and HPolyC are the only algorithms in Table 1 that are tweakable super-
pseudorandom permutations over the entire sector. We expect any AES-based construction
to that end to be significantly slower than AES-XTS.

We conclude that for 4096-byte sectors, Adiantum (aka Adiantum-XChaCha12-AES)
can perform significantly better than an aggressively designed block cipher (Speck128/256)
in XTS mode.

5 Security of HBSH

Assuming the security of the underlying block and stream ciphers, we show here that
HBSH has an advantage bound that grows quadratically with the number of queries.

5.1 Definition of HBSH

We provide here an equivalent definition of HBSH in functional form. Where a parameter
is given as L‖R we have that L ∈ L, R ∈ R, L‖R ∈M.

ξ : KH × T ×M→ R

ξKH (T, L‖R) def= R�HKH (T, L)

46 Adiantum: length-preserving encryption for entry-level processors

φ : KH × T ×M→M

φKH ,T (L‖R) def= L‖ξKH (T, L‖R)
= L‖(R�HKH (T, L))

φ−1
KH ,T

(L‖R) = L‖(R�HKH (T, L))

θ : Perm(R)× (N → {0, 1}lS)×M→M

θπ,F (L‖R) def= (L⊕ F (π(R))[0; |L|])‖π(R)
θ−1
π,F (L‖R) = (L⊕ F (R)[0; |L|])‖π−1(R)

η : KH × Perm(R)× (N → {0, 1}lS)× T ×M→M

ηKH ,π,F,T
def= φ−1

KH ,T
◦ θπ,F ◦ φKH ,T

η̄ : (N → {0, 1}lS)× T ×M→M

η̄F
def= ηKH ,EKE ,F where KE‖KH‖ . . . = F (λ)

HBSH : KS × T ×M→M

HBSHKS
def= η̄SKS

5.2 Security definitions

Hash function: The hash function H must be ε-almost-∆-universal (ε-∆U) for some
ε [Sti95]: for any g ∈ R and any two distinct messages (T, L) 6= (T ′, L′):

PrK ←$KH [HK(T, L) �HK(T ′, L′) = g] ≤ ε

Given bounds on the lengths of T and L, the value of ε for the hash function used in
HPolyC is given in Subsection 6.2, and for Adiantum in Subsection 6.4.

Block cipher: The block cipher E must be a super-pseudorandom permutation [Bel+97]:

Adv±prp
E (A) def=

∣∣∣PrK ←$KE

[
AEK ,E

−1
K ⇒ 1

]
−Prπ ←$ Perm(R)

[
Aπ,π

−1
⇒ 1

]∣∣∣
Adv±prp

E (q, t) def= max
A∈A(q,t)

Adv±prp
E (A)

where A is an adversary, Perm(S) denotes the set of all permutations on a set S, and
A(q, t) is the set of all adversaries that make at most q queries and take at most t time.

Stream cipher: Our definition is related to the definition of a PRF in [Bel+97], but
because we model the stream cipher S as a pseudorandom function with a very long output,
we bound the adversary not only in how many queries they make, but also in how many
bits they read in total. Thus, a query consists of a pair (N, lq) ∈ N ×N where 0 < lq ≤ lS ,

Paul Crowley and Eric Biggers 47

and the response is SK(N)[0; lq] or F (N)[0; lq]; we cap the sum of lq values across queries.

Advsc
S (A) def=

∣∣∣PrK ←$KS

[
ASK(.)[0;.] ⇒ 1

]
−PrF ←$ (N→{0,1}lS)

[
AF (.)[0;.] ⇒ 1

]∣∣∣
Advsc

S (q, l, t) def= max
A∈A(q,l,t)

Advsc
S (A)

where A is an adversary, N → {0, 1}lS denotes the set of all functions from N to {0, 1}lS ,
and A(q, l, t) is the set of all adversaries that make at most q queries such that

∑
lq ≤ l,

and which take at most t time.
Tweakable SPRP: Let LPT (M) denote the set of all tweakable length-preserving

functions f : T × M → M such that for all T,M ∈ T × M, |f(T,M)| = |M |. Let
PermT (M) denote the set of π ∈ LPT (M) such that for all T ∈ T , πT is a bijection. In
an abuse of notation we use π−1 to refer to the function such that π−1(T,π(T,M)) = M
ie (π−1)T = (πT)−1.

Per [HR03], for a tweakable, variable-input-length, super-pseudorandom permutation
E : K × T ×M→M the distinguishing advantage of an adversary A is:

Adv±p̃rp
E (A) def=

∣∣∣PrK ←$K

[
AEK ,E

−1
K ⇒ 1

]
−Prπ ←$ PermT (M)

[
Aπ,π

−1
⇒ 1

]∣∣∣
and

Adv±p̃rp
E (q, lT , lM , t)

def= max
A∈A(q,lT ,lM ,t)

Adv±p̃rp
E (A)

where A(q, lT , lM , t) is the set of all adversaries that make at most q queries, with tweak
of length at most lT and message of length at most lM , and take at most t time.

5.3 Primary claim
Theorem 1. Where HBSH mode is instantiated with hash function H, block cipher E
and stream cipher S, and where H is ε-almost-∆-universal for inputs such that |T | ≤ lT ,
|L| ≤ lM − n, then:

Adv±p̃rp
HBSH(q, lT , lM , t) ≤ (ε+ 2(2−n))

(
q

2

)
+ Advsc

S (q + 1, |KE |+ |KH |+ q(lM − n), t′)
+ Adv±prp

E (q, t′)

where t′ = t+O(q(lT + lM)).

This is proven in what follows. First we use the H-coefficient technique to establish
Lemma 4, a closely related bound; then in Subsection 5.7 we bridge the gap between this
bound and the desired bound.

5.4 H-coefficient technique
The H-coefficient technique was introduced by Patarin in 1991 [Pat91; Pat09]. In what
follows we rely on the highly recommended exposition of [CS14] Section 3, “The H-coefficient

48 Adiantum: length-preserving encryption for entry-level processors

Technique in a Nutshell”, though we vary slightly by introducing a new symbol Υ so we
can distinguish between what is sampled and the adversary oracles.

We wish to bound the adversary’s ability to distinguish between two “worlds”, world X
(the “real world”) and world Y (the “ideal world”). Associated with world X we have
• ΩX : a set of instances we sample fairly from. We write PrΩX as shorthand for

Prω ←$ ΩX .

• ΥX : a map from an instance ω ∈ ΩX to a tuple of deterministic oracles we can
present to the adversary.

• ρX
def= PrΩX

[
AΥX(ω) ⇒ 1

]
where the adversary A is clear from context. As the

adversary interacts with the oracles, a transcript τ of queries and responses is
generated.

• X: a random variable representing a transcript for AΥX(ω) given ω←$ ΩX ; we write
τ ←$X to indicate that τ is sampled from this distribution.

• compX : We write ω ∈ compX(τ) if a transcript τ is “compatible” with an instance
ω ∈ ΩX , ie if given an adversary A that makes those queries, the oracles ΥX(ω)
make those responses and thus AΥX(ω) produces that transcript.

We have the same for world Y throughout.
We assume a deterministic adversary. This is without loss of generality; if we assume a

distribution of adversaries A←$A then an advantage bound on each of the deterministic
adversaries A bounds the advantage of the ensemble A.

Once ω is sampled, the oracles ΥX(ω) are then deterministic; the transcript produced
by AΥX(ω) is thus the unique transcript compatible both with adversary A and instance ω.
Where a transcript is not compatible with A, Pr[X = τ] = Pr[Y = τ] = 0. If either of these
is not zero, the transcript is compatible with A, and Pr[X = τ] = PrΩX [ω ∈ compX(τ)]
and similarly for Y.

The adversary always returns the same result for the same transcript, so its advantage
is maximized if it returns 1 exactly when Pr[Y = τ] > Pr[X = τ]. Therefore:

AdvY
X(A) = |ρX − ρY |

≤
∑

τ :Pr[Y=τ]>Pr[X=τ]

(Pr[Y = τ]− Pr[X = τ])

=
∑

τ :Pr[Y=τ]>Pr[X=τ]

Pr[Y = τ]
(

1− Pr[X = τ]
Pr[Y = τ]

)

=
∑

τ :Pr[Y=τ]>0

Pr[Y = τ]
(

1−min
(

1, Pr[X = τ]
Pr[Y = τ]

))

= Eτ ←$Y

[
1−min

(
1, Pr[X = τ]

Pr[Y = τ]

)]
= 1− Eτ ←$Y

[
min

(
1, PrΩX [ω ∈ compX(τ)]

PrΩY [ω ∈ compY (τ)]

)]
where E is the expected value. With this rearrangement, the only probability distribution
we sum over is that of Y , which can be more convenient to work with.

5.5 Preliminaries
World X: World X is an idealized form of HBSH which uses a random function and
permutation: ΩX

def= KH × Perm(R) × (N → {0, 1}lS), and given (KH , π, F) ∈ ΩX ,
ΥX(KH , π, F) def= (ηKH ,π,F , η−1

KH ,π,F
).

Paul Crowley and Eric Biggers 49

World Y: World Y samples fairly from all possible pairs of tweakable length-preserving
functions: ΩY

def= LPT (M)× LPT (M), so given (E ,D) ∈ ΩY , ΥY (E ,D) def= (E ,D).
Transcript: Our transcript τ is a sequence of tuples (di, T i, P i, Ci) in {+,−} × T ×

M×M for i ∈ [0 . . . q − 1]. For the ith sequential query di is the direction of the query:
if di = + then a plaintext query T i, P i is made and the result is Ci, while if di = − then
a ciphertext query T i, Ci is made and the result is P i.

Pointless queries: We consider adversaries contained in A(q, lT , lM , t) for some value
of the bounds q, lT , lM , t. Without loss of generality, we consider only adversaries who
do not make “pointless” queries as defined in [HR03]. Thus for i < j, if dj = + then
(T i, P i) 6= (T j , P j), and similarly if dj = − then (T i, Ci) 6= (T j , Cj).

Bad events: We define various classes of “bad event”:

• (KH , τ) ∈ badQ if there exists i < j such that either

– dj = + and ξKH (T i, P i) = ξKH (T j , P j), or
– dj = − and ξKH (T i, Ci) = ξKH (T j , Cj).

• (KH , τ) ∈ badR if there exists i < j such that either

– dj = + and ξKH (T i, Ci) = ξKH (T j , Cj), or
– dj = − and ξKH (T i, P i) = ξKH (T j , P j).

Finally we define the disjunction bad def= badQ∪badR.

5.6 Lemmas
Lemma 1. For any τ such that Pr[Y = τ] > 0,

PrKH ←$KH [(KH , τ) ∈ badQ] ≤ ε
(
q

2

)
Proof. Assume dj = + for some pair i, j, and let Li‖Ri = P i and similarly for P j .
From Pr[Y = τ] > 0 we know that

∣∣T i∣∣ , ∣∣T j∣∣ ≤ lT and
∣∣P i∣∣ , ∣∣P j∣∣ ≤ lM , and therefore

that
∣∣Li∣∣ , ∣∣Lj∣∣ ≤ lM − n. Because pointless queries are forbidden we also know that

(T i, P i) 6= (T j , P j).

ξKH (T i, Li‖Ri) = ξKH (T j , Lj‖Rj)
⇔ Ri �HKH (T i, Li) = Rj �HKH (T j , Lj)
⇔ HKH (T i, Li) �HKH (T j , Lj) = Rj �Ri

If (T i, Li) = (T j , Lj) then Ri 6= Rj and equality cannot occur. Otherwise by the ε-∆U
property of H this occurs with probability at most ε (where ε depends on the bounds on
the parameters lT , lM − n).

Where dj = −, a similar argument applies for Ci, Cj . For an upper bound, we sum
across all

(
q
2
)
pairs i, j.

Lemma 2. For any KH ←$KH ,

Prτ ←$Y [(KH , τ) ∈ badR] ≤ 2−n
(
q

2

)

50 Adiantum: length-preserving encryption for entry-level processors

Proof. Assume dj = + for some pair i, j, and let Li‖Ri = Ci and similarly for Cj .
Because pointless queries are forbidden, in world Y, conditioning on all prior queries
and responses, all possible values of Cj such that

∣∣Cj∣∣ =
∣∣P j∣∣ will be equally likely. In

particular, even after conditioning on Lj , all values of Rj are equally likely. Therefore
Pr
[
Rj = Ri �HKH (T i, Li) �HKH (T j , Lj)

]
= 2−n.

Where dj = −, a similar argument applies for P i, P j . For an upper bound, we sum
across all

(
q
2
)
pairs i, j.

Lemma 3. For any KH ∈ KH and transcript τ such that Pr[Y = τ] > 0 and (KH , τ) /∈
bad,

PrΩX [ω ∈ compX(τ) |ω = (KH , ., .)] ≥ PrΩY [ω ∈ compY (τ)]

Proof. In world Y, for any transcript such that Pr[Y = τ] > 0, since all queries are distinct,
the responses are independent fair random draws of binary strings of the appropriate
length, and therefore PrΩY [ω ∈ compY (τ)] =

∏
i 2−|P

i|.
For world X, let P iL‖P iR = P i, P iM = ξKH ,T i(P i) and similarly for Ci. Since (KH , τ) /∈

bad we have that P iM 6= P jM and CiM 6= CjM for all i 6= j. (KH , π, F) ∈ compX(τ) exactly
if, for each i:

ηKH ,π,F,T i(P
i) = Ci

⇔ φ−1
KH ,T i

(θπ,F (φKH ,T i(P
i))) = Ci

⇔ θπ,F (P iL‖P iM) = CiL‖CiM
⇔ P iL ⊕ F (CiM)[0;

∣∣P iL∣∣] = CiL ∧ π(P iM) = CiM

⇔ F (CiM)[0;
∣∣P i∣∣− n] = P iL ⊕ CiL ∧ π(P iM) = CiM

Since π and F are drawn independently, we can consider these conditions on them
separately. For F , since all CiM are distinct, these are once again independent fair random
draws of binary strings of the appropriate length:

PrF ←$ (N→{0,1}lS)
[
∀i : F (CiM)[0;

∣∣P i∣∣− n] = P iL ⊕ CiL
]

=
∏
i

2−(|P i|−n)

For π, again given that all P iM are distinct and all CiM are distinct, we have that

Prπ ←$ Perm(R)

[
π(P jM) = CjM

∣∣∀0≤i<j : π(P iM) = CiM

]
= 1

2n − j

(we number queries in the range i ∈ [0 . . . q − 1]) and therefore that:

Prπ ←$ Perm(R)
[
∀i : π(P iM) = CiM

]
=
∏
i

1
2n − i

Therefore:

PrΩX [ω ∈ compX(τ) |ω = (KH , ., .)]
= Prπ ←$ Perm(R),F ←$ (N→{0,1}lS)

[
∀i : ηKH ,π,F,T i(P

i) = Ci
]

=
∏
i

1
2n − i2

−(|P i|−n)

≥
∏
i

2−|P
i| = PrΩY [ω ∈ compY (τ)]

Paul Crowley and Eric Biggers 51

Lemma 4.
|ρX − ρY | ≤ (ε+ 2−n)

(
q

2

)
Proof. For any transcript τ such that Pr[Y = τ] > 0:

min
(

1, PrΩX [ω ∈ compX(τ)]
PrΩY [ω ∈ compY (τ)]

)
= min

(
1, EKH ←$KH [PrΩX [ω ∈ compX(τ) |ω = (KH , ., .)]]

PrΩY [ω ∈ compY (τ)]

)
min (1,E[U]) ≥ E[min (1, U)] for any real random variable U , therefore

≥ EKH ←$KH

[
min

(
1, PrΩX [ω ∈ compX(τ) |ω = (KH , ., .)]

PrΩY [ω ∈ compY (τ)]

)]
≥ PrKH ←$KH

[
PrΩX [ω ∈ compX(τ) |ω = (KH , ., .)]

PrΩY [ω ∈ compY (τ)] ≥ 1
]

by Lemma 3

≥ PrKH ←$KH [(KH , τ) /∈ bad]

Using the H-coefficient technique:

|ρX − ρY |

≤ 1− Eτ ←$Y

[
min

(
1, PrΩX [ω ∈ compX(τ)]

PrΩY [ω ∈ compY (τ)]

)]
≤ 1− Eτ ←$Y [PrKH ←$KH [(KH , τ) /∈ bad]]
= Prτ ←$Y,KH ←$KH [(KH , τ) ∈ bad]
≤ Prτ ←$Y,KH ←$KH [(KH , τ) ∈ badQ] + Prτ ←$Y,KH ←$KH [(KH , τ) ∈ badR]

by Lemma 1 and Lemma 2

≤ (ε+ 2−n)
(
q

2

)

5.7 Proof of primary claim
Proof of Theorem 1. Copying the definitions of ρX , ρY from Subsection 5.4, we define

ρV
def= PrKS ←$KS

[
A

HBSHKS ,HBSH−1
KS ⇒ 1

]
ρW

def= PrF ←$ (N→{0,1}lS)

[
Aη̄F ,η̄

−1
F ⇒ 1

]
ρX

def= PrΩX

[
AΥX(ω) ⇒ 1

]
= PrKH ,π,F ←$ ΩX

[
A
ηKH,π,F ,η

−1
KH,π,F ⇒ 1

]
ρY

def= PrΩY

[
AΥY (ω) ⇒ 1

]
= PrE,D ←$ LPT (M)×LPT (M)

[
AE,D ⇒ 1

]
ρZ

def= Prπ ←$ PermT (M)

[
Aπ,π

−1
⇒ 1

]

52 Adiantum: length-preserving encryption for entry-level processors

Distinguishing ρV and ρW is distinguishing the substitution of a stream cipher for a
random function. Including the key schedule, the adversary distinguishing ρV and ρW
makes at most q + 1 queries to the stream cipher or random function respectively, and
uses at most |KE | + |KH | + q(lM − n) bits of the output; by a standard substitution
argument per [BKR94; Bel+97], |ρV − ρW | ≤ Advsc

S (q + 1, |KE | + |KH | + q(lM − n), t′)
where t′ = t+O(q(lT + lM)).

The differences between ρW and ρX are the use of a block cipher in place of a random
permutation, and the use of F (λ) to determine KE and KH . Since F is a random function
and F (λ) is used only here, this is equivalent to choosing them at random; again by a
substitution argument we have that |ρW − ρX | ≤ Adv±prp

E (q, t′).
|ρX − ρY | ≤ (ε+ 2−n)

(
q
2
)
by Lemma 4. Since we forbid pointless queries, |ρY − ρZ | ≤

2−n
(
q
2
)
by Halevi and Rogaway’s PRP-RND lemma ([HR03], Appendix C, Lemma 6).

Theorem 1 follows by summing these bounds: |ρV − ρZ | ≤ |ρV − ρW |+ |ρW − ρX |+
|ρX − ρY |+ |ρY − ρZ |.

6 ε-∆U functions for HBSH
Adiantum and HPolyC are identical except for the choice of ε-∆U hash function HKH (T, L).
In each case the value of ε depends on bounds on |T | and |L|. If queries to HBSH are
bounded to a maximum tweak and plaintext/ciphertext length of |T | ≤ lT , |P | , |C| ≤ lM
then the bounds on queries to H will be |T | ≤ lT , |L| ≤ lL = lM − n.

6.1 Poly1305
Both Adiantum and HPolyC make use of the polynomial hash function Poly1305:

PolyP : Z× {0, 1}∗ → Z

PolyP(k, λ) def= 0

PolyP(k,M1‖M2) def= k(PolyP(k,M1) + int(M2‖1)) mod 2130 − 5
where 128 divides |M1| , 0 < |M2| ≤ 128

PolyMask def= 128‖06‖126‖06‖126‖06‖126‖04

Poly1305 : {0, 1}128 × {0, 1}∗ → {0, 1}128

Poly1305K(M) def= bin128(PolyP(int(K ∧ PolyMask),M))

where ∧ denotes bitwise AND. The output group for which the ε-∆U property applies is
Z/2128Z, so we define

x� y
def= bin128(int(x) + int(y))

x� y
def= bin128(int(x)− int(y))

[Ber05b] proves in Theorem 3.3 that this function is ε-∆U; for any g ∈ {0, 1}128 and
any distinct messages M,M ′ where |M | , |M ′| ≤ l:

PrK ←$ {0,1}128 [Poly1305K(M) � Poly1305K(M ′) = g] ≤ 2−103 dl/128e

In that paper this function is used to build a MAC based on AES, while in RFC 7539 [NL15]
it’s used to build an AEAD mode based on ChaCha20. Since 22 bits of the 128-bit key are
zeroed before use, every key is equivalent to 222 − 1 other keys and the effective keyspace
is 2106.

Paul Crowley and Eric Biggers 53

6.2 HPolyC hashing
HPolyC is the HBSH construction that the first revision of this paper presented, which
used Poly1305 together with an injective encoding function. It is simple, fast, and key
agile.

T =
232−1⋃
i=0
{0, 1}i

HKH (T, L) = Poly1305KH (pad128(int32(|T |)‖T)‖L)

Thus if for all queries |T | ≤ lT and |L| ≤ lL then:

ε = 2−103(d(32 + lT)/128e+ dlL/128e)

6.3 NH
We define a word size w = 32, a stride s = 2, a number of rounds r = 4 and an input size
u = 8192 such that 2sw divides u.

NH [Bla+99; Kro00; Kro06] is then defined over message lengths divisible by 2sw = 128
and takes a u + 2sw(r − 1) = 8576-bit key, processing the message in u-bit chunks to
produce an output of size 2rw d|M | /ue; we call this ratio u/2rw = 32 the “compression
ratio”.
procedure NH(K,M)

h← λ
while M 6= λ do

l← min (|M | , u)
for i← 0, 2sw, . . . , 2sw(r − 1) do

p← 0
for j ← 0, 2sw, . . . , l − 2sw do

for k ← 0, w, . . . , w(s− 1) do
a0 ← int(K[i+ j + k;w])
a1 ← int(K[i+ j + k + sw;w])
b0 ← int(M [j + k;w])
b1 ← int(M [j + k + sw;w])
p← p+ ((a0 + b0) mod 2w)((a1 + b1) mod 2w)

end for
end for
h← h‖ bin2w(p)

end for
M ←M [l; |M | − l]

end while
return h

end procedure
This is the largest w where common vector instruction sets (NEON on ARM; SSE2

and AVX2 on x86) natively support the needed {0, 1}w × {0, 1}w → {0, 1}2w multiply
operation. The stride s = 2 improves vectorization on ARM32 NEON; larger strides
were slower or no faster on every platform we tested on. We choose r = 4 since we want
ε = 2−rw ≤ 2−103 to match HPolyC, and a large u for a high compression ratio which
reduces the work for the next hashing stage.

NH’s speed comes with several inconvenient properties:

54 Adiantum: length-preserving encryption for entry-level processors

• [Kro00] shows that this function is ε-almost-∆-universal, but this holds only over
equal-length inputs

• ε = 2−rw, but the smallest nonempty output is 2rw bits, twice as large as necessary
for this ε value

• The output size varies with the input size.

A second hashing stage is used to handle these issues.

6.4 Adiantum hashing
For Adiantum we use NH followed by Poly1305 to hash the message. Our theorems assume
T is finite, so we somewhat arbitrarily set T = L =

⋃lS
i=0{0, 1}i. To avoid encoding and

padding issues, we hash the message length and tweak with a separate Poly1305 key. In
all this takes a 128 + 128 + 8576 = 8832-bit key.
procedure H(KH , T, L)

KT ← KH [0; 128]
KL ← KH [128; 128]
KN ← KH [256; 8576]
HT ← Poly1305KT (bin128(|L|)‖T)
HL ← Poly1305KL(NHKN (pad128(L)))
return HT �HL

end procedure
For distinct pairs (T, L) 6= (T ′, L′), we have that if |L| 6= |L′| or T 6= T ′, then the

128 + |T |-bit input to Poly1305 with key KT will differ. Otherwise |L| = |L′| but L 6= L′;
per [Kro00] the probability NH will compress these to the same value is at most 2−128.
If they do not collide, the 256 d|L| /8192e-bit input to Poly1305 with key KL will differ.
Since the sum of two ε-∆U functions with independent keys is also ε-∆U, if for all queries
|T | ≤ lT and |L| ≤ lL then this composition is ε-∆U, with:

ε = 2−128 + 2−103 dmax(128 + lT , 256 dlL/8192e)/128e
= 2−128 + 2−103 max(1 + dlT /128e , 2 dlL/8192e)

6.5 Usage limits
If we limit our Adiantum adversary to at most q queries each of which uses a tweak of
length at at most lT and a plaintext/ciphertext of length at most lM , then by Theorem 1
their distinguishing advantage is therefore at most:

(3(2−128) + 2−103 max(1 + dlT /128e , 2 d(lM − 128)/8192e))
(
q

2

)
+Advsc

SKS
(q + 1, 256 + 8832 + q(lM − 128), t′)

+Adv±prp
EKE

(q, t′)

Assuming that the block and stream ciphers are strong, the advantage is dominated
by the term for internal collisions: 2−103 max(1 + dlT /128e , 2 d(lM − 128)/8192e)

(
q
2
)
. How

many messages can be safely encrypted with the mode will therefore vary with message

Paul Crowley and Eric Biggers 55

and tweak length. For example, if Adiantum is used to encrypt 4KiB sectors with 32
byte tweaks, then Poly1305KL processes 8 blocks, and the above is approximately 2−101q2.
With these message and tweak lengths we would recommend encrypting no more than 255

bytes with a single key. Generating the ciphertext to mount such an attack could be very
time-consuming, and this is work that can only be done on the device that has the key;
extrapolating from performance figures in Section 4:

Bytes of ciphertext Advantage Time on device (single-threaded)
512GiB 2−47 80 minutes
255 2−15 11 years
259 0.8% 175 years

Acknowledgements
The authors would like to thank Yu Long Chen and our anonymous reviewers for helpful
comments, and for encouraging us to use the H-coefficient technique, which has led to a
much simpler proof.

References
[AB96] Ross Anderson and Eli Biham. “Two practical and provably secure block

ciphers: BEAR and LION”. In: Fast Software Encryption: Third International
Workshop, Cambridge, UK, February 21–23 1996 Proceedings. Ed. by Dieter
Gollmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 113–120.
isbn: 978-3-540-49652-6. doi: 10.1007/3-540-60865-6_48. url: https:
//www.cl.cam.ac.uk/~rja14/Papers/bear-lion.pdf.

[Arc18] Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and AEAD-XChaCha20-
Poly1305. Internet-Draft draft-arciszewski-xchacha-02. IETF Secretariat, 2018-
10. url: http://www.ietf.org/internet-drafts/draft-arciszewski-
xchacha-02.txt.

[Aum+08] Jean-Philippe Aumasson et al. “New Features of Latin Dances: Analysis of
Salsa, ChaCha, and Rumba”. In: Fast Software Encryption. Ed. by Kaisa
Nyberg. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 470–488.
isbn: 978-3-540-71039-4. doi: 10 . 1007 / 978 - 3 - 540 - 71039 - 4 _ 30. url:
https://eprint.iacr.org/2007/472.

[BD99] Daniel Bleichenbacher and Anand Desai. “A construction of a super-pseudorandom
cipher”. Manuscript. 1999-02.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of Cipher
Block Chaining”. In: Advances in Cryptology — CRYPTO ’94. Ed. by Yvo
G. Desmedt. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 341–
358. isbn: 978-3-540-48658-9. doi: 10.1006/jcss.1999.1694. url: https:
//cseweb.ucsd.edu/~mihir/papers/cbc.pdf.

[BL18] Daniel J. Bernstein and Tanja Lange, eds. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. 2018. url: https://bench.cr.yp.to/ (visited on
2018-11-25).

https://doi.org/10.1007/3-540-60865-6_48
https://www.cl.cam.ac.uk/~rja14/Papers/bear-lion.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/bear-lion.pdf
http://www.ietf.org/internet-drafts/draft-arciszewski-xchacha-02.txt
http://www.ietf.org/internet-drafts/draft-arciszewski-xchacha-02.txt
https://doi.org/10.1007/978-3-540-71039-4_30
https://eprint.iacr.org/2007/472
https://doi.org/10.1006/jcss.1999.1694
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
https://bench.cr.yp.to/

56 Adiantum: length-preserving encryption for entry-level processors

[BR99] Mihir Bellare and Phillip Rogaway. “On the Construction of Variable-Input-
Length Ciphers”. In: Fast Software Encryption: 6th International Workshop,
Rome, Italy, March 24–26, 1999 Proceedings. Ed. by Lars Knudsen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 231–244. isbn: 978-3-540-
48519-3. doi: 10.1007/3-540-48519-8_17. url: https://cseweb.ucsd.
edu/~mihir/papers/lpe.pdf.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. “Encryption-Scheme
Security in the Presence of Key-Dependent Messages”. In: Selected Areas in
Cryptography. Ed. by Kaisa Nyberg and Howard Heys. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 62–75. isbn: 978-3-540-36492-4. doi: 10.
1007/3-540-36492-7_6. url: https://cise.ufl.edu/~teshrim/kdm.pdf.

[Bea+13] Ray Beaulieu et al. The SIMON and SPECK Families of Lightweight Block
Ciphers. Cryptology ePrint Archive, Report 2013/404. 2013. url: https:
//ia.cr/2013/404.

[Bea+15] Ray Beaulieu et al. SIMON and SPECK: Block Ciphers for the Internet
of Things. Cryptology ePrint Archive, Report 2015/585. 2015. url: https:
//ia.cr/2015/585.

[Bea+17] Ray Beaulieu et al. Notes on the design and analysis of SIMON and SPECK.
Cryptology ePrint Archive, Report 2017/560. 2017. url: https://ia.cr/
2017/560.

[Bel+97] Mihir Bellare et al. “A Concrete Security Treatment of Symmetric Encryption”.
In: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97
, Miami Beach, Florida, USA, October 19-22, 1997. IEEE Computer Society,
1997, pp. 394–403. isbn: 0-8186-8197-7. doi: 10.1109/SFCS.1997.646128.
url: http://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf.

[Ber05a] Daniel J. Bernstein. Cache-timing attacks on AES. 2005. url: https://cr.
yp.to/antiforgery/cachetiming-20050414.pdf (visited on 2018-10-17).

[Ber05b] Daniel J. Bernstein. “The Poly1305-AES message-authentication code”. In:
Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21–23, 2005, revised selected papers. Ed. by Henri Gilbert and
Helena Handschuh. Vol. 3557. Lecture Notes in Computer Science. Springer,
2005, pp. 32–49. isbn: 3–540–26541–4. url: https://cr.yp.to/papers.
html#poly1305.

[Ber06] Daniel J. Bernstein. Salsa20/8 and Salsa20/12. 2006. url: https://cr.yp.
to/snuffle/812.pdf (visited on 2018-05-21).

[Ber08a] Daniel J. Bernstein. “ChaCha, a variant of Salsa20”. In: State of the Art of
Stream Ciphers Workshop, SASC 2008, Lausanne, Switzerland. 2008-01. url:
https://cr.yp.to/papers.html#chacha.

[Ber08b] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In: New Stream
Cipher Designs: The eSTREAM Finalists. Ed. by Matthew Robshaw and
Olivier Billet. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 84–
97. isbn: 978-3-540-68351-3. doi: 10.1007/978-3-540-68351-3_8. url:
https://cr.yp.to/papers.html#salsafamily.

[Ber11] Daniel J. Bernstein. “Extending the Salsa20 nonce”. In: Workshop Record of
Symmetric Key Encryption Workshop 2011. 2011. url: https://cr.yp.to/
papers.html#xsalsa.

https://doi.org/10.1007/3-540-48519-8_17
https://cseweb.ucsd.edu/~mihir/papers/lpe.pdf
https://cseweb.ucsd.edu/~mihir/papers/lpe.pdf
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://cise.ufl.edu/~teshrim/kdm.pdf
https://ia.cr/2013/404
https://ia.cr/2013/404
https://ia.cr/2015/585
https://ia.cr/2015/585
https://ia.cr/2017/560
https://ia.cr/2017/560
https://doi.org/10.1109/SFCS.1997.646128
http://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/papers.html#poly1305
https://cr.yp.to/papers.html#poly1305
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/papers.html#chacha
https://doi.org/10.1007/978-3-540-68351-3_8
https://cr.yp.to/papers.html#salsafamily
https://cr.yp.to/papers.html#xsalsa
https://cr.yp.to/papers.html#xsalsa

Paul Crowley and Eric Biggers 57

[Bla+99] John Black et al. “UMAC: Fast and Secure Message Authentication”. In:
Advances in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 216–233. isbn: 978-3-540-
48405-9. doi: 10.1007/3-540-48405-1_14. url: https://fastcrypto.org/
umac/umac_proc.pdf.

[CM16] Arka Rai Choudhuri and Subhamoy Maitra. Differential Cryptanalysis of
Salsa and ChaCha – An Evaluation with a Hybrid Model. Cryptology ePrint
Archive, Report 2016/377. 2016. url: https://ia.cr/2016/377.

[CM17] Arka Choudhuri and Subhamoy Maitra. “Significantly Improved Multi-bit
Differentials for Reduced Round Salsa and ChaCha”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2017-02), pp. 261–287. doi: 10.13154/
tosc.v2016.i2.261-287. url: https://tosc.iacr.org/index.php/ToSC/
article/view/574.

[CMLS13] Debrup Chakraborty, Cuauhtemoc Mancillas-López, and Palash Sarkar. “STES:
A Stream Cipher Based Low Cost Scheme for Securing Stored Data”. In: IEEE
Transactions on Computers 64 (2013), pp. 2691–2707. doi: 10.1109/TC.2014.
2366739.

[CN08] Debrup Chakraborty and Mridul Nandi. “An Improved Security Bound for
HCTR”. In: Fast Software Encryption. Ed. by Kaisa Nyberg. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008, pp. 289–302. isbn: 978-3-540-71039-4.
doi: 10.1007/978- 3- 540- 71039- 4_18. url: https://www.iacr.org/
cryptodb/archive/2008/FSE/paper/15611.pdf.

[CS06] Debrup Chakraborty and Palash Sarkar. “A New Mode of Encryption Pro-
viding a Tweakable Strong Pseudo-random Permutation”. In: Fast Soft-
ware Encryption: 13th International Workshop, Graz, Austria, March 15–17,
2006, Revised Selected Papers. Ed. by Matthew Robshaw. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 293–309. isbn: 978-3-540-36598-3. doi:
10.1007/11799313_19. url: https://ia.cr/2006/275.

[CS08] Debrup Chakraborty and Palash Sarkar. “HCH: A New Tweakable Enciphering
Scheme Using the Hash-Counter-Hash Approach”. In: IEEE Transactions
on Information Theory 54.4 (2008-04), pp. 1683–1699. issn: 0018-9448. doi:
10.1109/TIT.2008.917623. url: https://ia.cr/2007/028.

[CS14] Shan Chen and John Steinberger. “Tight Security Bounds for Key-Alternating
Ciphers”. In: Advances in Cryptology – EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 327–350. isbn: 978-3-642-55220-5. doi: 10.1007/978-3-642-55220-
5_19. url: https://ia.cr/2013/222.

[Cha+17] Debrup Chakraborty et al. FAST: Disk Encryption and Beyond. Cryptology
ePrint Archive, Report 2017/849. 2017. url: https://ia.cr/2017/849.

[Cro01] Paul Crowley. “Mercy: A Fast Large Block Cipher for Disk Sector Encryption”.
In: Fast Software Encryption: 7th International Workshop, New York, NY,
USA, April 10–12, 2000 Proceedings. Ed. by Gerhard Goos et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 49–63. isbn: 978-3-540-
44706-1. doi: 10.1007/3-540-44706-7_4. url: http://www.ciphergoth.
org/crypto/mercy/.

[Cro06] Paul Crowley. “Truncated differential cryptanalysis of five rounds of Salsa20”.
In: The State of the Art of Stream Ciphers. ECRYPT Network of Excellence.
2006-02. url: https://ia.cr/2005/375.

https://doi.org/10.1007/3-540-48405-1_14
https://fastcrypto.org/umac/umac_proc.pdf
https://fastcrypto.org/umac/umac_proc.pdf
https://ia.cr/2016/377
https://doi.org/10.13154/tosc.v2016.i2.261-287
https://doi.org/10.13154/tosc.v2016.i2.261-287
https://tosc.iacr.org/index.php/ToSC/article/view/574
https://tosc.iacr.org/index.php/ToSC/article/view/574
https://doi.org/10.1109/TC.2014.2366739
https://doi.org/10.1109/TC.2014.2366739
https://doi.org/10.1007/978-3-540-71039-4_18
https://www.iacr.org/cryptodb/archive/2008/FSE/paper/15611.pdf
https://www.iacr.org/cryptodb/archive/2008/FSE/paper/15611.pdf
https://doi.org/10.1007/11799313_19
https://ia.cr/2006/275
https://doi.org/10.1109/TIT.2008.917623
https://ia.cr/2007/028
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://ia.cr/2013/222
https://ia.cr/2017/849
https://doi.org/10.1007/3-540-44706-7_4
http://www.ciphergoth.org/crypto/mercy/
http://www.ciphergoth.org/crypto/mercy/
https://ia.cr/2005/375

58 Adiantum: length-preserving encryption for entry-level processors

[DS17] Sabyasachi Dey and Santanu Sarkar. “Improved analysis for reduced round
Salsa and ChaCha”. In: Discrete Applied Mathematics 227 (2017), pp. 58 –69.
issn: 0166-218X. doi: 10.1016/j.dam.2017.04.034.

[DS18] Kakumani K. C. Deepthi and Kunwar Singh. “Cryptanalysis of Salsa and
ChaCha: Revisited”. In: Mobile Networks and Management. Ed. by Jiankun
Hu et al. Cham: Springer International Publishing, 2018, pp. 324–338. isbn:
978-3-319-90775-8. doi: 10.1007/978-3-319-90775-8_26.

[Dae+00] Joan Daemen et al. Nessie Proposal: the block cipher Noekeon. Nessie
submission. 2000. url: http://gro.noekeon.org/.

[Den18] Frank Denis. XChaCha20. libsodium. 2018. url: https://download.libsodium.
org/doc/advanced/stream_ciphers/xchacha20 (visited on 2018-11-23).

[Fis+06] Simon Fischer et al. “Non-randomness in eSTREAM Candidates Salsa20
and TSC-4”. In: Progress in Cryptology - INDOCRYPT 2006. Ed. by Rana
Barua and Tanja Lange. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 2–16. isbn: 978-3-540-49769-1. doi: 10.1007/11941378_2. url: http:
//www.lix.polytechnique.fr/~biasse/papers/INDOCRYPT2006.pdf.

[Flu02] Scott R. Fluhrer. “Cryptanalysis of the Mercy Block Cipher”. In: Proc. Fast
Software Encryption 2001, LNCS 2355. Springer-Verlag, 2002, pp. 28–36. url:
https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.6494.

[HR03] Shai Halevi and Phillip Rogaway. “A Tweakable Enciphering Mode”. In: Ad-
vances in Cryptology - CRYPTO 2003: 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings.
Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 482–499. isbn: 978-3-540-45146-4. doi: 10.1007/978-3-540-45146-4_28.
url: https://ia.cr/2003/148.

[HR04] Shai Halevi and Phillip Rogaway. “A Parallelizable Enciphering Mode”. In:
Topics in Cryptology – CT-RSA 2004: The Cryptographers’ Track at the RSA
Conference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings.
Ed. by Tatsuaki Okamoto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 292–304. isbn: 978-3-540-24660-2. doi: 10.1007/978-3-540-24660-2_23.
url: https://ia.cr/2003/147.

[Hal05] Shai Halevi. “EME*: Extending EME to Handle Arbitrary-Length Messages
with Associated Data”. In: Progress in Cryptology - INDOCRYPT 2004: 5th
International Conference on Cryptology in India, Chennai, India, December 20-
22, 2004. Proceedings. Ed. by Anne Canteaut and Kapaleeswaran Viswanathan.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 315–327. isbn: 978-3-
540-30556-9. doi: 10.1007/978-3-540-30556-9_25. url: https://ia.cr/
2004/125.

[Hal07] Shai Halevi. “Invertible Universal Hashing and the TET Encryption Mode”.
In: Advances in Cryptology - CRYPTO 2007: 27th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings.
Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 412–429. isbn: 978-3-540-74143-5. doi: 10.1007/978-3-540-74143-5_23.
url: https://ia.cr/2007/014.

[IEE08] Institute of Electrical and Electronics Engineers. ANSI/IEEE 1619-2007
- IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. Tech. rep. 2008. url: https://standards.ieee.org/
findstds/standard/1619-2007.html.

https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.1007/978-3-319-90775-8_26
http://gro.noekeon.org/
https://download.libsodium.org/doc/advanced/stream_ciphers/xchacha20
https://download.libsodium.org/doc/advanced/stream_ciphers/xchacha20
https://doi.org/10.1007/11941378_2
http://www.lix.polytechnique.fr/~biasse/papers/INDOCRYPT2006.pdf
http://www.lix.polytechnique.fr/~biasse/papers/INDOCRYPT2006.pdf
https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.6494
https://doi.org/10.1007/978-3-540-45146-4_28
https://ia.cr/2003/148
https://doi.org/10.1007/978-3-540-24660-2_23
https://ia.cr/2003/147
https://doi.org/10.1007/978-3-540-30556-9_25
https://ia.cr/2004/125
https://ia.cr/2004/125
https://doi.org/10.1007/978-3-540-74143-5_23
https://ia.cr/2007/014
https://standards.ieee.org/findstds/standard/1619-2007.html
https://standards.ieee.org/findstds/standard/1619-2007.html

Paul Crowley and Eric Biggers 59

[IKM11] Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake. “Latin Dances
Revisited: New Analytic Results of Salsa20 and ChaCha”. In: Information
and Communications Security. Ed. by Sihan Qing et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 255–266. isbn: 978-3-642-25243-3. doi:
10.1007/978-3-642-25243-3_21.

[Ish12] Tsukasa Ishiguro. Modified version of “Latin Dances Revisited: New Analytic
Results of Salsa20 and ChaCha”. Cryptology ePrint Archive, Report 2012/065.
2012. url: https://ia.cr/2012/065.

[Kro00] Theodore Dennis Krovetz. “Software-optimized Universal Hashing and Mes-
sage Authentication”. PhD thesis. 2000. isbn: 0-599-94329-7. url: https:
//fastcrypto.org/umac/.

[Kro06] Ted Krovetz. UMAC: Message Authentication Code using Universal Hashing.
RFC 4418. RFC Editor, 2006-03. url: https://www.rfc-editor.org/rfc/
rfc4418.txt.

[Kum18] Manish Kumar. “Security of XCB and HCTR”. MA thesis. Indian Statistical
Institute, 2018-07. url: http://library.isical.ac.in:8080/jspui/
bitstream/123456789/6953/1/Diss-387.pdf.

[LR88] Michael Luby and Charles Rackoff. “How to Construct Pseudorandom Permu-
tations from Pseudorandom Functions”. In: SIAM J. Comput. 17.2 (1988-04),
pp. 373–386. issn: 0097-5397. doi: 10.1137/0217022. url: https://github.
com / emintham /Papers / blob / master / Luby% 2CRackoff - %20How % 20to %
20Construct%20Pseudorandom%20Permutations%20from%20Pseudorandom%
20Functions.pdf.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable Block Ci-
phers”. In: Advances in Cryptology—CRYPTO 2002: 22nd Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA, August 18–22,
2002 Proceedings. Ed. by Moti Yung. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, pp. 31–46. isbn: 978-3-540-45708-4. doi: 10.1007/3-540-45708-
9_3. url: https://people.csail.mit.edu/rivest/pubs/LRW02.pdf.

[LWR00] Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to NIST
concerning AES modes of operation: CTR-mode encryption. 2000. url: https:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1353.

[Luc96a] Stefan Lucks. “BEAST: A fast block cipher for arbitrary blocksizes”. In: Com-
munications and Multimedia Security II: Proceedings of the IFIP TC6/TC11
International Conference on Communications and Multimedia Security at Es-
sen, Germany, 23rd–24th September 1996. Ed. by Patrick Horster. Boston, MA:
Springer US, 1996, pp. 144–153. isbn: 978-0-387-35083-7. doi: 10.1007/978-
0- 387- 35083- 7_13. url: https://pdfs.semanticscholar.org/18fd/
ac6eddb22687450c22e1135dc2d9c38c40d1.pdf.

[Luc96b] Stefan Lucks. “Faster Luby-Rackoff ciphers”. In: Fast Software Encryption.
Ed. by Dieter Gollmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 189–203. isbn: 978-3-540-49652-6. doi: 10.1007/3-540-60865-6_53.
url: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.
7485.

[MF07] David A. McGrew and Scott R. Fluhrer. “The Security of the Extended
Codebook (XCB) Mode of Operation”. In: Selected Areas in Cryptography:
14th International Workshop, SAC 2007, Ottawa, Canada, August 16-17,
2007, Revised Selected Papers. Ed. by Carlisle Adams, Ali Miri, and Michael
Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 311–327.

https://doi.org/10.1007/978-3-642-25243-3_21
https://ia.cr/2012/065
https://fastcrypto.org/umac/
https://fastcrypto.org/umac/
https://www.rfc-editor.org/rfc/rfc4418.txt
https://www.rfc-editor.org/rfc/rfc4418.txt
http://library.isical.ac.in:8080/jspui/bitstream/123456789/6953/1/Diss-387.pdf
http://library.isical.ac.in:8080/jspui/bitstream/123456789/6953/1/Diss-387.pdf
https://doi.org/10.1137/0217022
https://github.com/emintham/Papers/blob/master/Luby%2CRackoff-%20How%20to%20Construct%20Pseudorandom%20Permutations%20from%20Pseudorandom%20Functions.pdf
https://github.com/emintham/Papers/blob/master/Luby%2CRackoff-%20How%20to%20Construct%20Pseudorandom%20Permutations%20from%20Pseudorandom%20Functions.pdf
https://github.com/emintham/Papers/blob/master/Luby%2CRackoff-%20How%20to%20Construct%20Pseudorandom%20Permutations%20from%20Pseudorandom%20Functions.pdf
https://github.com/emintham/Papers/blob/master/Luby%2CRackoff-%20How%20to%20Construct%20Pseudorandom%20Permutations%20from%20Pseudorandom%20Functions.pdf
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1353
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1353
https://doi.org/10.1007/978-0-387-35083-7_13
https://doi.org/10.1007/978-0-387-35083-7_13
https://pdfs.semanticscholar.org/18fd/ac6eddb22687450c22e1135dc2d9c38c40d1.pdf
https://pdfs.semanticscholar.org/18fd/ac6eddb22687450c22e1135dc2d9c38c40d1.pdf
https://doi.org/10.1007/3-540-60865-6_53
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7485
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7485

60 Adiantum: length-preserving encryption for entry-level processors

isbn: 978-3-540-77360-3. doi: 10 . 1007 / 978 - 3 - 540 - 77360 - 3 _ 20. url:
https://ia.cr/2007/298.

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. “Tweakable Encipher-
ing Schemes from Hash-Sum-Expansion”. In: Progress in Cryptology – IN-
DOCRYPT 2007. Ed. by K. Srinathan, C. Pandu Rangan, and Moti Yung.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 252–267. isbn: 978-
3-540-77026-8. doi: 10.1007/978-3-540-77026-8_19.

[MPM15] Subhamoy Maitra, Goutam Paul, and Willi Meier. Salsa20 Cryptanalysis: New
Moves and Revisiting Old Styles. Cryptology ePrint Archive, Report 2015/217.
2015. url: https://ia.cr/2015/217.

[Mai16] Subhamoy Maitra. “Chosen IV cryptanalysis on reduced round ChaCha and
Salsa”. In: Discrete Applied Mathematics 208 (2016), pp. 88 –97. issn: 0166-
218X. doi: 10.1016/j.dam.2016.02.020. url: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.732.5014.

[Mau93] Ueli M. Maurer. “A Simplified and Generalized Treatment of Luby-Rackoff
Pseudorandom Permutation Generators”. In: Proceedings of the 11th An-
nual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT’92. Balatonfüred, Hungary: Springer-Verlag, 1993,
pp. 239–255. isbn: 3-540-56413-6. url: https://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.53.6117.

[NIS01] National Institute of Standards and Technology. Advanced Encryption Stan-
dard (AES). FIPS Publication 197, 2001-11. url: https://csrc.nist.gov/
csrc/media/publications/fips/197/final/documents/fips-197.pdf.

[NL15] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 7539. RFC Editor, 2015-05. url: https://www.rfc-editor.org/rfc/
rfc7539.txt.

[NR99] Moni Naor and Omer Reingold. “On the Construction of Pseudorandom
Permutations: Luby–Rackoff Revisited”. In: Journal of Cryptology 12.1 (1999-
01), pp. 29–66. issn: 1432-1378. doi: 10.1007/PL00003817. url: https:
//omereingold.files.wordpress.com/2014/10/lr.pdf.

[NW97] Roger M. Needham and David J. Wheeler. Tea extensions. 1997. url: http:
//www.cix.co.uk/~klockstone/xtea.pdf.

[Nan08] Mridul Nandi. Improving upon HCTR and matching attacks for Hash-Counter-
Hash approach. Cryptology ePrint Archive, Report 2008/090. 2008. url:
https://ia.cr/2008/090.

[Pat09] Jacques Patarin. “The “Coefficients H” Technique”. In: Selected Areas in
Cryptography. Ed. by Roberto Maria Avanzi, Liam Keliher, and Francesco
Sica. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 328–345. isbn:
978-3-642-04159-4. doi: 10.1007/978- 3- 642- 04159- 4_21. url: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.702.3488.

[Pat91] Jacques Patarin. “Pseudorandom permutations based on the D.E.S. scheme”.
In: EUROCODE ’90. Ed. by Gérard Cohen and Pascale Charpin. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 193–204. isbn: 978-3-540-
47546-0. doi: 10.1007/3-540-54303-1_131.

https://doi.org/10.1007/978-3-540-77360-3_20
https://ia.cr/2007/298
https://doi.org/10.1007/978-3-540-77026-8_19
https://ia.cr/2015/217
https://doi.org/10.1016/j.dam.2016.02.020
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.732.5014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.732.5014
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6117
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.6117
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://www.rfc-editor.org/rfc/rfc7539.txt
https://www.rfc-editor.org/rfc/rfc7539.txt
https://doi.org/10.1007/PL00003817
https://omereingold.files.wordpress.com/2014/10/lr.pdf
https://omereingold.files.wordpress.com/2014/10/lr.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
https://ia.cr/2008/090
https://doi.org/10.1007/978-3-642-04159-4_21
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.702.3488
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.702.3488
https://doi.org/10.1007/3-540-54303-1_131

Paul Crowley and Eric Biggers 61

[Sar07] Palash Sarkar. “Improving Upon the TET Mode of Operation”. In: Informa-
tion Security and Cryptology—ICISC 2007: 10th International Conference,
Seoul, Korea, November 29–30, 2007. Proceedings. Ed. by Kil-Hyun Nam
and Gwangsoo Rhee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 180–192. isbn: 978-3-540-76788-6. doi: 10.1007/978-3-540-76788-6_15.
url: https://ia.cr/2007/317.

[Sar09] Palash Sarkar. Tweakable Enciphering Schemes From Stream Ciphers With
IV. Cryptology ePrint Archive, Report 2009/321. 2009. url: https://ia.cr/
2009/321.

[Sar11] Palash Sarkar. “Tweakable enciphering schemes using only the encryption
function of a block cipher”. In: Information Processing Letters 111.19 (2011),
pp. 945–955. issn: 0020-0190. doi: 10.1016/j.ipl.2011.06.014. url:
https://ia.cr/2009/216.

[Sch98] Rich Schroeppel. Hasty Pudding Cipher Specification. 1998. url: http://
richard.schroeppel.name/hpc/hpc-spec (visited on 2018-05-21).

[Shi+13] Zhenqing Shi et al. “Improved Key Recovery Attacks on Reduced-Round
Salsa20 and ChaCha”. In: Information Security and Cryptology – ICISC
2012. Ed. by Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 337–351. isbn: 978-3-642-
37682-5. doi: 10.1007/978-3-642-37682-5_24.

[Sti95] Douglas R. Stinson. “On the Connections Between Universal Hashing, Com-
binatorial Designs and Error-Correcting Codes”. In: Electronic Colloquium
on Computational Complexity (ECCC) 2.52 (1995). url: http://eccc.hpi-
web.de/eccc-reports/1995/TR95-052/index.html.

[Tou19] Charlotte de la Tour. Le langage des fleurs. Garnier Frères, 1819.
[Tsu+07] Yukiyasu Tsunoo et al. “Truncated differential cryptanalysis of five rounds of

Salsa20”. In: The State of the Art of Stream Ciphers. ECRYPT Network of
Excellence. 2007-02. url: http://www.ecrypt.eu.org/stream/papersdir/
2007/010.pdf.

[Vai18] Loup Vaillant.monocypher.c. 2018. url: https://github.com/LoupVaillant/
Monocypher/blob/2174e60e/src/monocypher.c (visited on 2018-11-23).

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. “HCTR: A Variable-Input-
Length Enciphering Mode”. In: Information Security and Cryptology: First
SKLOIS Conference, CISC 2005, Beijing, China, December 15-17, 2005.
Proceedings. Ed. by Dengguo Feng, Dongdai Lin, and Moti Yung. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 175–188. isbn: 978-3-540-
32424-9. doi: 10.1007/11599548_15. url: https://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.470.5288.

A Implementation and test vectors
Implementations in Python, C, and ARMv7 assembly, as well as thousands of test vectors
and the LATEX source for this paper, are available from our source code repository at
https://github.com/google/adiantum.

https://doi.org/10.1007/978-3-540-76788-6_15
https://ia.cr/2007/317
https://ia.cr/2009/321
https://ia.cr/2009/321
https://doi.org/10.1016/j.ipl.2011.06.014
https://ia.cr/2009/216
http://richard.schroeppel.name/hpc/hpc-spec
http://richard.schroeppel.name/hpc/hpc-spec
https://doi.org/10.1007/978-3-642-37682-5_24
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf
https://github.com/LoupVaillant/Monocypher/blob/2174e60e/src/monocypher.c
https://github.com/LoupVaillant/Monocypher/blob/2174e60e/src/monocypher.c
https://doi.org/10.1007/11599548_15
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.5288
https://github.com/google/adiantum

	Introduction
	History
	Our contribution

	Specification
	Design
	Performance
	Security of HBSH
	Definition of HBSH
	Security definitions
	Primary claim
	H-coefficient technique
	Preliminaries
	Lemmas
	Proof of primary claim

	-U functions for HBSH
	Poly1305
	HPolyC hashing
	NH
	Adiantum hashing
	Usage limits

	References
	Implementation and test vectors

