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Systems biology approaches provide means to study the interplay between biological

processes leading to the mechanistic understanding of the properties of complex

biological systems. Here, we developed a vector format rule-based Boolean logic model

of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better

understand the role of crosstalk on network robustness and function. We identified

that phosphatases are the common unknown components of the network and that

crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient

sensing events. The model was simulated with known crosstalk combinations and

subsequent analysis led to the identification of characteristics and impact of pathway

interconnections. Our results revealed that the interconnections between the Snf1 and

Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our

approach contributes to the understanding of the function and importance of crosstalk

in nutrient signaling.

Keywords: nutrient signaling, cAMP-PKA pathway, Snf1 pathway, Snf3/Rgt2 pathway, logic modeling, Boolean

logic model, crosstalk

1. INTRODUCTION

A biological system can be described as a set of components that interact in such a way that they
form a functional unit (Alberghina and Westerhoff, 2005). Systems biology aims to understand
the function of the components and how they interact at a systems level. This knowledge about the
components provides predictability in the outcome of the system. However, the complexity of many
biological processes obstructs the prediction of system outcomes. Mathematical modeling helps to
compute the outcome of more complex systems and to identify the properties that emerge from the
interaction between the components within the system. This can lead to an improved insight in the
mechanistic properties of any biological system.

In signal transduction pathways components can undergo several different changes, such as
phosphorylation on multiple sites that are further combined to achieve a subsequent reaction.
These are very well-studied through both high-throughput and small scale studies making many
components of signaling pathways known (Papin et al., 2005) and providing suitable data for
utilizing systems biology approaches by developing a semi-quantitative logic (Boolean) models
(Bornholdt, 2008; Wang et al., 2012).
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To signal a broad spectrum of nutrients present in the cell
environment the yeast Saccharomyces cerevisiae has an extensive
nutrient sensing network in place. The function of this network
is to initiate a comprehensive reprogramming of gene expression
to be able to utilize specific nutrients. The yeast carbon and
nitrogen sensing systems have been thoroughly studied and their
key components have been identified (Gancedo, 2008; Broach,
2012; Conrad et al., 2014; Shashkova et al., 2015; Sanz et al.,
2016). However, it is not sufficient just to know the components
of a biological system. In order to gain a complete insight into
the nutrient sensing system it is necessary to understand the
functions of the components and how they interact with each
other. In yeast, the carbon source sensing is mainly done by the
cAMP-PKA pathway, Snf1 pathway, and the Snf3/Rgt2 pathway.
Nitrogen source sensing is performed by the TOR pathway.
The knowledge on the functioning of the components and the
linearity of these pathways is ambiguous. The ambiguity is due
to the substantial amount of crosstalk that has been identified
between the components of the different pathways (Broach, 2012;
Shashkova et al., 2015; Sanz et al., 2016).

Crosstalk, in biology, is a phenomenon by which an
integrated intracellular signal from multiple inputs produces
an output that is different from the response triggered by the
individual pathways (Vert and Chory, 2011). Two pathways
can be interconnected directly by shared component(s), or
indirectly when one pathway affects another signaling pathway
(Vert and Chory, 2011). The effect of crosstalk on signaling
and regulatory pathways has already been studied through
mathematical modeling, focusing on the crosstalk from kinases
and phosphatases (Rowland et al., 2012, 2015; Rowland and
Deeds, 2014). However, the action of kinases and phosphatases
embedded in a full network (Endres, 2012) has not been
deciphered. In this work we study the direct and indirect
crosstalk between nutrient signaling pathways cAMP-PKA, Snf1,
and Snf3/Rgt2. Experimental perturbation of these pathways
produces noise causing a major challenge in identifying
interconnections and therefore theoretical approaches, such as
Boolean modeling, are often applied.

Boolean modeling has already been used to reconstruct
various signaling pathways (Schlatter et al., 2009; Singh et al.,
2012; Anderson et al., 2016). For nutrient sensing pathways a
large network reconstruction of the Snf1 pathway has been made
based on an exhaustive and manually curated literature review
(Lubitz et al., 2015). Further, a logic model describing crosstalk
between the Snf1 and Rgt2/Snf3 pathway has been published
(Christensen et al., 2009). These however put the emphasis on the
technical aspect of modeling of signaling pathways rather than on
the predictive possibilities of the Boolean Model.

In this work we aimed to better understand if crosstalk within
the yeast nutrient signaling network contributes to the vitality
of the nutrient sensing function when the system is perturbed.
Specifically, we look at how crosstalk between the Snf1, cAMP-
PKA, and Rgt2/Snf3 pathways contribute to the appropriate
response to nutritional availability. The model was transformed
into a vector format rule-based Boolean model. The created
model was completed and validated by a gap filling process
based on known input/output relations. We further validated

the model by experimental study of protein localization and
phosphorylation status. This showed that the model can be used
as a tool to predict states of components within the model. Next
we included literature curated crosstalk between these pathways.
The influence of the crosstalk on the network was evaluated
through network perturbation and subsequent analysis of the
component states. We found that some crosstalk reactions were
vital for the functioning of the network. It was suggested that
even in the non-perturbed state they played an important role.
Other crosstalk reactions did not have any significant influence
on the network output. We further show the modularity of our
modeling approach by adding the nitrogen sensing TOR pathway
to the model. Overall, we present a Boolean model of a large
nutrient signaling network that allows to assess the influence of
crosstalk on the network.

2. MATERIALS AND METHODS

2.1. Logic Model
The model of the nutrient sensing network was based on peer-
published literature and each module in the code is denoted with
the respective PubMedID of the article (Celenza and Carlson,
1989; Broach, 1991, 2012; Mitts et al., 1991; Kuroda et al., 1993;
Haney and Broach, 1994; Hu et al., 1995; Ozcan and Johnston,
1995; Treitel and Carlson, 1995; Martinez-Pastor et al., 1996;
Ozcan et al., 1996; Schmitt and McEntee, 1996; Colombo et al.,
1998, 2004; Gorner et al., 1998; Lutfiyya et al., 1998; Frolova
et al., 1999; Pedruzzi et al., 2000; Schmidt and McCartney, 2000;
Jacinto et al., 2001; Düvel et al., 2003; Flick et al., 2003; Kim
et al., 2003; Mosley et al., 2003; Cameroni et al., 2004; Moriya
and Johnston, 2004; De Wever et al., 2005; Hong et al., 2005;
Palomino et al., 2005; Roosen et al., 2005; Swinnen et al., 2006;
Peeters et al., 2007; Lee et al., 2008, 2011, 2013; Rubenstein
et al., 2008; Georis et al., 2009; Tate et al., 2010; Loewith and
Hall, 2011; Orzechowski Westholm et al., 2012; Bontron et al.,
2013; Hughes Hallett et al., 2014; Ma et al., 2014; Kayikci and
Nielsen, 2015; Shashkova et al., 2017). The model (Figure 1B)
was translated to a Boolean logic model and implemented in
MATLAB© (The MathWorks, Inc.). In our model there are
three types of components: metabolites, proteins and complex
components. Each protein is assigned a state vector with six
entries defining its name, presence, localization, phosphorylation
status, GDP/GTP exchange status, and DNA binding status. A
component can: (A) be present or absent, (B) be localized to the
membrane, the cytosol or the nucleus, (C) have phosphorylation
or guanosine groups, and (D) be bound to DNA. The second
type of component, metabolites, are treated in the same manner,
however, they only need three properties and therefore their state
vector has only length three. Here, phosphorylation, GDP/GTP
exchange, and DNA binding are redundant. In some reactions
protein complexes are formed. Those are denoted by complex
formation components with vector length one and indicate if the
complex is active or not.

In the implementation all parameters in the state vector are
translated to a bound set of integer values (Tables S3, S4), which
are not necessarily purely Boolean but can include more possible
outcomes. Each vector uniquely represents one state in the set
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FIGURE 1 | (A) An example of a reaction in our model for hypothetical PathwayX, which contains hypothetical components Prt1 and Prt2. Each component is

designated a vector, which is a collection of the name and the different states a component can assume. Components Prt1 and Prt2 belong to the table for Pathway

X. A reaction in the model only occurs when the conditions described in the if-statement are fulfilled. (B) Signal transmission route of “glucose” and “no glucose”

conditions through the Rgt2/Snf3, Snf1, and cAMP-PKA pathway and its components. The graph displays the possible states of each component for the system

without perturbations (WT-system). Blue lines display the connections between the components when glucose is available. Green lines display the connections

between the components when glucose is not available. Round nodes are proteins, square nodes display metabolites, upper-case letters are promoters of genes

(e.g., SUC2). An arrow at the end of the lines displays activation of a gene and a vertical stripe gene repression. The connected nodes are the possible states one

component can assume.

of all possible states. The components are ordered according to
the pathway they belong to (Tables S2, S6). In total, the model
comprises 4 metabolites, 63 proteins (including 6 unknown) in 4
pathways, and 19 target genes.

The initial model inputs are the metabolites glucose and
nitrogen that can be set to present (1) or absent (0). Starting
from that assumption, the information propagates through the

pathways by numerous logical operations constructed based
on the literature review. Biologically, most modifications are
equivalent to activation or inhibition through phosphorylation/
dephosphorylation or GDP/GTP exchange. Figure 1A shows an
example for an operation involving two proteins in an arbitrary
pathway XXXpw: if protein 2 is present (XXXpw{2,2} == 1) AND
protein 1 is present (XXXpw{1,2} == 1) AND phosphorylated
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(XXXpw{1,4} == 1), protein 2 gets phosphorylated (XXXpw{2,4}
= 1). The phosphorylation status of protein 2 therefore increases
from 0 to 1.

In the model a typical operation is therefore a change in the
state vector of a component that only happens under certain
conditions (rules for an reaction to happen). Conditions are
usually composed of one or more state requirements that are
connected with logical operators AND or OR. States can only
alter within the defined state space presented in Tables S3,
S4. All reactions in the pathways that were implemented are
executed asynchronously. Therefore, an induced state change has
immediate effects on the next steps in the model. The algorithm
stops if no operation causes a state change in any component
anymore, thus the logical steady state is reached. From this
information it can be concluded which genes are active or not. In
summary, the presence or absence of nutrients leads to a cascade
of events and finally expression or repression of target genes.

The model can optionally simulate knockouts or deletions
of components. It is equivalent to setting the component’s
“presence” state in the model to 0. Consequently, such a
perturbed component cannot participate in any operation in the
model. The eliminated components are listed by their names
and given as input to the model. All pathways are connected by
crosstalk that can be manipulated in the model. The crosstalk
reactions, listed in Table 2 and Table S8, can be switched on (1)
and off (0) as a complementary input. By activating crosstalk,
additional operations between proteins belonging to different
pathways are appended.

The output is organized in tables sorted by pathways. In
addition, separate tables are generated for the metabolites and for
miscellaneous proteins that are shared over multiple pathways.
Each component is part of exactly one table in which its steady
state vector is given. Besides ordinary text files, a schematic
picture of the cell for each pathway is created (Figures 3A–D,
4A). Moreover, an extra file with all involved genes and their final
status as the output of the model is saved.

Furthermore, the model is designed in such a way that it
can sequentially switch between input metabolites, i.e., from no
glucose to glucose or vice versa. Under each nutrient condition
the steady state is found and used as an initial condition for
the next iteration. Outputs are generated after each step. The
MATLAB code of the model and the simulations is provided at
https://github.com/cvijoviclab/LogicModel.

2.2. Yeast Strains and Culture
The S. cerevisiae yeast strains were grown overnight to mid-log
phase at 30◦C in Yeast Nitrogen Base (YNB) synthetic complete
medium containing 1.7 g/l yeast nitrogen base, 5 g/l ammonium
sulfate, 670 mg/l complete supplement mix supplied with the
appropriate amount of carbon source. All used strains in this
work are summarized in Table S1.

2.3. Fluorescence Microscopy
The overnight culture grown on YNB supplemented with 4%
glucose was diluted to an OD of 0.5 in either YNB media
supplemented with 4% glucose or 3% ethanol depending on
which environmental conditions was imaged. Fluorescent images

were obtained by capturing 5 µl media between a microscopic
slide and a cover glass. This was inserted in an inverted Leica
DMI4000 microscope with a Leica CTR 4000 fluorescent light
source and Leica DMI4000 Bright field light source operating on
the LAS AF operating system (AF6000 E). Images were acquired
using a HCX PL APO CS 100.0X1.40 oil objective with the LECA
DFC360 FX camera. Exposure times used were 20 ms for the
bright field state, 320 ms for the red fluorescent (mCherry) state,
and 350 ms for the green fluorescent state (GFP).

2.4. Western Blot
The S. cerevisiae yeast strain was grown overnight to mid-log
phase at 30◦C in YNB supplemented with 6% glucose. The
cultures were diluted 1:2 with fresh YNB media supplemented
by either 4% glucose or 0.05% and incubated for 2 h at 30◦C.
Five milliliters was used for sampling. NaOH was added to a
final concentration of 0.1 M and left for incubation at room
temperature for 5 min. The samples were spun down and
the pellet resuspended in 400 µl of 2M NaOH with 7% beta
mercaptoethanol and incubated for 2 min. at room temperature.
Four hundred microliters of 50% TCA buffer was added and the
samples were spun down. The pellet was washed with 500µl Tris-
HCl, resuspended in 50µl sample buffer [62.5 mMTris-HCL(pH
= 6.8), 3% SDS, 10% glycerol, 5% beta mercaptoethanol] and
boiled for 5 min at 100◦C. Protein concentration was determined
using DCTM Protein Assay, BioRad. Thirty microliters of 6
mg/ml protein was loaded on a 4–20% Mini-PROTEAN R© TGX
Stain-FreeTM Protein Gel, BioRad. The gel was imaged for full
protein using Gel Doc EZ System, BioRad, and blotting was done
using the Trans-Blot© TurboTM Transfer System, BioRad. The
membrane was washed 3 x 5 min with 20 ml TBS buffer before
blocking and after incubation with the antibodies. Blocking was
done for 1 h usingWestern BlockerTM Solution for HRP detection
systems, Sigma-Aldrich. The membrane was incubated for 1 h
15 min with Phospho-AMPKa (Thr172) (40H9) Rabbit mAb,
Cell Signaling, diluted 1:1,000 and 1 h with TidyBlot, BioRad
diluted 1:500. The membrane was imaged using ChemiDocTM

Imaging Systems, BioRad and SuperSignalTM West Pico PLUS
Chemiluminescent Substrate, Thermo ScientificTM.

3. RESULTS

3.1. Vector Based Logic Modeling Allows
for Modeling Protein States
Constructing the topologies of signaling networks is a
challenging task, mainly because one protein can be in
many different states, for example phosphorylation status and
localization (Rother et al., 2013). In typical Boolean networks,
nodes can only take the discrete values “0” and “1”, meaning
a node is either inactive or active, and if active the signal is
passed on to the next node. This approach does not allow
for discrimination between multiple states of a node without
introducing new nodes that would represent each single state.
The complexity of the system would in this way be vastly
increased. Therefore, an approach is required that allows the
nodes of the model to be in several states. A multi-valued logical
model is able to take into account several states (Abou-Jaoudé
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et al., 2016). However, this approach become impractical when
there is a large amount of multiple states in which several states
results in the same outcome. To overcome this obstacle we
apply a vector format to a rules based model (Hlavacek et al.,
2006; Boutillier et al., 2018). In a rule based model a reaction,
defined as a state change of a node, only occurs given that certain
exceeding rules or conditions are fulfilled. These conditions
are defined as the required states of nodes for a reaction to
be generated. Granted that no other reaction in the system
will change this state, the node is in the logical steady state
(LSS). We further assign every node, from here referred to
as component, a component specific vector. In our modeling
approach we distinguish between three different components:
a protein component, metabolite component, and a complex
formation component. The last component type is used for
complex formation, and can only be “1” (active) or “0” (inactive).

FIGURE 2 | (A) Expected gene expression pattern (black, left) compared to

the predicted gene expression state from the model without (white, middle)

and with addition of crosstalk reactions 7 and 9 (Table 2), and after the gap

filling process (Blue, right) for “no glucose” conditions (upper part) and

“glucose” conditions (lower part) given for all the grouped genes. (B) Predicted

gene expression state for WT-model (crosstalk reactions 7 and 9, and gap

filling process) (blue,left) and the perturbations snf11 (green, middle left−side),

snf31rgt21 (red, middle−right side), and tpk11tpk21tpk31bcy11 (purple,

right) given for all the grouped genes. (C) Predicted gene expression state for

WT-model (blue, left) compared to predicted gene expression states of

snf31rgt21 without (red, middle) and with crosstalk reaction 1 and 3 (orange,

right) for the gene group HXT and HXK. SUC is the name for the gene SUC2.

HXT is the group name for genes HXT1, HXT2, HXT3, and HXT4. HXK is the

name for the gene HXK2. STRE is the group name for LSC1, PDC6, and

PDC5. PDS is the group name for RHR2, HSP12, DDR2, and CCT1.

For metabolite and protein components a different vector format
is used (Tables S2, S3). The vector for a protein component
has 6 positions which describe the name, presence, localization,
phosphorylation status, GDP/GTP exchange status, and DNA
binding status of the protein. In the metabolite vector there are
3 positions which describe name, presence, and localization of
the metabolite. For example, hypothetical signaling pathway
X consisting of protein components Prt1 and Prt2 with the
system only having one condition (Figure 1A). When simulating
the system component Prt2 is initially not phosphorylated,
therefore, position four in the component vector is “0.” When
the conditions are fulfilled, namely both Prt1 and Prt2 are present
in the system and Prt1 is phosphorylated, only then does position
four in the vector for Prt2 change to “1”, meaning that the protein
becomes phosphorylated. We used this framework to reconstruct
a model describing glucose signaling networks derived from
literature. The reconstruction included the Snf3/Rgt2, the Snf1
pathway and the cAMP-PKA pathway (Figure 1B). We manually
mined the literature to find the components needed to connect
the input conditions (“glucose” or “no glucose”) to the output
gene expression. For yeast, glucose is a preferred carbon source
since it can enter directly into the glycolysis after import into
the cell. Therefore, yeast will prefer to metabolize glucose over
other carbon sources. This model encompasses 48 components
of which 45 are protein components and 3 are metabolite
components (Table S2). All of these are unique proteins and
metabolites except for the hexose transporters. Transporters
Hxt1 to Hxt17 are a group of hexose transporters of which each
has different glucose uptake characteristics (Kruckeberg, 1996;
Horak, 2013). To reduce the complexity, we have grouped them
together as one protein component named HXTs. The Rgt1
transcription factor becomes hyper-phosphorylated when the
cell is exposed to glucose and is phosphorylated in a minor extent
when glucose is not available (Flick et al., 2003). Therefore,
we have chosen to assign the status of hyper-phosphorylated
Rgt1 as “1” and “0” for the minor phosphorylated status in the
component vector on the position for phosphorylation status.
All the components in the model are divided into five different
tables: metabolites, Snf1pw, R2S3Pathway, PKApw, and Miscl.
The last table, Miscl, is for the metabolites and components of
the Snf1 pathway, Rgt2/Snf3 pathway, cAMP-PKA pathway, and
protein components belonging to neither or being shared over
more than one of the previously named pathways. These tables
are comprised of the component vectors. Further the model
includes one complex component to signal the formation of
an active PKA complex. Overall, the components take part in
61 rules or conditions (Table S5). This model reconstruction
gives an overview of the connections between the involved
components in glucose signaling reactions.

3.2. Gap Filling Processes Reveal a Lack of
Protein Phosphatase Components and the
Importance of Crosstalk From PKA
Pathway
From this model we set out to make a system that can switch
between “glucose” and “no glucose” as input conditions and
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make it reproduce the correct RNA expression profile as an
output. To validate this we let the model reach the LSS for
a certain condition after initialization and thereafter switch to
the other condition. The original model from the literature
reconstruction (Figure 1B) was able to correctly simulate the
LSS for the first input conditions but unable to switch to
the second expected LSS (Figure 2A). We therefore used the
simulation to analyze what steps in the network are missing to
successfully simulate the expected outcome. Additional unknown
components needed to be added in the model to compensate for
missing reactions that eventually lead to correct RNA expression
profiles in all cases. This gap filling process was performed in
an iterative model extension process suggested in an earlier
study on carbon signaling pathways (Lubitz et al., 2015). To
successfully reproduce the input/output of the network we added
six additional conditions (Table 1). This resulted in the addition
of four unknown protein components to the model. These
unknown components were added to the table of miscellaneous
protein components (Miscl). Interestingly, the first four gaps
required the addition of a protein phosphatase component.

TABLE 1 | Gap filling: Added parts after gap filling procedure in order to make the

model switch between LSS for “glucose” and “no glucose” conditions.

# Involved

components

Gap description Added

component

1 Std1, Rgt1 Dephosphorylation of Std1 and

Rgt1

Xxx1

2 Yak1, Rim15 Dephosphorylation of Yak1 and

Rim5

Xxx2

3 Reg1, Glc7 Dephosphorylation of PP1

complex Reg1-Glc7

Xxx3

4 Msn2, Msn4 Dephosphorylation of Msn2 and

Msn4

Xxx4

5 Glc7, Reg1 Phosphorylation of Glc7-Reg1 Crosstalk 7

(Table 2)

6 Rgt1 Phosphorylation of Rgt1 Crosstalk 9

(Table 2)

The finding that four out of six unknown parts that needed
to be added to the model contained protein phosphatases is
intriguing. This suggests a general lack of knowledge about
dephosphorylation processes of proteins in the glucose signaling
network. The other two parts required the addition of a known
crosstalk reaction from the PKA pathway to the Rgt2/Snf3 and
Snf1 pathways (Table 2).

3.3. Vector Format Boolean Network
Simulation Can Predict and Visualize the
State of Network Components
After the gap filling process the model could simulate the
switching between input conditions and predict the matching
output status (Figure 2A). When predicting the outcome for
one condition we initialize the model to the opposite condition
first, since signaling networks are in place to sense changing
conditions. Through model simulations we can test the effect of
“glucose” and “no glucose” conditions on the model components.
By plotting the component tables of these simulations in a
graphical overview we create a coherent and legible way to view
the pathway components and their different states (Figure 3).
This neat overview simplifies comparison of the simulated LSS
for the components with physical experiments. To show this
feature we selected the transcription factors Msn2, Rgt1, and
Mig1 to represent each pathway involved in glucose signaling and
the general transcriptional repressors Tup1 and Ssn6. A version
of these proteins, tagged with a fluorescent protein, was observed
under the microscope in 4% glucose and in 3% ethanol as
carbon source, representing “glucose” condition and “no glucose”
condition respectively. Msn2, a transcription factor targeted by
the PKA complex, localized to the nucleus with ethanol as carbon
source and remained in the cytosol when exposed to glucose
according to the model predictions (Figure 3A and Figure S2).
When observing Msn2 labeled with a fluorescent green protein
(GFP) in “glucose” conditions we detect a uniform distribution
throughout the cell of the fluorescent signal from the GFP
molecule. When the cells are grown in “no glucose” conditions
the signal from the GFP molecule is no longer evenly distributed

TABLE 2 | Crosstalk: different types of crosstalk added to the model.

# Involved components Description Source

1 Snf1, Mth1, Std1 Active Snf1 prevents inactivation of Mth1 and Std1 Gadura et al., 2006; Pasula et al., 2007

2 Snf1, Std1 Std1 stimulates the Snf1 kinase activity Hubbard et al., 1994; Tomás-Cobos and Sanz, 2002;

Kuchin et al., 2003

3 Reg1, Glc7, Yck1, Yck2 Reg1-Glc7 acts as an upstream activator of Yck1 and Yck2 Gadura et al., 2006

4 PKA complex, Sak1 PKA complex phosphorylates Sak1 Barrett et al., 2012

5 Snf1, PKA complex PKA complex negatively regulates the Snf1 pathway (Sak1

independent)

Barrett et al., 2012

6 Snf1, Msn2 Snf1 can phosphorylate Msn2 De Wever et al., 2005

7 PKA complex, glucose activation of the PKA complex pathway Castermans et al., 2012

Glc7, Reg1 is required for activation of PP1 (Glc7-Reg1)

8 Snf1, Cyr1 Snf1 deactivates Cyr1 by phosphorylation Nicastro et al., 2015

9 PKA complex, Rgt1 Bcy1 phosphorylates Rgt1 under high “glucose” conditions Kim et al., 2006; Jouandot et al., 2011; Roy et al., 2013
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FIGURE 3 | Simulated localization vs. microscopy data for Msn2 in the PKA pathway (A), Rgt1 in the Rgt2/Snf3 pathway (B), Mig1 in the Snf1 pathway (C) and both

Ssn6 and Tup1 as general transcription repressors (D). The upper part of the each panel displays the graphical representation of the simulated vector tables for each

pathway. Protein location is depicting by the box in either the membrane (black line), cytosol (green area) or nucleus (gray area). Post-translational modification such as

GDP/GTP binding and phosphorylation are displayed by a black ellipse or circle on the protein box. The DNA bound status is give by the protein box being connected

to the line (which displays DNA). The lower part of each panel displays the microscopy data. The images above display the bright field, the lower images displays the

fluorescent marked transcription factor for (A,B). The middle image display the fluorescent marked Mig1 transcription factor and the lower image display Nrd1 bound

with a red fluorescent protein used a marker for the nucleus (C). Panel (D) displays the bright field images in the upper panel and the fluorescently marked general

transcription repressors Ssn6 and Tup1 in the lower part.

with the majority of signal focused in one part of the cell. This
result indicates that Msn2 protein is localized in the nucleus.
For Rgt1 the model prediction anticipates Rgt1 to be present
in the nucleus for both “glucose” and “no glucose” conditions
(Figure 3B and Figure S2). Because it either activates the HXT1
promoter in response to glucose availability (Mosley et al., 2003)
or binds to the promoters of the hexose transporters to recruit

transcription repressors when glucose is depleted (Kim et al.,
2003; Broach, 2012). Observation of the yeast strain with GFP
labeled Rgt1 showed that under both environmental conditions
Rgt1 remained in the nucleus. As it has been shown in the
literature and in our model predictions transcription factor Mig1
targeted by the Snf1 pathway. Mig1 is nuclear when the cell is
exposed to glucose and remains in the cytosol when growing
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on ethanol (De Vit et al., 1997) (Figure 3C and Figure S2). A
yeast strain with both Mig1 tagged with GFP and Nrd1, a protein
that always resides in the nucleus, bound to a red fluorescent
protein (RFP) was used to determine the localization of Mig1.
We observed that under “glucose” conditions Mig1 co-localizes
to the Nrd1-RFP signal, but under “no glucose” conditions
it remains uniformly distributed throughout the cell. The
transcription repressor complex Ssn6-Tup1 is either recruited by
Mig1 under “glucose” conditions or by Rgt1 when the cells are
not exposed to glucose (Treitel and Carlson, 1995; Roy et al.,
2013) (Figure 3D and Figure S2). Indeed, it was observed that
under 4% glucose and 3% ethanol both Ssn6 and Tup1 are
localized in the nucleus. In addition to component localization,
the model also considers post-transcriptional modifications such
as phosphorylation. The phosphorylation state can be used
to validate the model. Dephosphorylation of the protein Snf1
occurs when the cells are exposed to glucose and Snf1 becomes
phosphorylated when grown on ethanol as sole carbon source.
Typically, phosphorylation status of proteins is measured by
Western blot. When looking at the phosphorylation status of
Snf1 via Western blot we observed that the Snf1 phosphorylation
status from the model predictions and experimental results are
similar (Figure 3C and Figure S1). In general, this shows that
the model prediction can be validated not only with the RNA
expression but also through observation of localization and post-
transscriptional modification.

3.4. Crosstalk Reactions From cAMP-PKA
to Rgt2/Snf3 can Restore Perturbed
Network Signaling
The gap filling process showed that crosstalk reactions were
required in order for the model to switch from one condition
to another. We therefore collected known crosstalk reactions
from the literature and selected 9 crosstalk reactions to test in
our model (Table 2). Next, we looked for crosstalk combinations
that contribute to the robustness of the yeast cell carbon source
sensing system. The carbon source sensing system was perturbed
for each pathway by removing (a) key protein component(s) from
the model simulation (analogous to protein deletion). From her
on the wild-type model with the gap filling parts (Table 1) and
crosstalk reaction promoting PKA-dependent phosphorylation
of Glc7 and Rgt1 will be referred as the wild-type (WT) model.
We always included these additions in the WT simulations since
they were crucial to have the correct expected gene expression
profile as simulation outcome (Figure 2A). When referred to the
WT model we mean the model in which no protein components
are removed from the simulation. Removing components leads
to an activation of different set of reactions, which in turn alters
the LSS. Consequently, the gene expression levels are changed
compared to the original (i.e., WT) state (Figure 2B). For the
Snf1 pathway we removed the Snf1 protein component and this
perturbation is referred as snf11. For the snf11model simulation
of the predicted gene expression state only changed for the
SUC2 genes in the “no glucose” conditions compared to the WT
model. Perturbation of the Snf3/Rgt2 pathway was performed
by removing Snf3 and Rgt2 from the model, this model is
referred to as rgt21snf31. This perturbation showed a different

gene expression state for both expression of the HXT and HXK
gene groups than the WT-model. Finally, for the disruption of
the cAMP-PKA signaling all components of the PKA-complex
were removed from the system (Tpk1, Tpk2, Tpk3, and Bcy1).
This perturbed model was designated tpk11tpk21tpk31bcy11
and displayed a different predicted gene expression pattern for
the PDS genes compared to the WT (Figure 2B). Although
the tpk11tpk21tpk31bcy11 showed continuously active PDS
gene group it did not for the STRE gene group. This is
because of a gap filling part that was added that caused Msn2
and Msn4 dephosphorylation in “glucose” conditions (Table 1).
This dephosphorylation part caused inactivation of Msn2 and
Msn4 even when the inactivation of Yak1 and Rim15 was
disrupted in the tpk11tpk21tpk31bcy11 model. To find out
which crosstalk reaction can overcome the consequences of
signaling disruption the effect of crosstalk on the altered gene
expression patterns was analyzed. This was done by simulating
all possible combinations of crosstalk 1-6 and 8 from Table 2

in the “on” or “off” state. This resulted in 128 crosstalk
combination vectors, which were used to activate crosstalk in the
snf11, the rgt21snf31, and the tpk11tpk21tpk31bcy11model.
Simulations were only done for the environmental conditions
that showed a different gene expression pattern, namely for
rgt21snf31 in “glucose”, tpk11tpk21tpk31bcy11 in “glucose”
and snf11 in “no glucose” conditions. Each crosstalk reaction is
active in half of the simulated crosstalk combinations. Every time
a crosstalk reaction was active it was scored whether the predicted
gene expression pattern behaved as the WT model or the
perturbed systemwith all crosstalk reactions inactive (Figure S3).
For tpk11tpk21tpk31bcy11 in “glucose” and snf11 in “no
glucose” and “glucose” conditions no combination of crosstalk
reactions was able to overcome the effects of the perturbation
(Figures S3C–E). Crosstalk 1 and 3 were shown to overcome
the disruption effect of rgt21snf31 in “glucose” conditions with
every crosstalk combination they were active in. Crosstalk 1 and
3 are connections between the Snf1 and Rgt2/Snf3 pathway.
If we simulated the rgt21snf31 model with the connections
between the Snf1 and Rgt2/Snf3 pathway included we were able
to restore the WT gene expression pattern again (Figure 2C and
Figures S3A,B). Considering a perturbed model, the crosstalk
reactions that could restore the gene expression to the pattern
predicted by the WT model may contribute to the signaling
robustness of the yeast cell in vivo.

3.5. Addition of the TOR Pathway to the
Model Shows Inter-connectivity Between
Nitrogen and Glucose Signaling
The vector format rule-based modeling allows the model to be
altered by addition of single components or even new pathways.
Here, we added regulation by the nitrogen sensing TOR
pathway (Figure 4). The TOR pathway regulation is interesting
to consider since glucose sensing pathways Snf1 and PKA-cAMP
and the nitrogen sensing pathways TOR have shown to be highly
intertwined (Broach, 2012; Sanz et al., 2016). Therefore, we added
the nitrogen sensing pathway to our model focusing on the
Sch9 and PP2A downstream targets. The TOR pathway includes
15 proteins and one gap filler which controls the NCR genes
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FIGURE 4 | TOR pathway: (A) the graphical representation of the simulated

vector tables for the TOR pathway. Protein location is given by depicting the

box in either the membrane (black line), cytosol (green area), or nucleus (gray

area). Post-translational modifications such as phosphorylation are displayed

by a black ellipse or circle on the protein box. The DNA bound status is give by

the protein box being connected to the line (which displays DNA). (B)

Expected gene expression pattern (black, left) compared to the predicted

gene expression state from the model without (white, middle) and with addition

of crosstalk reactions, and after the gap filling process (blue, right) for “no

nitrogen” conditions (upper part) and “nitrogen” conditions (lower part) given

for the NCR genes in addition with and without glucose (Glc).

(Figure 4A). The TOR complex 1 (TORC1) was handled as the
second complex component in the model. This expanded the
model to 67 components of which 57 proteins, 4 metabolites,
and 6 unknown components (Tables S6, S9), adding another
10 conditions to the Boolean model (Table S7). Furthermore,
it led to four additional crosstalk reactions (Table S8), which
connected glucose and nitrogen signaling. These connections
converge on two components: Rim15 in the PKA-cAMP pathway
and Gln3 in the TOR pathway (Rødkær and Færgeman, 2014).
The model shows the importance of Snf1 in glucose starvation,
specifically, throughNCR gene expression in addition to nitrogen
starvation through mediation of Gln3 nuclear localization.
Thereby expressing NCR genes, during glucose limitation, even
in nitrogen rich conditions. This crosstalk reaction allows the
cells to use amino acids as an alternative nitrogen and carbon
source (Bertram et al., 2002). Note that even though TOR
and Snf1 dependent phosphorylation of Gln3 have different
phosphorylation sites (Bertram et al., 2002), they are treated
equivalently in the model. In both single cases and in the
hyper-phosphorylated state it corresponds to a phosphorylation

status “1” in the state vector. These phosphorylation sites are
considered equivalent because they both cause Gln5/mediator
interaction. After adding crosstalk the model was capable of
simulating the expected gene expression of the NCR genes
Bertram et al. (2002) (Figure 4B). The gap filling process led
to two unknown components (Table S9) that are responsible
for dephosphorylation of Kog1 and Par32. These additional
parts are only affecting the outcome when crosstalk is present.
Remarkably, similar to the glucose signaling, information about
protein phosphatases is missing. Along with the increased size
of the model, nitrogen availability was included as an additional
input, allowing twice as many possible combinations of nutrient
inputs. By adding the TOR pathway to the model we showed
that the model is easily extended by single components and
whole pathways due to the simple structure and modularity.
Furthermore, the importance of crosstalk in signaling pathways
shows the inter-connectivity of glucose and nitrogen signaling.

4. DISCUSSION

To increase the information content of Boolean models from
simple binary states, we assigned a vector to each component
describing following features: localization, phosphorylation
status, GDP/GTP exchange status, and DNA binding status
(See section 2.1). Using this model, we found during the gap
filling process that most lacking components are phosphatases,
which indicates a lack of knowledge on phosphatases involved in
nutrient sensing processes. The gap filling process also identified
crosstalk from the PKA and Snf1 pathway to other pathways
as a vital aspect to make the model switch between nutrient
conditions. Model simulation of perturbed systems revealed that
the crosstalk from the Snf1 pathway to the Rgt2/Snf3 pathway
contributes to the robustness of this signaling network. The
literature on nutrient sensing is quite extensive and this is a
great resource to find mechanistic details on how the nutrient
sensing network works. We set out to create a minimal system
that can describe the RNA expression profile based on the input
conditions. Most of the components and condition included in
the model were shown in previous reports. However, for a few
reactions different activation conditions were found, which are
not mutually exclusive. Msn2 andMsn4 have been reported to be
phosphorylated by Rim15, Yak1, and the PKA complex (Gorner
et al., 2002; Lee et al., 2008, 2013). All these phosphorylation
reactions have occurred in the active form of Msn2 and Msn4,
although it is unclear which phosphorylation site(s) is/are
deterministic for the function of Msn2 and Msn4. Since such
reactions are closely related and appear almost simultaneously
it is challenging distinguishing which reaction determines the
occurrence of others, both computationally and experimentally.
Such ambiguous mechanisms might result in multiple required
conditions for a reaction to occur. All these conditions might not
be representative in vivo, but do result in the same outcome as
to be in vivo system. This is a limitation of modeling, since the
model is only a representation of the knowledge we have of the
system.
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Since the knowledge gap in the literature did not allow
us to create a model that could switch between nutrient
conditions the gray areas needed to be filled in with a gap
filling process. This network validation revealed that a common
shortcoming on the knowledge of nutrient signaling pathways
is how phosphate groups are removed from proteins, since the
majority of the gaps in the model required addition of protein
phosphatase reactions (Table 1 and Table S9). This led us to
identify protein phosphatases as major unknown components of
the glucose signaling pathways. The addition of a component
does not necessarily mean a protein function is missing, also
degradation of a phosphorylated component has been identified
as a efficient phosphatase system (Rowland et al., 2015). Most
studies on signaling pathways focus on phosphorylation of
proteins, but for a precise regulation dephosphorylation most
also be tightly regulated. However, research has been biased
toward phosphorylation event and therefore dephosphorylation
of proteins has received much less attention (Castermans
et al., 2012). High-throughput studies have identified around 40
different proteins as protein phosphatase in S. cerevisiae (Fiedler
et al., 2009). This overabundance and the overlapping function
of these protein phosphatases has made the identification of
the exact function of these phosphatases a challenging task. To
illustrate, three different protein phosphatases have shown to
be responsible for Snf1 dephosphorylation, namely the protein
phosphatase complex 1 Reg1-Glc7, Sir4, and Ptc1 (Ruiz et al.,
2011, 2013; Zhang et al., 2011; Castermans et al., 2012). It remains
unclear how the two latter are regulated by glucose and what
their direct function is in nutrient signaling. Also, only recently
has the Glc7-Reg1 protein phosphatase complex been identified
as the Mig1 glucose-dependent phosphatase, however there is
also a glucose independent dephosphorylation mechanism which
is unknown (Shashkova et al., 2017). The lack of knowledge
on protein phosphatase function is not restricted to nutrient
signaling, and is absent in other pathways in yeast (Sacristan-
Reviriego et al., 2015).

During the gap filling process we also found that known
crosstalk reactions needed to be added to fill gaps (Table 1).
Since these mainly included the PKA pathway it is suggested that
this pathway has established crosstalk toward other pathways.
These connections might be vital for the correct functioning
of the carbon sensing network. This explains the observation
that most glucose-responsive genes are regulated by a PKA-
dependent pathway (Wang et al., 2004). Further, the inviability
of the tpk11tpk21tpk31 triple mutant indicates the important
role of the PKA complex in the cell (Pan and Heitman, 1999).
This shows the importance of the PKA pathway as regulator of
carbon availability and suggests the PKA pathway as a possible
intervention point for drugs targeting nutrient sensing in cancer
cells. This was confirmed with recent publications suggesting that
intervention in the PKA signaling pathway might prove to be a
effective strategy to eliminate cancer cells (Klutzny et al., 2018; Le
et al., 2018; Wu et al., 2018).

The crosstalk analysis shown here suggests that the Snf1
pathway interaction with the Rgt2/Snf3 pathway contribute
to the robustness of nutrient signaling, since crosstalk was
able to overcome the perturbation of the Rgt2 and Snf3

components (Figure 2C). This shows the overlap between
the Snf1 and the Rgt2/Snf3 pathway. Earlier study on
downstream targets of these pathways, namely Mig1 and Mig2,
have shown a considerable overlap of targeted promoters
(Westholm et al., 2008). Also the connection from the Snf1
pathway to the TOR pathway maintains correct balance in
metabolism and shows how interaction between signaling
pathways maintain signaling robustness in the cell. This study,
together with others, has shown that pathways are not linear
and do not exist parallel next to each other. There is a
significant crosstalk between pathways, which is essential for
the functioning of nutrient signaling (Zaman et al., 2008).
Classically a sensing pathway is viewed as a singular element.
However, it seems that sensing pathways reside within a
large regulatory network, which overlaps between the different
pathways.

Further, addition of other signaling pathways to our
model is straightforward, which we demonstrated with the
inclusion of TOR pathway. This opens the path of adding
sensing and signaling mechanisms for other essential nutrients
such as macro-nutrients phosphate and sulfate or micro-
nutrients like metal ions (Conrad et al., 2014; Bird, 2015;
Qi et al., 2016; Samyn and Persson, 2016). Potentially
this could contribute to the understanding of how the
cell senses macro-nutrients, which provide the cell carbon,
nitrogen, phosphorus and sulfur, or micro-nutrients, such as
metal ions and vitamins. The realization of this complete
model would increase the perception of how nutrient
sensing systems achieve sensitive cellular gene expression
reprogramming.

The Boolean modeling system created in this work is
discrete, deterministic, and semi-quantitative. This is an
oversimplification of real sensing networks, but this problem
could be overcome using a probabilistic Boolean modeling
approach. This approach would be able to add molecular and
genetic noise to the model (Liang and Han, 2012; Zhu et al.,
2014), which would allow the input and output of the model to
be continuous instead of discrete. This added complexity would
result in a model that can provide more mechanistic detail.
However, this would require a more complicated computational
setup, whichmight prove to be a trade-off toward the modularity.

Overall, in this work we have developed, simulated and
validated a Boolean logic model describing the nutrient
sensing network in yeast. The development and validation
process revealed the importance of crosstalk from one pathway
to other nutrient sensing pathways and showed that the
unknown components in the glucose signaling pathway are
mostly phosphatases. By studying the interactions within the
nutrient sensing network this work contributes to the holistic
understanding of nutrient sensing and shows the impact of
crosstalk on network robustness and functioning.
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