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ABSTRACT
Biological color may be adaptive or incidental, seasonal or permanent, species- or
population-specific, or modified for breeding, defense or camouflage. Although color
is a hugely informative aspect of biology, quantitative color comparisons are
notoriously difficult. Color comparison is limited by categorization methods, with
available tools requiring either subjective classifications, or expensive equipment,
software, and expertise. We present an R package for processing images of organisms
(or other objects) in order to quantify color profiles, gather color trait data, and
compare color palettes on the basis of color similarity and amount. The package
treats image pixels as 3D coordinates in a “color space,” producing a
multidimensional color histogram for each image. Pairwise distances between
histograms are computed using earth mover’s distance, a technique borrowed from
computer vision, that compares histograms using transportation costs. Users
choose a color space, parameters for generating color histograms, and a pairwise
comparison method to produce a color distance matrix for a set of images.
The package is intended as a more rigorous alternative to subjective, manual digital
image analyses, not as a replacement for more advanced techniques that rely on
detailed spectrophotometry methods unavailable to many users. Here, we outline the
basic functions of colordistance, provide guidelines for the available color spaces and
quantification methods, and compare this toolkit with other available methods.
The tools presented for quantitative color analysis may be applied to a broad range of
questions in biology and other disciplines.

Subjects Biodiversity, Evolutionary Studies, Statistics
Keywords R packages, Color, Image processing, Phylogenetics, Camouflage, Earth mover’s
distance, Statistics

INTRODUCTION
Color is an information-rich trait, and has provided countless insights in biology,
including into camouflage, mimicry, pollination, signaling, mate attraction, pathogen
infection, and thermoregulation (Cuthill et al., 2017; Liu & Nizet, 2009; Clegg &
Durbin, 2000; Smith & Goldberg, 2015; Smith et al., 2016; Bechtel, Rivard & Sánchez-
Azofeifa, 2002; Lev-Yadun et al., 2004; Pérez-De la Fuente et al., 2012; Stevens, Lown &
Wood, 2014; Chiao et al., 2011; Brady et al., 2015; Troscianko et al., 2016). Unlike many
other informative traits, collecting color information can be minimally invasive, and can be
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done with inexpensive, commercially available digital cameras. Although the resulting
digital images are intended to mimic human vision, appropriate calibration and an
understanding of these limitations can allow scientists to answer a much wider range of
questions with this simpler data format (Troscianko & Stevens, 2015).

Despite the questions surrounding the role of coloration in ecological and evolutionary
processes, color is notoriously difficult to categorize. Classifications are often subjective,
especially when trying to compare organisms with highly variable appearances.
Any objective categorization must account for the amount, distribution, classification, and
variety of colors consistently across a set of images. Researchers must also account for
the limits of using digital images to answer questions about the visual systems of
non-human animals. Common approaches to color profiling often address one or several
of these problems, and include qualitative categorization (Puebla, Bermingham &
Whiteman, 2007), analysis of digital photographs using pixel color spectra (Byers, 2006),
binary character matrices scoring color presence (Marshall et al., 2003), and quantitative
point spectrophotometry (Badiane et al., 2017; Safran & Mcgraw, 2004; Marshall
et al., 2003). Generally, more comprehensive methods require expensive equipment,
expertise, and coding skills, while more straightforward methods are tailored for specific
studies, giving them a more limited scope.

Recently, software toolboxes have been gaining popularity as accessible, comprehensive,
and consistent methods for image analysis (Troscianko & Stevens, 2015; Bradski, 2000),
including a number of R packages. R is among the most popular coding languages
for biologists, partly because it is user-friendly and open-source. Although there are several
R packages designed for digital image analysis (Van Belleghem et al., 2017; Maia et al.,
2013; Barthelme, 2017; Carlson, 2016), to our knowledge, none of them provide methods
for profiling and quantitatively comparing colors across images in multiple color spaces.

Here, we present a quantitative approach to color profiling and comparison with
digital images in an R package, colordistance, which provides a viable, statistically rigorous
option for color profiling and comparison in a user-friendly format (R Core Team, 2018).
Although the standard red-green-blue (RGB) format of digital images is a poor proxy
for non-human vision (Vorobyev et al., 2001; Endler, 2012; Troscianko & Stevens, 2015),
appropriate image calibration and color space conversion can still provide meaningful
biological insights with a lower barrier to entry than spectrophotometric methods, and can
reflect the visual sensitivities of many species (Losey et al., 2003; Marshall et al., 2003).

Colordistance provides an objective comparative tool for any color analysis that might
otherwise rely on a more subjective classification scheme. The package also comes with a
pipeline function for streamlined analysis. The central aims of this method are (1) to
enable the user to quickly quantify colors in images of organisms (or other objects), (2) to
provide tools for categorizing diverse color palettes into bins of similar colors
and quantify their extent on a surface, and (3) to develop approaches for color profile
comparison and assessment of “color distance,” a metric that borrows techniques from
computational image processing to measure the difference in color between objects
(Zhang, Barhomi & Serre, 2012; Byers, 2006; Phung et al., 2005; Scheunders, 1997).
Colordistance is not meant to replace more comprehensive methods of color comparison,

Weller and Westneat (2019), PeerJ, DOI 10.7717/peerj.6398 2/31

http://dx.doi.org/10.7717/peerj.6398
https://peerj.com/


but to provide a more objective, consistent, and easy-to-use alternative to manual
classifications. It can also be used to supplement other methods that address different
aspects of color diversity in organisms.

MATERIALS AND METHODS
Package details
Colordistance includes 29 exported functions, the most central of which are listed
in Table 1. Colordistance imports or suggests R packages for image analysis and data
clustering, including jpeg (Urbanek, 2014), png (Urbanek, 2013), clue (Hornik, 2005),
spatstat (Baddeley, Rubak & Turner, 2015), ape (Paradis, Claude & Strimmer, 2004), mgcv
(Wood, 2011), emdist (Urbanek & Rubner, 2012), scatterplot3d (Liggs & Mächler, 2003),
plotly (Sievert et al., 2017), gplots (Warnes et al., 2016), and abind (Plate & Heiberger,
2016).

A stable distribution of the colordistance package can be downloaded for free at
https://CRAN.R-project.org/package=colordistance, and the development version and
installation instructions can be found at https://github.com/hiweller/colordistance, along
with a forum for user feedback and suggestions. A series of explanatory vignettes providing
more detailed explanations and examples is available at the corresponding GitHub
Pages site, https://hiweller.github.io/colordistance/. Questions or issues can be posted on
https://github.com/hiweller/colordistance/issues.

The CRAN version of the package can be installed by running the following line of code
in the R console:

> install.packages(“colordistance”) 1

The main work flow of colordistance consists of three steps:

(1) Image preparation. Quality color images (JPEG or PNG) of the object(s) of interest are
obtained, color calibrated, and backgrounds are masked out with a uniform color,

Table 1 Primary colordistance functions and descriptions.

Function Description

loadImage Import image as 3D array and generate filtered 2D pixel
array(s) of non-masked objects

convertColorSpace Convert pixels between different color spaces (CIE Lab, RGB,
and HSV)

plotPixels Plot pixels from an image in color space

getImageHist and getHistList Generate a 3D histogram based on color distribution in an
image (or list of histograms for a set of images)

getKMeanColors and getKMeansList Generate color clusters using k-means clustering for an image
(or list of clusters for a set of images)

combineList Combine a list of cluster features into a single cluster set

getColorDistanceMatrix Generate a distance matrix for a list of color histograms or
cluster sets

imageClusterPipeline Generate and plot a color distance matrix from a set of images

Weller and Westneat (2019), PeerJ, DOI 10.7717/peerj.6398 3/31

https://CRAN.R-project.org/package=colordistance
https://github.com/hiweller/colordistance
https://hiweller.github.io/colordistance/
https://github.com/hiweller/colordistance/issues
http://dx.doi.org/10.7717/peerj.6398
https://peerj.com/


using an image editor outside of the R environment. See below for a discussion of
image calibration.

(2) Color binning. Images are read into R as 3D arrays, and non-background pixels are
binned into color categories via one of two provided binning methods to produce a
normalized color space histogram.

(3) Histogram comparisons. Earth mover’s distance (EMD) (Rubner & Tomasi, 2013)
or another metric is used for pairwise comparisons of histograms from a set of images,
resulting in a distance matrix summarizing the color distance score between each pair
of images.

The most important user-specifiable parameters for the analysis are provided in Table 2.

Image preparation and calibration
Digital cameras are an accessible, affordable, and non-invasive method of data collection.
The resulting images, however, are optimized for human vision and for display on
commercial RGB monitors. The actual spectral reflectance of the photographed object is
therefore distorted in a digital image. Accurate image calibration, including white balance,
radiance normalization, and converting to the color sensitivities of non-human
animals, is an essential step before image analysis. A comprehensive discussion of image
calibration is beyond the scope of this paper, but see Troscianko & Stevens (2015), Byers
(2006), Endler & Mielke (2005) and Schindelin et al. (2012).

Because colordistance does not include image calibration tools, images should be
calibrated before being analyzed in R. There are a variety of tools available for image
calibration, including simple white-balance correction in most image editing applications.
The image calibration and analysis ImageJ toolbox by Troscianko & Stevens (2015)
allows users to not only calibrate images, but also to correct for the non-linearity of RGB
images and to incorporate ultraviolet (UV) channels to simulate animal color vision;
the plug-in is free and comes with a comprehensive guide for users with camera
RAW images.

Background masking is the last step of image preparation. Any part of an image
that the user wants to ignore should be masked out with a uniform background
color that is not similar to any of the colors in the object itself; the examples below use
bright green (RGB triplet of (0, 1, 0) on a 0–1 scale) and white (RGB triplet of
(1, 1, 1)). This can be accomplished with Photoshop, ImageJ, or other image editing
software.

Color spaces, binning methods, and distance metrics
No universal set of parameters will produce optimal results for all datasets. Instead,
colordistance provides several options for each step of an analysis (Table 1). The functions
come with defaults that act as useful starting points, but understanding how
each parameter will affect the outcome is crucial for accurately interpreting results.
See Discussion for suggestions on when to use which options.
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Color space
The three available color spaces in colordistance are CIE Lab (luminance, red-green, and
blue-yellow channels), RGB (red, green, and blue channels), and HSV (hue, saturation,
and value channels). The advantages and disadvantages of each color space are discussed
more thoroughly both in the discussion and in the “Color Spaces” vignette that comes
with the package (also accessible on the CRAN repository).

Briefly, CIE Lab is a perceptually uniform, device-independent color space, meaning
that Euclidean distances between colors in CIE Lab-space reflect the degree of perceived
difference between those colors in human color vision. RGB is also modeled on
human color vision, but is not perceptually uniform, and is largely optimized for digital
displays. HSV color space is intended largely for color manipulation and is not modeled on
perception, but is useful for image segmentation for analyses that are not concerned
with replicating animal color vision (Hill, Roger & Vorhagen, 1997). Figure 1 illustrates
how standard RGB pixels are distributed very differently in RGB and CIE Lab color spaces.
In colordistance, RGB color space is set as the default color space, but RGB analyses
come with warnings about perceptual non-uniformity to encourage users to read about
and implement CIE Lab analyses instead.

Binning methods
The two methods for binning pixels, histogram and k-means clustering, are fairly common
approaches to cluster analysis. Briefly, k-means clustering partitions pixels in color space
into a specified number of bins in order to minimize the overall sum of pixel-center
distances. Though popular, this method can be fairly slow and the cluster locations will be
biased toward dominant colors. The histogram method (default) divides a 3D color
space into regions depending on user-specified boundaries, computes the proportion of
pixels and average pixel value in each region to produce a 3D histogram whose bin centers
will vary from image to image. This method is typically faster and not biased by color
proportions, but risks breaking up a single color cluster across multiple boundaries.

Table 2 User-specifiable parameters in colordistance analyses.

Parameter Function Options

Color space One of three common
three-component color spaces used
in digital images

CIE Lab, red-green-blue (RGB) or
hue-saturation-value (HSV)

Background color Color(s) to be ignored in analysis Any color range specified by the user

Binning method Method for grouping pixels in
organism/object into bins to
summarize and compare images

Color histogram or k-means clustering

Bins How to divide up color space so that
pixels assigned to the same bin are
grouped into one color

Either a number of bins per color
space channel (if using color
histogram) or a total number of
clusters (if using k-means clustering)

Color distance metric Method for calculating the distance
between one binned image and
another

Earth mover’s distance, v2 distance,
Euclidean color distance, or a
weighted combination
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Figure 1 RGB colors as displayed in RGB and CIE Lab color spaces. (A–D) A total of 100,000 random
RGB pixels as displayed and clustered in RGB space. (A) and (B) Pixels plotted in RGB space, viewed
from different angles; (C) clustering results for binning pixels into 27 equally spaced bins; (D) histogram
representation of the clusters in C. (E–H) Same as (A–D) but in CIE Lab rather than RGB space.

Full-size DOI: 10.7717/peerj.6398/fig-1
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The a and b channels of CIE Lab color space are theoretically unbounded, but in
practice, RGB colors converted to CIE Lab space have a and b values between -128 and
127 (Hill, Roger & Vorhagen, 1997); these are used as the upper and lower bounds for each
channel unless otherwise specified.

Distance metrics

Colordistance includes four color distance metrics, but the most comprehensive is the
earth mover’s distance (EMD). The EMD or Wasserstein metric measures the distance
between two distributions as a transport cost—essentially, what is the minimum cost
of transforming one distribution into the other (Rubner, Tomasi & Guibas, 2000)?
It takes into account both spatial color information and size information. For
colordistance, when using RGB color space, EMD also has the advantage of having a
consistent lower and upper bound. The maximum EMD score in RGB space is

ffiffiffi

3
p

, which
is the cost of moving all of the data (p = 1) as far as possible across RGB or HSV color
space (the diagonal of a cube with sides of length 1). v2 distance also performs well
in many cases, but treats bins as independent of each other, so it can result in higher color
distances when images have similar colors that are binned differently (i.e., an all-black
and all-gray image will have the same distance as an all-black and all-white image).
EMD is therefore the default. Other distance metrics are discussed in the
“Distance metrics” vignette, which comes with the package or can be found at
https://cran.r-project.org/web/packages/colordistance/vignettes/color-metrics.html.

Implementation
All examples in this paper can be reproduced by cloning the colordistance_examples
GitHub repository (http://github.com/hiweller/colordistance_examples) and setting the
R working directory to that folder. Lines preceded by “>” indicate commands executed in
the R console.

> library(colordistance) 1

> setwd(“[path/to/directory]/Examples”) 2

Figure 2 illustrates how the package handles a single image. Prior to loading the image
into colordistance, the background of the photograph has been masked out using pure
green, which has an RGB triplet of (0, 1, 0) (Fig. 2A). The plotPixels function
can be used to visualize the distribution of the flower’s colors in CIE Lab color space. In
order to plot the flower in CIE Lab color space (Fig. 2B), we provide plotPixels with:
(1) the path to the background-masked image, (2) lower and upper bounds for
RGB pixels to ignore, (3) the color space in which to plot, and (4) the name of a standard
reference white for RGB to CIE Lab conversion, since the image is stored in an
RGB format.

> plotPixels(“Flower/flower_greenscreen.jpg”, 1
lower = c(0, 0.6, 0), upper = c(0.4, 1, 0.4), 2

color.space = “lab”, ref.white = “D65”) 3
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Figure 2 Color binning of a single object. (A) Image of a flower with a background mask of bright
green pixels (RGB triplet value (0, 1, 0)); (B) 3D scatterplot of all non-background pixels in CIE Lab color
space using plotPixels function; (C) clusters from the histogram in (B) displayed in CIE Lab color space;
(D) histogram from getLabHist function showing the proportion of total non-background pixels assigned to
each of eight bins, with the color ranges of the bins on the X axis. The vertical lines in D indicate the X and Y
(Luminance and a channel) positions of each cluster; the size of each cluster has been increased by 3% so that
the locations of empty clusters are still visible. Bins in (C) and (D) have been colored by the average color of
the pixels in each bin. Photo credit: H. Weller. Full-size DOI: 10.7717/peerj.6398/fig-2
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The lower and upper arguments passed to plotPixels are the lower and upper bounds for
background pixels; any pixel with 0 � R � 0.4, 0.6 � G � 1, and 0 � B � 0.4 will be
ignored.

The getLabHist function sorts each non-background pixel in the image into a bin,
with boundaries defined by the bins argument. Line 1 uses two bins per channel,
meaning each of the luminance, a (red-green), and b (blue-yellow) channels is
divided at the halfway point, resulting in 23 = 8 bins. The a.bounds and b.bounds

arguments bound the a and b channels at -100 and 100, rather than -128 and 127.
These bounds were chosen because none of the pixels in the image fall outside of
these bounds, and narrowing the upper and lower limits reduces the number of
empty bins.

> image_histogram <- getLabHist(“Flower/flower_greenscreen.jpg”, 1
lower = c(0, 0.6, 0), upper = c(0.4, 1, 0.4), 2

a.bounds = c(-100, 100), b.bounds = c(-100, 100), 3

bins = c(2, 2, 2), plotting = TRUE, ref.white = “D65”) 4

Binning the pixels produces a three-dimensional histogram, with the location of
each bin determined by the average value of the pixels in that bin, and the size determined
by the proportion of total pixels in the bin, ranging from 0 to 1. Figure 2C illustrates
the relative size and location of each bin in CIE Lab space, while 2D is the diagnostic
histogram produced by getLabHist. Each histogram bin represents one of the spheres
in 2C.

> print(image_histogram) 1

L a b Pct 2

1 25.00 -64.25 -64.25 0.00 3

2 75.00 -64.25 -64.25 0.00 4

3 31.46 21.93 -2.78 0.01 5

4 54.81 23.00 -6.52 0.00 6

5 40.14 -6.82 40.77 0.00 7

6 74.86 -26.66 68.94 0.01 8

7 23.72 13.98 18.18 0.15 9

8 77.16 11.82 77.82 0.82 10

The first three columns in the resulting R dataframe represent the average color
coordinates of all pixels in a bin; if no pixels were assigned to that bin (as in bins 1, 2, 4,
and 5), the center of the bin is used. The last column, percent, represents the proportion
of pixels assigned to that bin. For example, the yellow petals of the flower, which fall
into bin 8, have a high average luminance (L = 77.16 on a 0–100 scale), don’t skew
particularly red or green in the a (red-green) channel (11.82 on a -100–100 scale), and are
much more toward the yellow end of the b (blue-yellow) channel (77.82 on a -100–100
scale). They also make up 82% of the image. Histograms are generated for every
provided image and a pairwise distance matrix is computed for the image set, providing a
quantitative measure of color palette similarities.
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Comparison with patternize
We analyzed the same set of images with colordistance and patternize (Van Belleghem
et al., 2017) to illustrate the differences between the two packages. Wherever possible, we
chose options in patternize that were comparable to the methods provided by
colordistance in order to provide a reasonable basis for comparison. Because the dataset in
question (images of five species of parrotfishes) have substantial variety in color, pattern,
and body shape, we used landmark alignment rather than Procrustes alignment of
patterns to align the images.

Because all of our images were lateral views of the fish, we chose 11 homologous
landmarks for alignment in patternize: (1) the center of the eye; (2)–(3) the bases of the
first and last fin rays of the dorsal fin; (4)–(6) the bases of the dorsal, midline, and
ventral fin rays of the caudal fin where they meet the caudal peduncle; (7)–(10) the bases of
the first and last fin rays of the anal and pelvic fins; (11) the anterior tip of the lower
jaw. Landmark locations expressed as pixel coordinates for each image were stored as text
files, and the backgrounds of the images themselves were masked out with white.

To perform pattern analyses, patternize requires either the specification of an
RGB triplet with which to define a pattern or the use of k-means clustering to find patterns
automatically. K-means clustering does not necessarily return a set of colors that are
comparable across images, since not all images in the dataset share a color palette, so we
chose to manually specify RGB colors. Colors were chosen by selecting patches of a
given color in an image and finding the average RGB value, then adjusting the color offset
(i.e., allowed deviance from the specified color) until the full color pattern appeared to be
captured for each image.

The chosen colors were green-blue (RGB: 0.08, 0.47, 0.43), orange (RGB: 0.78, 0.47,
0.31), pink (RGB: 0.82, 0.59, 0.57), and brown (0.57, 0.49, 0.33). The patLanRGB function
was called for the images for each color, and principal component analysis was
performed using patternize’s patPCA function. To combine the four sets of PCA results
into a single distance matrix for comparison with colordistance, the distance between
each pair of images for each color was found by measuring the Euclidean distance between
each pair of principal component scores, and the values of the distance matrices were
then averaged to produce the final set of similarity scores.

To analyze the same dataset in colordistance, images were analyzed in CIE Lab
colorspace with a D65 reference white. The a- and b-channel ranges were restricted to the
range exhibited by the images themselves (see example 2, below), but otherwise, default
parameters were used.

RESULTS
Benchmarking
Earth mover’s distance
We created two simple image sets with known RGB values and proportions (Fig. 3) to test
whether the colordistance application of EMD provides scores that accurately reflect
the amount and similarities of colors across images. The first set (Figs. 3A–3E) varies the
relative proportions of two colors, cyan (RGB triplet of 0, 1, 1) and red (1, 0, 0), and was

Weller and Westneat (2019), PeerJ, DOI 10.7717/peerj.6398 10/31

http://dx.doi.org/10.7717/peerj.6398
https://peerj.com/


designed to test whether the distance scores provided by colordistance reflect the
differences in the quantities of colors in an image set. The second set (Figs. 3F–3J)
samples a gradient from blue (0, 0, 1) to yellow (1, 1, 0), and was designed to test whether
scores reflect the relative similarities of colors in an image set. The pipeline
function (Table 1 and see below) was used to test each set in both RGB and CIE Lab
color spaces:

> imageClusterPipeline(‘Benchmark/Color_quantity’, 1
color.space = “rgb”, distance.method = “emd”) 2

> imageClusterPipeline(‘Benchmark/Color_quantity’, 3
color.space = “lab”, ref.white = “D65”, distance.method =
“emd”) 4

> imageClusterPipeline(‘Benchmark/Color_similarity/’, 5
color.space = “rgb”, distance.method = “emd”) 6

> imageClusterPipeline(‘Benchmark/Color_similarity/’, 7
color.space = “lab”, ref.white = “D65”, distance.method
= “emd”) 8

Distance matrices using EMD were calculated for both RGB space and CIE Lab space.
Because RGB space is a cube with sides of length 1, the maximum EMD score should be the
length of the diagonal of the cube ð ffiffiffi

3
p Þ multiplied by the maximum proportion of

pixels that can be separated by this distance (p = 1). RGB space was used here, because it
has a known maximum score in EMD. CIE Lab space cannot be scaled universally,
partly because the maximum score will depend on the conversion parameters,
and partly because the shape occupied by visible colors in CIE Lab space is asymmetrical
(Figs. 1E and 1F). Scores are typically below 250.

Figure 3 Artificial color images for testing colordistance’s ability to discriminate color quantity
(A–E) and color similarity (F–J). RGB triplets are given in the lower left-hand corners. (A–E) Varies
the relative amounts of red and cyan in each square: (A) Completely cyan; (B) 3

4 cyan,
1
4 red; (C)

1
2 of

each color; (D) 3
4 red,

1
4 cyan; (E) completely red. (F–J) Varies the entire square color on a blue-yellow

gradient. Note that for each set, the extremes (A), (E), (F), and (J) are on opposite ends of RGB
color space. Full-size DOI: 10.7717/peerj.6398/fig-3
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Square color distance matrices are shown in Tables 2 through 5, with distances
expressed as proportions of

ffiffiffi

3
p

for RGB space. The pairs of extremes for each set (A and E;
F and J) scored 1, the maximum distance, as expected for colors on opposite ends of
RGB color space (Tables 3 and 5). For images A–E, the distance scores between image pairs
reflect the proportions of each color in each: Figs. 3A and 3B have a low distance
score of 0.25, reflecting the fact that 14 of B is red while the rest is the same color as A, as are
D and E. Figure 3C is 1

2 of each color, and as expected is half-maximal distance from
each of A and B. Although the EMD scores for CIE Lab space (Table 4) are considerably
higher, the relative proportions are the same, with the lowest score (40) being
approximately 1

4 the maximum score (157), and Figs. 3A and 3E having the highest score.
Similarly, for the color gradient in Figs. 3F–3J, F and J received the maximum

distance score of 1 (Table 4), with images I and J and images F and G receiving lower distance
scores of 0.28 in RGB space, reflecting their closer color similarities. Figure 3H scores as
equidistant from either F or J with a distance score of 0.64 from either extreme. Unlike
in A–E, where C was exactly half-maximal distance from either extreme, the green square in
H is not precisely halfway between F and J in color space, and so has a distance score of >0.5.
The computed color distances reflect the known RGB distances of the squares on a
quantified scale. Note, however, that for CIE Lab space, the maximum distance score is
between Figs. 3F and 3I, rather than F and J. This is because blue and yellow RGB values
occupy opposite ends of the b channel (blue-yellow) of CIE Lab space, and both have
very high luminance values (L = 90 and L = 97 for blue and yellow, respectively).

For both color spaces, EMD scores reflect differences in both amount and similarity of
colors in the images.

Table 3 RGB pairwise colordistance matrix for Figs. 3A–3E normalized to
ffiffiffi

3
p

, the maximum EMD
score for RGB space.

A B C D E

A – – – – –

B 0.25 – – – –

C 0.50 0.25 – – –

D 0.75 0.50 0.25 – –

E 1.0 0.75 0.50 0.25 –

Note:
Maximum score is in bold.

Table 4 CIE Lab pairwise colordistance matrix for Figs. 3A–3E.

A B C D E

A – – – – –

B 40 – – – –

C 78 40 – – –

D 118 78 40 – –

E 157 118 78 40 –

Note:
Not normalized because there is no absolute maximum EMD score in CIE Lab space. Maximum score is in bold.
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Function timing
The most time-consuming functions in colordistance are those that directly process or
handle images, including loading the images, converting between color spaces, and
binning. To time these functions, we generated random square RGB images with sizes
ranging between 100 � 100 and 1,000 � 1,000 pixels. These images were used to time
several colordistance functions using the rbenchmark package (Kusnierczyk, 2012). Results
are reported in Table 6.

The most time-consuming function is convertColorSpace, which converts from RGB
to CIE Lab space, since this is a non-linear transform (Hill, Roger & Vorhagen, 1997).
The default behavior of colordistance is to use a random sample of 100,000
non-background pixels from a given image for CIE Lab conversion, since this typically
takes fewer than 5 s and provides an accurate representation of the whole image.

Examples
Unlike the artificial color images provided above, most real-world data involves comparing
multiple colors across a range of both similarities and quantities. Quantitative, repeatable
measurement and comparison of color profiles in images offers a valuable approach
for answering a range of biological questions, which colordistance aims to make accessible
with minimum requirements. Here, we present two analytical examples illustrating the
different methods in colordistance, and how they can be used to quantitatively test
color hypotheses about mimicry in butterflies and camouflage in flounder fish. The first
example illustrates the utility of EMD as a distance metric in accounting for the
similarity of non-identical colors using k-means clustering. The second example uses
histograms and color range restriction.

Table 6 CIE Lab pairwise colordistance matrix for Figs. 3F–3J.

F G H I J

F – – – – –

G 72 – – – –

H 224 155 – – –

I 247 181 39 – –

J 232 174 73 48 –

Note:
Maximum score is in bold.

Table 5 RGB pairwise colordistance matrix for Figs. 3F–3J, normalized as in Table 3.

F G H I J

F – – – – –

G 0.28 – – – –

H 0.64 0.40 – – –

I 0.86 0.70 0.40 – –

J 1.0 0.86 0.64 0.28 –

Note:
Maximum score is in bold.
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The examples provided here use only one image per category (species, substrate, etc.)
for simplicity and to keep the example datasets small, but a more robust analysis would
use multiple images for each category, averaging color distributions together using
the combineClusters function before computing a pairwise distance matrix.
This approach will allow users to test color hypotheses with more statistically
rigorous approaches.

Both examples use CIE Lab color space rather than RGB space, and use a D65 (indirect
sunlight) standard illuminant to convert between RGB and CIE Lab space.

Example 1: Scoring mimicry in butterflies using earth mover’s distance and
χ2 distance
To illustrate how EMD outperforms more standard distribution comparison metrics, we
used both EMD and v2 distance to compare a set of four Heliconius butterflies with similar
color palettes. Heliconius butterflies have been particularly well studied with respect to the
evolution of color, pattern, and Müllerian mimicry (Kronforst & Papa, 2015; Enciso-
Romero et al., 2017). Here, we illustrate the use of EMDwith mimicry in two color forms of
Heliconius numata and two color forms ofH. melpomene (Figs. 4A–4D), as a way of testing
the color similarity among forms in this system.

K-means clustering is useful for extracting the exact colors of an image when the
number of colors is known in advance, rather than dividing a single patch of color into
multiple bins (Ray & Turi, 1999). In this case, each butterfly appears to have three
distinct colors (Figs. 4A–4D). To generate k-means fit objects for each image, the
getKMeansList function is used, specifying 3 bins. The lower and upper arguments
specify the lower and upper limits for RGB pixels to ignore as background—here,
any pixels with R, G, and B values all between 0.8 and 1 (pale gray to pure white) will be
ignored.

> kmeans_fits <- getKMeansList(“Butterfly_mimicry/”, bins = 3, 1

lower = c(0.8, 0.8, 0.8), upper = c(1, 1, 1), 2

color.space = “lab”, ref.white = “D65”, 3
plotting = TRUE) 4

> kmeans_list <- extractClusters(kmeans_fits, ordering = TRUE) 5

Line 1 returns a list of k-means fit objects using the kmeans function from the stats
package and produces the bar plots shown in Figs. 4A–4D, with upper and lower bounds
set to eliminate white pixels; these diagnostic plots are intended to help users determine
whether the clustering accurately reflects the color distribution in the image. Line 2
extracts the clusters in the same format as getHistList for use with other colordistance
functions; the ordering = TRUE flag uses an application of the Hungarian algorithm
(Jonker & Volgenant, 1986) to order the most similar clusters in the same rows across
dataframes. In this case, it ensures that all of the dark brown or black clusters are
compared, the orange or red clusters are compared, and the yellow clusters are compared,
rather than comparing the yellow cluster from one image to the black cluster from another.
This is the default behavior of the function.
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> emd_distance_matrix <- getColorDistanceMatrix(kmeans_list, method =

“emd”) 1
> chisq_distance_matrix <- getColorDistanceMatrix(kmeans_list, 2

method = “chisq”) 3

Earth mover’s distance takes into account both the location and size of a given cluster
when comparing one set of clusters to another, so that the final distance reflects the
similarity of the clusters in both size and color (Rubner & Tomasi, 2013; Rubner, Tomasi &
Guibas, 2000). w2 distance, a more conventional metric for measuring the similarity of two
distributions, compares bins only on the basis of size. To compare the two methods, the
getColorDistanceMatrix function was used to compute a distance matrix for the
clusters generated above using both EMD and w2 distance. Lines 1 and 2 above produce the
distance matrices in 4M-N. Note that the scales for each metric are different, and we will

Figure 4 Color similarity analysis ofHeliconius butterflies using earth mover’s distance and x2 distance.
(A–L) Butterfly images (A–D) with k-means clustering output as generated by getKmeansList, displayed as
the default bar (E–H) and scaled to size in CIE Lab color space (I–L). (A) and (B) Two color morphs of
H. numata; (C) and (D) two morphs of H. melpomene; (M) and (N) heatmaps of resulting color distance
matrices, clustered by similarity, using earth mover’s distance (M) or v2 distance (N). Dark blue is more
similar, magenta is more dissimilar. Image credit for (A–D): Fig. 1 of Meyer (2006).

Full-size DOI: 10.7717/peerj.6398/fig-4
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only be discussing the relative scores as indicated by the scaling of the colors in the
heatmaps.

For either metric, butterflies C and D have the lowest distance (score as the most
similar). Using w2 distance, however, butterfly A is grouped outside of the rest of
the photographs, because its orange cluster is considerably larger than the orange or red
clusters of any of the other images, and its black cluster is much smaller (Fig. 4F). Using
EMD, butterflies A and B score as more similar to each other than to either of the
H. melpomene forms, because EMD takes into account the fact that the orange clusters for
both images are closer in color space than they are to the red clusters of C and D.
EMD balances color amount and color similarity when providing a distance score.

Example 2: Camouflage color matching in flounder using range-restricted
histograms
The ability of many organisms to display color patterns for camouflage against their
surroundings provides insight into the relationships of organisms with their environments
and with each other (Hanlon, 2007; Brady et al., 2015). Some species are capable of
adaptive camouflage, in which the color pattern can be changed to match that of the
environment or background. In this example, we illustrate the use of restricting the color
binning range to test camouflage efficacy (fish matching the background) in winter
flounder, Pleuronectes americanus (Fig. 5). Both sand and gravel substrates were analyzed,
with an actively camouflaged flounder present on each background.

Because the colors are limited to tans and browns in both images, binning across all of a
given color space will produce a large number of empty bins, and a small number of bins of
extremely similar size and color across all four images, resulting in uninformative
color distance calculations.

In order to produce a more informative histogram, the range of color space in
which to divide pixels can be restricted. Here, inspection of pixel ranges in each color
channel of CIE Lab space revealed that colors across all of the image had a-channel
values between -20 and 40, and b-channel values between 0 and 50. Therefore,
when calling the getLabHistList function to generate CIE Lab histograms for
each image, these ranges were specified for the a.bounds and b.bounds arguments.
Different numbers of bins for each channel—2 for luminance, 3 for a, and 5 for
b—were also specified. Lower and upper ranges for ignoring bright green pixels
are specified.

> flounder_hist <- getLabHistList(flounder, ref.white = “D65”, 1
bins = c(2, 3, 5), 2

lower = c(0, 0.4, 0), upper = c(0.6, 1, 0.6), 3

a.bounds = c(-20, 40), b.bounds = c(0, 50)) 4

> flounder_distance_matrix <- getColorDistanceMatrix(flounder_hist)5

The results of lines 1 and 2 are shown in Figs. 5C–5G. Camouflaged flounder score as
most similar to the substrates on which they were photographed (Fig. 5G), quantitatively
reflecting the species’ well-characterized ability to adjust color and pattern to a variety
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of backgrounds (Akkaynak et al., 2017). In each image, the fish were able to match the
background color profile with the strikingly low distance of 3.05, while the sediments
showed a difference of 9.39, more than three times as different. Study of the ability
of organisms to change color either rapidly in an adaptive camouflage situation, or
more gradually across life history stages may be a valuable application of this method.
Because digital images are a poor proxy for visual systems that differ significantly
from human visual sensitivities, however, caution should be used in interpreting
the results.

In general, colordistance does not provide a categorical classification of images as
similar or different, but instead a quantitative measurement of the degree of difference
between each set of images. The final heatmap clusters images based on color similarity,
but this clustering is intended as a visual tool for inspecting the results. Interpretation of
the quantified differences will depend on the research question.

Pipeline
The results in above examples can also be reproduced in their entirety using
imageClusterPipeline, a function that produces a distance matrix from a set of images
by calling on the binning, matrix calculation, and plotting functions in order, with
specification options for every part of the pipeline.

Figure 5 Background-matching analysis. (A) and (B) Flounder photographed on sand (A) and gravel (B), with fish outlined in cyan; (C–F) color
histograms across a restricted color range in CIE Lab space, generated by getLabList, with insets indicating which part of the image was masked
out in green and bars colored according to the average color of the pixels in each bin; (G) heatmap representation of distance matrix generated using
getColorDistanceMatrix. Photo credit: H. Weller. Full-size DOI: 10.7717/peerj.6398/fig-5
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For example 1:
> imageClusterPipeline(“Butterfly_mimicry/”, 1

lower = c(0.8, 0.8, 0.8), upper = c(1, 1, 1), 2

cluster.method = “kmeans”, kmeans.bins = 3, 3

color.space = “lab”, ref.white = “D65”) 4
For example 2:
> imageClusterPipeline(“Flounder_camouflage/”, 1

lower = c(0, 0.4, 0), upper = c(0.6, 1, 0.6), 2

cluster.method = “hist”, hist.bins = c(2, 3, 5), 3
a.bounds = c(-20, 40), b.bounds = c(0, 50), 4

color.space = “lab”, ref.white = “D65”) 5
This function is convenient for quick tweaks or parameter checks, as the entire analysis

can be run with a single line of code. The intermediate steps, however, may be more helpful
for users performing other analyses.

Comparison with the patternize R package
To illustrate the advantages of colordistance over other approaches for color and pattern
analysis, we analyzed the same set of images of five parrotfish using both colordistance and
patternize, an R package for quantifying color pattern variation (Van Belleghem et al.,
2017). All images were captured under similar conditions against a gray background with a
standard daylight flash. We used the default parameters of colordistance, including
CIE Lab color space, histogram clustering with three bins per channel, and EMD for
calculating color distances.

For a similar comparison with patternize, we used homologous landmarks to align the
images and predefined RGB colors based on earlier color sampling to compare the
patterns of four dominant colors across species: green-blue, orange, pink, and brown
(see methods). We chose to use predefined RGB colors because k-means clustering
required the specification of so many clusters to account for the color variation in the more
colorful images that it broke up dominant colors in other images, and the patterns in the
images were not well-defined enough to use the watershedding approach. We then
pooled the results of the principal component analyses for each color pattern into a single
normalized distance matrix to compare similarity scores from the two packages (Fig. 6).
The image of Scarus flavipectoralis is of an initial phase individual and therefore has
no measurable green-blue coloration, which did not impact the colordistance analysis.
Because patternize analyzes a single color at a time, however, the distance scores for
S. flavipectoralis only include the results for the other three colors, which are present in the
image (Fig. 6D).

The cluster analyses of both packages have relatively similar topologies: S. dimidiatus
and S. psittacus, both of which are predominantly green-blue in color, group together,
as do Chlorurus japanensis and S. tricolor, the two more colorful species. The location of
S. flavipectoralis varies between the analyses: the colordistance analysis places it closer to
C. japanensis and S. tricolor, while patternize places it closer to the predominantly
green-blue species.
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Other differences include that S. flavipectoralis and S. dimidiatus have the highest
distance score in the colordistance analysis, while S. tricolor has the highest overall distance
scores across all comparisons in patternize, with no distances below 90% of the
maximum distance score. The lowest score in the colordistance analysis is between
C. japanensis and S. tricolor, while in patternize it is between S. dimidiatus and S. psittacus
(and C. japanensis and S. tricolor have a fairly high distance score despite grouping
together in the cluster analysis). The numerical scores themselves are not reported, as the
scales are not comparable—the patternize scores come from principal component analysis,
while the colordistance scores come from EMDs in CIE Lab space.

Figure 6 Similarity analyses produced by colordistance (A & C) and patternize (B & D) for the same
set of parrotfish images. (A) and (B) Cluster analyses for color distance matrices produced by color-
distance (A) and patternize (B). Branch lengths are proportional to the distances in the heatmaps below
each dendrogram. Note the change in position of Scarus flavipectoralis. (C) and (D) Heatmap repre-
sentations of normalized distance matrices produced by colordistance (C) and patternize (D), with
species displayed in the same order for comparison between the heatmaps. Photo credit: M. Westneat/J.
T. Williams. Full-size DOI: 10.7717/peerj.6398/fig-6
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In benchmark tests with the rbenchmark package (Kusnierczyk, 2012), colordistance
performed the full analysis significantly faster than patternize (colordistance: 8.0 ± 0.6 s;
patternize: 158 ± 8 s; p < 1.6 � 10-6 using a Student’s t-test), largely because
colordistance discards spatial information, significantly speeding up computation.
Implications of these results for the utility of colordistance compared to patternize
are discussed below.

DISCUSSION
Colordistance provides an accessible tool for making quantitative color comparisons
between images. The goal of the package is to provide a method for comparing both color
quantity and similarity in an objective, repeatable way, without necessarily requiring
homologous colors or even homologous morphologies. Given that many color pattern
analyses do not have a method of scoring colors that are similar but not identical,
colordistance provides a valuable additional analysis whenever there is considerable color
variation across images in a dataset. Results provided by the package can be combined
with other kinds of color and pattern toolkits to provide a comprehensive analysis
of a system. The package is especially useful when considering systems where the colors
across images are not necessarily homologous, and the degree of similarity between
non-identical colors becomes more important. Here, we provide brief guidelines for
choosing between the different color spaces, binning methods, and distance metrics in
colordistance, and discuss how colordistance differs from similar packages and methods.

Choosing parameters
The choices of color space, binning method, and distance metric used to analyze images in
colordistance will all affect the final distance scores. Although default parameters generally
perform well, and provide a reasonable trade-off between precision and efficiency,
choosing appropriate parameters will depend on both the research question and the image
set. Here, we provide brief guidelines for choosing parameters; more exhaustive
discussions of color spaces, binning methods, and distance metrics are available in the
literature (see Hill, Roger & Vorhagen, 1997; Ray & Turi, 1999; Rubner & Tomasi, 2013;
Rubner, Tomasi & Guibas, 2000 and on the colordistance GitHub Pages site,
https://hiweller.github.io/colordistance).

Color spaces
In general, users trade biological relevance for ease-of-use in choosing a color space.
Of the three available color spaces (CIE Lab, RGB, and HSV) in colordistance, CIE Lab is
generally the superior choice for measuring biologically relevant quantitative color
similarities. Unlike RGB and HSV, CIE Lab is intended to be perceptually uniform,
meaning that colors separated by an equal distance in CIE Lab space will be perceived as
equally different. RGB and HSV color spaces are more computationally tractable because
each channel in either color space ranges from 0 to 1; this allows for more consistent
binning, even sampling, and universally scaled color distance measurements, since the
absolute maximum distance will be fixed.
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Although CIE Lab space is generally recommended for making quantitative color
comparisons, it has several disadvantages compared to RGB or HSV. Because most
digital images are stored in RGB format, working in CIE Lab space requires converting
from RGB to CIE Lab. These conversions can be fairly time-consuming (Table 7),
and require the specification of a white reference. It should also be noted that perceptually
uniform color spaces like CIE Lab are designed to be uniform with respect to human color
vision. The scaling in CIE Lab space therefore may not be perceptually uniform for
other organisms, even those with trichromatic vision, because they may have significantly
different peak visual sensitivities (Akkaynak et al., 2017; Hanlon, 2007). CIE Lab will still
provide a closer approximation than a color space that doesn’t attempt perceptual
uniformity, but caution should be used in interpreting the results. One possible
workaround would be to use an image calibration, such as the software suite by Troscianko
& Stevens (2015), to calibrate and normalize camera RAW files for non-human color visual
systems before processing them with colordistance.

If the research question does not hinge on organismal color perception, however,
RGB or HSV color spaces may be no more or less appropriate than a perceptually uniform
color space. For example, if a user is attempting to quantify the proportion of discoloration
on a series of leaves, any color space capable of separating the discolored and normal
portions of the leaves in color space may be equally appropriate for quantifying the images.
In this case, RGB or HSV would work well, and analyses in these color spaces will be
considerably faster than in CIE Lab space. RGB is generally recommended over
HSV because it is based on a tri-stimulus model of human color vision, with red, green,
and blue channels that correspond approximately to human peak cone sensitivities
(Byers, 2006).

Binning methods

Of the two binning methods, histogram binning and k-means clustering, histogram
binning is the default because it makes fewer assumptions about color clustering in an
image. Histogram binning counts how many pixels fall into each of a set of predetermined
bounds, without the need for iteration, making it considerably faster than k-means
clustering. Because the bins have the exact same bounds for each image, comparing bins
across images is fairly straightforward, and empty bins account for the lack of specific
colors in images. Histogram binning also has the advantage of retaining details, such as
small accent colors in an image, rather than collapsing them into a larger cluster.

Table 7 Timing for the most time-consuming functions of colordistance.

Function Coefficient R2 p-value

Loading images loadImage 0.24 s pixels-6 0.97 <0.01

Converting from RGB to CIE Lab convertColorSpace 57.3 s pixels-6 0.99 <0.01

Histogram binning getLabHist 1.43 s pixels-6 0.97 <0.01

k-means binning getKMeanColors 25.4 s pixels-6 0.97 <0.01

Note:
A total of five runs of each analysis were performed on an early 2015 MacBook Pro with a 2.7 GHz Intel Core i5
processor.
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However, it risks dividing up a single color into multiple bins, and can result in a large
number of empty bins if the color range is not restricted (but see the flounder camouflage
example above). Similarly, two different colors with pixels that happen to fall within
the same bin will be averaged into a single color.

K-means clustering typically returns one cluster per dominant color in an image,
provided an accurate number of clusters was specified (see Endler (2012) for methods of
estimating the number of color classes). This can be useful when comparing a set of
organisms or objects which have the same number of color classes, but different colors or
amounts (see Heliconius example above). However, if users are attempting to compare
objects with different numbers of colors, quantitative comparisons using k-means clusters
requires either: (1) specifying a different number of clusters for each image and generating
empty bins for the unmatched colors between images, or (2) specifying the highest
required number of clusters for all images, typically breaking up colors across multiple
clusters.

Distance metrics

Colordistance provides four metrics for quantifying the similarity of binned images, but
EMD is recommended unless users have a specific reason for using one of the other three.
Unlike the binning methods or color space, any of the given metrics will take
approximately the same time to implement, since they require relatively little calculation
unless a set of images is extremely large or uses hundreds or thousands of bins per image.

Of the four metrics, EMD is recommended for making general comparisons, as it
takes both color similarity (relative location in color space) and amount (cluster size) into
account to produce a single distance measurement for every pair of images in the dataset.
EMD measures the difference between two images as a transport cost—how much work
is required to reshape the distribution of image A so it resembles that of image B, or vice
versa? Clusters of extremely different size require moving a large amount of data, and
clusters in different parts of color space require moving data a long distance. Either one
will increase the EMD, so that the highest EMD is the result of moving all of the data as
far as possible across color space (e.g., an all-black cluster to an all-white cluster has
to move 100% of the data the longest possible distance across RGB space).

Earth mover’s distance typically provides the best balance of color proportion and type
in a set of images, and the resulting distance matrices reflect intuitive similarities in images
(Rubner & Tomasi, 2013).

w2 distance compares clusters only on the basis of size, even if two bins are slightly
different colors (compare Figs. 4E and 4F). Color similarity is still taken into account
in that using the same set of bins or setting ordering = TRUE for extractClusters()
will guarantee that bins are comparable, but the relative color similarity of two bins is
ignored beyond this. In practice, w2 distance often performs about as well as EMD,
except in cases where similar colors are placed into different bins, or have clusters of
substantially different sizes. If users want to ignore these color differences, however—for
example, when comparing images with the same expected color classes—w2 distance is
a viable choice.
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The other two metrics, described in the “Color Distance Metrics” vignette in the
package, calculate a distance score based on either (1) only color similarity, ignoring bin
size, or (2) combining the size and color similarity scores according to specified
weights. Although these metrics may be useful for certain questions or datasets, they don’t
perform as well as either EMD or v2 for general use, and are included only for
specialized cases.

Comparison with existing methods
Although color is notoriously subjective, it is also an indispensable tool for analyzing
images. Computational solutions offer a repeatable, objective method for quantifying color
with open-source tools, providing a statistically rigorous alternative to subjective analysis
of images without requiring additional equipment beyond a personal computer.
Colordistance is not intended as a superior replacement for more comprehensive image
analysis tools, but as a complementary, easy-to-use option for including an analysis
of color similarity that makes no assumptions about the homology of the images provided.

Comparison with patternize

Patternize uses either k-means, watershedding, or manual color specification approaches
to segment images of organisms, and compares shapes of color patches to quantify
the pattern similarities across a set of images. This method provides a rigorous comparison
of pattern based on color, but has a number of limitations. Patternize works best
when (1) the patterns share a relatively limited color palette across all objects, (2) the
objects being compared have sharply defined color patterns, and (3) the objects have
homologous shapes that can be aligned using a shape outline or a series of landmarks. It is
therefore an extremely robust approach for comparing minor variations in color patterns
within populations or between closely related species that share the same dominant
colors (Kronforst & Papa, 2015).

In comparing parrotfish species, however, many of these conditions were fully or
partially violated: some species are nearly uniform in color, while others display many
distinct colors; many of the patterns are not sharply defined; and while species do share
homologous landmarks, they vary considerably in their actual proportions, meaning that
landmark alignment doesn’t ensure that the patterns themselves are actually aligned
(Fig. 6). As a result, patternize alone cannot account for much of the interesting variation
in this small example dataset. The initial phase S. flavipectoralis, for example, is almost
entirely brown with an orange dorsal fin, yet it scores as relatively similar to the
images of S. psittacus and S. dimidiatus, both of which are almost entirely green-blue.
This is largely because they cluster together in the principal component analysis for the
pink and orange patterns (C. japanensis and S. tricolor have substantial pink or orange on
their flanks, while the other images do not), and because patternize does not account
for the similarity of colors in different patterns.

In this case, even though the light brown coloration that dominates S. flavipectoralis is
closer in color to the pinks and oranges of C. japanensis and S. tricolor, it groups as more
similar to the green-blue fishes because all colors were treated as equally different.
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Similarly, S. tricolor scores as highly dissimilar from all of the other fishes, largely because
much of its flank is classified as orange, while the other species have only orange accents;
this ignores the similarity of the orange coloration. Moreover, many of the pattern
elements themselves are not shared across the images—most of the fishes have a long stripe
of some color on the dorsal fin, but only S. dimidiatus and C. japanensis have a dorsal
saddle (in different colors), for example, which is not well-defined on either fish.

Colordistance, by contrast, takes into account the similarity and amount of each color in
the images, while ignoring spatial information. While this fails to account for the shared
pattern motifs, this method does account for the similarity of colors without the
assumption that any set of colors is identical across images. Although the dominant brown
coloration of S. flavipectoralis is not identical to the predominantly orange S. tricolor
or the even more colorful C. japanensis, the similarity of their colors means that
S. flavipectoralis scores as more similar to these two fishes than to either of the green-blue
species, because orange and brown are much closer in CIE Lab space than brown and
green-blue. For the same reasons, colordistance scores S. tricolor as quite similar to
C. japanensis and S. flavipectoralis.

Neither of these analyses is necessarily superior to the other: they each reflect a different
kind of information about the colors and patterns present in the images. The use of one
over the other depends on the dataset and the research question. In this example, the
colordistance analysis is more appropriate for questions about which species share similar
color palettes despite wide variation in the actual pattern motifs displayed. An analysis
with patternize would be more appropriate for answering questions about the similarity of
the pattern motifs, perhaps ignoring color (in order to, e.g., compare dorsal saddles or
facial markings of different colors). Interestingly, the similarity analyses produced by
both methods are incongruent with parrotfish phylogeny (Smith et al., 2008), supporting
that color on coral reef fishes is a highly adaptive trait (Hemingson et al., 2018). For broader
comparative studies, such as comparing the diversity of shape and color across a large
phylogeny or within an environment (Marshall et al., 2003), users may want to include an
analysis of color similarity in addition to pattern similarity. Because both packages are
available in R and can be used on the same datasets, users could combine information from
both to weight both color and pattern similarity, for example, using colordistance to
analyze the pattern similarity of patterns identified by patternize.

Color analyses with popular software
There are a number of computational tools that analyze color in digital images. The most
popular tools for scientific analyses include the color plugins for Fiji/ImageJ (Schindelin
et al., 2012), the MATLAB image processing toolkit (MATLAB Image Processing
Toolbox, 2017), or the scikit-image and OpenCV libraries in Python (Van Der Walt et al.,
2014; Bradski, 2000).

The image processing libraries available in MATLAB, Python, and C++ are geared
largely toward explicit computer vision applications, rather than comparative pipelines.
These libraries could be used to reconstruct any of the methods employed by colordistance
by combining available clustering algorithms and appropriate distance metrics.
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However, the image analysis and statistical experience required to construct the pipeline
from scratch may be prohibitive. Similarly, while ImageJ could be used to achieve the
same results as colordistance, this would require images to be analyzed one at a time, and
then for the histogram results to be analyzed in a separate program. This same result
is achieved with a single line of code in colordistance, making it easier to test different color
spaces, binning methods, and distance metrics, and to work with considerably larger
image sets.

Colordistance is an R package, so it can easily be combined with other R packages and
tools for color analysis or more general statistics. Because R is among the most popular
coding languages in biological research, making these functions available in R allows
users to make use of them without having to learn additional coding languages or
to transfer the results of different analyses into new coding environments
(R Core Team, 2018).

Other color comparison methods
Several other methods for comparing organismal color and pattern already exist, either as
detailed protocols or software pipelines and packages.

A number of other R packages offer complementary functionality, including
RImagePallette (extracts colors from images; Carlson (2016)), imager (a set of image
processing tools; Barthelme (2017)), colorspace (mapping between color palettes; Zeileis,
Hornik & Murrell (2009)), and pavo (spectral analysis; Maia et al. (2013)).

Endler (2012) provides a comprehensive analysis pipeline from image acquisition to
color pattern geometry comparison. This method and similar ones are typically designed
to answer specific questions about signaling, mate attraction, predator/prey camouflage,
or pollination. A variety of tools could be used for different parts of the pipeline,
including patternize and the other software tools mentioned above. Colordistance can be
used as part of the analysis, specifically for determining and binning pixels into
different categories, but the package isn’t designed to replicate or replace the spatial
components of the analysis.

Instead, colordistance is intended to be one part of a larger color analysis toolbox, and
can be used in conjunction with image segmentation or patch comparison methods to
provide a more complete picture of how colors and patterns vary across images.

Advantages and drawbacks
The major advantage of colordistance is that it has the same requirements as manual
digital image classification (digital images and a computer), but provides a consistent,
repeatable, objective alternative to subjective analysis, with a low barrier to entry.
Because the analysis pipeline is reasonably fast and includes default parameters, an initial
analysis is fairly quick and can be run in as little as a single line of code. This allows
users to check for potential issues and tweak parameters to suit a dataset without spending
hours or days re-running the analysis.

Users may employ multiple R packages for color processing, analysis and quantification
of both color profile and pattern for a wide range of applications in biology.
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The colordistance package and tutorials, in combination with these other packages,
provides an accessible method for researchers with a set of color images to perform a
quantitative analysis of color similarity, all within the R environment.

However, colordistance is not a comprehensive analytical tool, and most notably does
not perform any spatial analysis when considering the amount and similarity of colors in
images. This means that two images with the exact same colors but completely
different spatial distributions will receive the same similarity score as images with the same
spatial distribution of colors. If pattern is a very important aspect of the analysis,
then colordistance alone is not a sufficient tool, and should only be used as a complement
to tools that are intended for spatial pattern analyses, such as patternize (Van Belleghem
et al., 2017) or the method detailed by Endler (2012).

The package is also currently limited to a three-channel model, as all available color
spaces in the package contain only three channels. This works well enough for most digital
images, which are stored in a three-channel format, and for making comparisons
through the lens of human vision, but it is not applicable for many animal models of color
vision, since it is tailored for the visual sensitivities of human beings (Endler & Mielke,
2005, Akkaynak et al., 2017). Combining digital images with an ultraviolet sensor
and using calibration tools to combine these channels (Troscianko & Stevens, 2015)
is an excellent first step before attempting to use colordistance.

CONCLUSION
Consistent, objective color comparisons are ideal for studying color in biology.
Quantitative analyses are reproducible and scalable across datasets, without being prone to
the subjective, variable, or inconsistent analyses that can result from more conventional
categorizations of color. The examples presented here, illustrate how colordistance
can produce quantitative answers to comparative questions about color in a flexible,
user-friendly format. It is important to note that full color analyses would involve large
samples of images (rather than the individual comparisons shown here) with appropriate
statistical analyses of color profiles and distance metrics. The package provides a
dynamic method of making quantified color comparisons between objects and computing
distance matrices of color variation among objects. Color profile data and distance
matrices are easily saved for incorporation into other R packages for statistics or
phylogenetic comparative methods.

The method developed here is currently being used to analyze and compare the color
palettes among families of coral reef fishes and other organisms, and should be applicable
to analyses with a wide range of objectives. Although the package was developed for
biological analysis, it can be used for any image set that requires quantitative color
comparisons, from camouflage efficacy to trends in apparel. Current uses include an auto
safety application, a study of soil color, a dominance study in lizards, and quantification of
areas of fungal infection on plant leaves and bat wings.

Future development of the colordistance package will include expansion to include
additional color channels (especially an ultraviolet channel), integration with
landmark-based morphometric data sets, and user tools for partitioning objects into
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different regions. The analysis pipeline presented here could also be combined with pattern
analysis software, such as the patternize R package (Van Belleghem et al., 2017), to compare
both color and pattern similarities.
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