UDC 517.983

V. M. Bruk

GENERALIZED RESOLVENTS OF OPERATORS GENERATED BY INTEGRAL EQUATIONS

Abstract. We define a minimal operator L_0 generated by an integral equation with an operator measure and give a description of the adjoint operator L_0^* . We prove that every generalized resolvent of L_0 is an integral operator and give a description of boundary value problems associated to generalized resolvents.

Key words: *integral equation, Hilbert space, symmetric operator, generalized resolvent, boundary value problem*

2010 Mathematical Subject Classification: 46G12, 45N05, 47A10

1. Introduction. In [13], A.V. Straus described generalized resolvents of a symmetric operator generated by formally selfadjoint differential expression in the scalar case. In [4] these results were extended to the operator case. Further, the generalized resolvents of differential operators were studied in many works (a detailed bibliography is available, for example, in [10], [12]).

In this paper, we consider the integral equation

$$y(t) = x_0 - iJ \int_a^t d\mathbf{p}(s)y(s) - iJ \int_a^t f(s)ds,$$
(1)

where y is an unknown function; $f \in L_2(H; a, b)$, J is an operator in a separable Hilbert space $H, J = J^*, J^2 = E$ (E is the identical operator); **p** is an operator-valued measure defined on Borel sets $\Delta \subset [a, b]$ and taking values in the set of linear bounded operators acting in $H; \int_{t_0}^t$ stands for $\int_{[t_0t)}$ if $t_0 < t$, for $-\int_{[t_0t)}$ if $t_0 > t$, and for 0 if $t_0 = t$. We assume that

(CC) BY-NC

[©] Petrozavodsk State University, 2018

the measure **p** is self-adjoint, and **p** has a bounded variation, and the set $S_{\mathbf{p}}$ of single-point atoms of measure **p** can be arranged in the form of an increasing sequence.

We define the minimal operator L_0 generated by equation (1) and give a description of the adjoint operator L_0^* . We prove that every generalized resolvent of L_0 is an integral operator. Unlike differential operators, the domain and the range of the characteristic function of a generalized resolvent are spaces of sequences. Moreover, we give a description of generalized resolvents in terms of boundary value problems.

2. Preliminary assertions. Let H be a separable Hilbert space with scalar product (\cdot, \cdot) and norm $\|\cdot\|$. We consider a function $\Delta \to \mathbf{P}(\Delta)$ defined on Borel sets $\Delta \subset [a, b]$ and taking values in the set of bounded linear operators acting in H. The function \mathbf{P} is called an operator measure on [a, b] (see, e. g., [3, ch. 5]) if it is zero on the empty set and the equality $\mathbf{P}(\bigcup_{n=1}^{\infty} \Delta_n) = \sum_{n=1}^{\infty} \mathbf{P}(\Delta_n)$ holds for disjoint Borel sets Δ_n , where the series converges weakly. Further, we extend any measure \mathbf{P} on [a,b] to a segment $[a, b_0]$ ($b_0 > b$) letting $\mathbf{P}(\Delta) = 0$ for all Borel sets $\Delta \subset (b, b_0]$.

By $\mathbf{V}_{\Delta}(\mathbf{P})$ we denote $\mathbf{V}_{\Delta}(\mathbf{P}) = \rho(\Delta) = \sup \sum_{j} ||\mathbf{P}(\Delta_{j})||$, where the supremum is taken over finite sums of disjoint Borel sets $\Delta_{j} \subset \Delta$. The number $\mathbf{V}_{\Delta}(\mathbf{P})$ is called variation of the measure \mathbf{P} on the Borel set Δ . Suppose that the measure \mathbf{P} has the bounded variation on [a,b]. Then for ρ -almost all $\xi \in [a,b]$ there exists an operator function $\xi \to \Psi_{\mathbf{P}}(\xi)$ such that $\Psi_{\mathbf{P}}$ possesses the values in the set of bounded linear operators acting in H, $||\Psi_{\mathbf{P}}(\xi)|| = 1$, and the equality $\mathbf{P}(\Delta) = \int_{\Delta} \Psi_{\mathbf{P}}(\xi) d\rho$ holds for each Borel set $\Delta \subset [a,b]$ ([3, ch. 5]). A function h is integrable with respect to the measure \mathbf{P} on a set Δ if there exists the Bochner integral $\int_{\Delta} \Psi_{\mathbf{P}}(t)h(t)d\rho = \int_{\Delta} (d\mathbf{P})h(t)$. Then the function $y(t) = \int_{t_0}^t (d\mathbf{P})h(s)$ is continuous from the left.

Denote by $S_{\mathbf{P}}$ a set of single-point atoms of the measure \mathbf{P} (i.e., a set $t \in [a, b]$ such that $\mathbf{P}(\{t\}) \neq 0$). The set $S_{\mathbf{P}}$ is at most countable.

In following Lemma 1, \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{q} are operator measures having bounded variations and taking values in the set of linear bounded operators acting in H. Suppose that the measure \mathbf{q} is self-adjoint, i. e., $(\mathbf{q}(\Delta))^* = \mathbf{q}(\Delta)$ for each Borel set $\Delta \subset [a, b]$. We assume that these measures are extended to the segment $[a, b_0] \supset [a, b_0) \supset [a, b]$ in the manner described above.

Lemma 1. [8] Let f, g be functions integrable on $[a,b_0]$ with respect to the measure \mathbf{q} . Then any functions

$$y(t) = y_0 - iJ \int_{t_0}^t d\mathbf{p}_1(s)y(s) - iJ \int_{t_0}^t d\mathbf{q}(s)f(s),$$
$$z(t) = z_0 - iJ \int_{t_0}^t d\mathbf{p}_2(s)z(s) - iJ \int_{t_0}^t d\mathbf{q}(s)g(s) \quad (a \le t_0 < b_0, \ t_0 \le t \le b_0)$$

satisfy the following formula (analogous to the Lagrange one):

$$\int_{c_{1}}^{c_{2}} (d\mathbf{q}(t)f(t), z(t)) - \int_{c_{1}}^{c_{2}} (y(t), d\mathbf{q}(t)g(t)) = (iJy(c_{2}), z(c_{2})) - \\
- (iJy(c_{1}), z(c_{1})) + \int_{c_{1}}^{c_{2}} (y(t), d\mathbf{p}_{2}(t)z(t)) - \int_{c_{1}}^{c_{2}} (d\mathbf{p}_{1}(t)y(t), z(t)) - \\
- \sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{p}_{2}} \cap [c_{1}, c_{2})} (iJ\mathbf{p}_{1}(\{t\})y(t), \mathbf{p}_{2}(\{t\})z(t)) - \\
- \sum_{t \in \mathcal{S}_{\mathbf{q}} \cap \mathcal{S}_{\mathbf{p}_{2}} \cap [c_{1}, c_{2})} (iJ\mathbf{q}(\{t\})f(t), \mathbf{p}_{2}(\{t\})z(t)) - \\
- \sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{q}} \cap [c_{1}, c_{2})} (iJ\mathbf{p}_{1}(\{t\})y(t), \mathbf{q}(\{t\})g(t)) - \\
- \sum_{t \in \mathcal{S}_{\mathbf{q}} \cap [c_{1}, c_{2})} (iJ\mathbf{q}(\{t\})f(t), \mathbf{q}(\{t\})g(t)), \quad t_{0} \leq c_{1} < c_{2} \leq b_{0}. \quad (2)$$

Let a segment $[l_1, l_2] \subset [a, b_0]$. We consider a set of Borel measurable functions, ranging in H, bounded on $[l_1, l_2]$, continuous from the left, and constant on $[l_1, l_2] \cap (b, b_0]$. We introduce the norm $||u||_{[l_1, l_2]} = \sup_{t \in [l_1, l_2]} ||u(t)||$ on this set and obtain a Banach space denoted by $\widetilde{C}[l_1, l_2]$.

Theorem 1. [7] For any function $g \in \widetilde{C}[a, b_0]$ there exists a unique solution of the equation

$$y(t) = \int_{t_0}^t d\mathbf{p}(\xi) y(\xi) + g(t), \quad a \le t_0 \le b_0,$$
(3)

belonging to the space $\widetilde{C}[t_0 - \delta, b_0]$, where $a \leq t_0 < b_0$, $\delta = \delta(t_0) > 0$ is small enough if $t_0 > a$ and $\delta = 0$ if $t_0 = a$, the measure **p** has the bounded variation on [a, b]. **Corollary 1**. Suppose $t_0 = a$. Then for any function $g \in \widetilde{C}[a, b_0]$ there exists a unique solution of equation (3) belonging to the space $\widetilde{C}[a, b_0]$.

Remark 1. In general, a solution of (3) can be non-extendable to the left (see [7]). However, if the measure **p** in (3) is continuous, then a solution can be extended to the left up to the point *a* and this extension is unique.

Suppose further that \mathbf{p} is a self-adjoint measure with the bounded variation. We consider the equation

$$y(t) = x_0 - iJ \int_a^t d\mathbf{p}(s)y(s) - iJ\lambda \int_a^t y(s)d\mu(s) - iJ \int_a^t f(s)d\mu(s), \qquad (4)$$

where $\lambda \in \mathbb{C}$; μ is the usual Lebesque measure on [a, b] $(\mu([\alpha, \beta)) = \beta - \alpha$ for all $\alpha, \beta \in [a, b], \alpha < \beta$) extended to $[a, b_0]$ by the equality $\mu(\Delta) = 0$ for each Borel set $\Delta \subset (b, b_0]$; $x_0 \in H$; $f \in L_2(H; a, b)$ and f = 0 on $(b, b_0]$.

We construct the continuous measure \mathbf{p}_0 (i.e., a measure without single-point atoms) from the measure \mathbf{p} in the following way. We set $\mathbf{p}_0(\{t_k\})=0$ for $t_k \in S_{\mathbf{p}}$ and we set $\mathbf{p}_0(\Delta) = \mathbf{p}(\Delta)$ for all Borel sets such that $\Delta \cap S_{\mathbf{p}} = \emptyset$. The measure \mathbf{p}_0 is self-adjoint. Replace \mathbf{p} by \mathbf{p}_0 in (4) to obtain the equation

$$y(t) = x_0 - iJ \int_a^t d\mathbf{p}_0(s)y(s) - iJ\lambda \int_a^t y(s)d\mu(s) - iJ \int_a^t f(s)d\mu(s).$$
(5)

By Corollary 1, it follows that equations (4), (5) have unique solutions.

Denote by W the operator solution of the equation

$$W(t,\lambda)x_0 = x_0 - iJ\int_a^t d\mathbf{p}_0(s)W(s,\lambda)x_0 - iJ\lambda\int_a^t W(s,\lambda)x_0d\mu(s),$$

where $x_0 \in H$. In Lemma 1 we take $\mathbf{p}_1 = \mathbf{p}_0 + \lambda \mu$, $\mathbf{p}_2 = \mathbf{p}_0 + \overline{\lambda}\mu$, $\mathbf{q} = \mu$, $f = g = 0, \ y(t) = W(t, \lambda)x_0, \ z(t) = W(t, \overline{\lambda})z_0, \ x_0, z_0 \in H$. Since the measure \mathbf{p}_0 is self-adjoint and the equality $\mathcal{S}_{\mathbf{p}_0} = \emptyset$ holds, we obtain

$$(iJW(c_2,\lambda)x_0,W(c_2,\overline{\lambda})z_0) - (iJW(c_1,\lambda)x_0,W(c_1,\overline{\lambda})z_0) = 0$$

for all c_1, c_2 $(a \leq c_1 \leq c_2 \leq b_0)$. In this equality we take $c_2 = t, c_1 = a$. Then we get

$$W^*(t,\lambda)JW(t,\overline{\lambda}) = J.$$
(6)

The functions $t \to W(t, \lambda)$ and $t \to W^{-1}(t, 26\lambda) = JW^*(t, \overline{\lambda})J$ are continuous with respect to the uniform operator topology. Consequently, there exist constants $\alpha > 0$, $\beta > 0$ such that the inequality

$$\alpha \|x\|^2 \leqslant \|W(t,\lambda)x\|^2 \leqslant \beta \|x\|^2 \tag{7}$$

holds for all $x \in H$, $t \in [a, b_0]$, $\lambda \in C \subset \mathbb{C}$ (C is a compact set). The function $\lambda \to W(t, \lambda)$ is holomorphic for any fixed t.

Lemma 2. [7, 8] The function y is a solution of the equation (5) if and only if y has the form

$$y(t) = W(t,\lambda)x_0 - W(t,\lambda)iJ\int_a^t W^*(s,\overline{\lambda})f(s)d\mu(s),$$

where $x_0 \in H$, $a \leq t \leq b_0$.

3. Linear operators generated by the integral equation. In this section, we introduce a minimal operator L_0 generated by equations (4), (1) and give a description of the adjoint operator L_0^* . Further the following notation is used: $\mathcal{D}(A)$ is the domain of an operator A, $\mathcal{R}(A)$ is the range of A. Since all considered operators are linear, we shall often omit the word «linear».

Let $L_2(H, \mu; a, b_0)$ be the space of μ -measurable functions y with values in H such that $\int_a^{b_0} ||y(t)||^2 d\mu(t) < \infty$. This space coincides with the space $\mathfrak{H} = L_2(H; a, b)$ since $\mu(\Delta) = 0$ for each Borel set $\Delta \subset (b, b_0]$.

Let us define the minimal operator L_0 in the following way. The domain $\mathcal{D}(L_0)$ consists of functions $y \in \mathfrak{H}$ for each of which there exists a function $f \in \mathfrak{H}$ such that (4) holds with $\lambda = 0$ and y satisfies the conditions

$$y(a) = y(b_0) = y(t_k) = 0, \ t_k \in \mathcal{S}_{\mathbf{p}}.$$
 (8)

Then we set $L_0 y = f$. By Lemma 1, the operator L_0 is symmetric. If equalities (4), (8) hold, then $y \in \mathcal{D}(L_0 - \lambda E)$ and $(L_0 - \lambda E)y = f$ ($\lambda \in \mathbb{C}$).

We claim that if $y \in \mathcal{D}(L_0)$ then y(t) = 0 for all $t \in [b, b_0]$. Indeed, $\lim_{t\to b+0} y(t) = 0$ since $y(b_0) = 0$. If $b \notin S_{\mathbf{p}}$, then y(b) = 0. If $b \in S_{\mathbf{p}}$, then equality (8) implies y(b) = 0. Since $\mu(\Delta) = 0$ for each Borel set $\Delta \subset (b, b_0]$, we obtain the desired assertion.

It follows from (8), that y(a) = 0. In this case y is independent of the condition $a \in S_p$. Thus the operator L_0 does not change if the measure **p** is replaced by a measure **p**₁ such that **p**₁({*a*}) = **p**₁({*b*}) = 0 and **p**₁(Δ) = **p**(Δ) for all Borel sets $\Delta \subset [a, b] \setminus \{a, b\}$. Therefore, without loss of generality, it can be assumed that $b_0 = b$, and **p**({*a*}) = **p**({*b*}) = 0 (i. e., $a, b \notin S_p$), and μ is the usual Lebesque measure on [a, b]. Further we write *ds* instead of $d\mu(s)$.

Remark 2. It is possible that $\mathcal{D}(L_0) = \{0\}$. An example is available in [7]. In this case $L_0^* = \mathfrak{H} \times \mathfrak{H}$, i. e., L_0^* is a linear relation. (The terminology on linear relations can be found, for example, in [2]).

Lemma 3. [8] The operator L_0 is closed. The function y belongs to the domain $\mathcal{D}(L_0 - \lambda E)$ if and only if the equalities

$$y(t) = W(t,\lambda)iJ\int_{a}^{t} W^{*}(s,\overline{\lambda})f(s)ds,$$
$$y(s_{k}) = W(s_{k},\lambda)iJ\int_{a}^{s_{k}} W^{*}(s,\overline{\lambda})f(s)ds = 0$$

hold, where $s_k \in \mathcal{S}_{\mathbf{p}} \cup \{b\}, f = (L_0 - \lambda E)y.$

Corollary 2. The function $f \in \mathfrak{H}$ belongs to the range $\mathcal{R}(L_0 - \lambda E)$ if and only if f satisfies the condition

$$\int_{a}^{s_{k}} W^{*}(s,\overline{\lambda})f(s)ds = 0$$
(9)

for all $s_k \in \mathcal{S}_{\mathbf{p}} \cup \{b\}$.

Remark 3. Condition (9) is equivalent to the following:

$$\int_{s_{k-1}}^{s_k} W^*(s,\overline{\lambda}) f(s) ds = 0, \quad s_k \in \mathcal{S}_{\mathbf{p}} \cup \{a,b\}.$$
 (10)

Further, suppose that the set $S_{\mathbf{p}}$ of single-point atoms $\{t_k\}$ can be arranged in the ascending order $t_1 < t_2 < ... < t_k < ...$ and the limit point is b. By χ_B denote the characteristic function of a set B.

Lemma 4. The domain $\mathcal{D}(L_0)$ of the operator L_0 is dense in \mathfrak{H} .

Proof. Suppose that there exists a function $h \in \mathfrak{H}$ such that the equality $(h,z)_{\mathfrak{H}} = 0$ holds for all $z \in \mathcal{D}(L_0)$. By y denote a solution of equation (5), in which $\lambda = 0$ and the function f is replaced by h. Suppose that

 $z \in \mathcal{D}(L_0)$ and denote $z_k(t) = \chi_{[t_{k-1};t_k]} z$ $(t_0 = a, t_k \in \mathcal{S}_{\mathbf{p}}, k \in \mathbb{N}, \mathbb{N}$ is the natural number set). It follows from Lemma 3 that $z_k \in \mathcal{D}(L_0)$. We apply Lagrange's formula (2) to the functions y, h and z_k , $L_0 z_k$ for $c_1 = t_{k-1}$, $c_2 = t_k$, $\mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_0$, $\mathbf{q} = \mu$. Then we obtain $(y, L_0 z_k)_{\mathfrak{H}} = (h, z_k)_{\mathfrak{H}} = 0$. Hence,

$$(y, L_0 z_k)_{\mathfrak{H}} = \int_{t_{k-1}}^{t_k} (y(s), (L_0 z_k)(s)) ds = 0$$

for each function $z \in \mathcal{D}(L_0)$. By (7), it follows that a set of functions $t \to W(t, 0)c_k$ is closed in the space $L_2(H; [t_{k-1}, t_k])$, where $c_k \in H$. Using corollary 2 and equality (10), we obtain that there exists $c_k \in H$ such that $y(t) = W(t, 0)c_k$ ($t_{k-1} \leq t \leq t_k$). Lemma 2 implies h(t) = 0 for $t \in [t_{k-1}, t_k]$. Since k is arbitrary ($k \in \mathbb{N}$), we get h = 0. \Box

We denote $w_k(t,\lambda) = \chi_{[t_{k-1};t_k)}(t)W(t,\lambda)W^{-1}(t_{k-1},\lambda), t_0 = a, k \in \mathbb{N}$. Let $\widetilde{W}_n(t,\lambda) = (w_1(t,\lambda),\ldots,w_n(t,\lambda))$ be the operator one-row matrix. For fixed t, λ , the operator $\widetilde{W}_n(t,\lambda)$ maps H^n to H continuously; here H^n is the Cartesian product of n copies of H. It is convenient to treat elements from H^n as one-column matrices, and to assume that

$$\widetilde{W}_n(t,\lambda)\widetilde{\xi}_n = \sum_{k=1}^n w_k(t,\lambda)\xi_k,$$

where we denote $\widetilde{\xi}_n = \operatorname{col}(\xi_1, \dots, \xi_n) \in H^n, \, \xi_k \in H.$

Let $\ker_k(\lambda)$ be a linear space of functions $t \to w_k(t,\lambda)\xi_k, \xi_k \in H$. By (7), it follows that $\ker_k(\lambda)$ is closed in \mathfrak{H} . The spaces $\ker_k(\lambda)$ and $\ker_j(\lambda)$ are orthogonal for $k \neq j$. We denote $\mathcal{K}_n(\lambda) = \ker_1(\lambda) \oplus \ldots \oplus \ker_n(\lambda)$. Obviously, $\mathcal{K}_n(\lambda) \subset \mathcal{K}_m(\lambda)$ for n < m.

Lemma 5. The set $\cup_n \mathcal{K}_n(\lambda)$ is dense in ker $(L_0^* - \lambda E)$.

Proof. It follows from Corollary 2 and (10) that the range $\mathcal{R}(L_0 - \overline{\lambda}E)$ consists of functions $f \in \mathfrak{H}$ orthogonal to functions of the form $w_k(\cdot, \lambda)\xi_k$, where $\xi_k \in H$, $k \in \mathbb{N}$. The equality $\ker(L_0^* - \lambda E) \oplus \mathcal{R}(L_0 - \overline{\lambda}E) = \mathfrak{H}$ implies the desired assertion. The Lemma is proved. \Box

Denote the operator $\widetilde{\xi}_n \to \widetilde{W}_n(\cdot, \lambda)\widetilde{\xi}_n$ ($\widetilde{\xi}_n \in H^n$) by $\mathcal{W}_n(\lambda)$. The operator $\mathcal{W}_n(\lambda)$ maps H^n continuously and one-to-one onto $\mathcal{K}_n(\lambda) \subset \mathfrak{H}$. Consequently, the adjoint operator $\mathcal{W}_n^*(\lambda)$ maps \mathfrak{H} onto H^n continuously. We find the form of the operator $\mathcal{W}_n^*(\lambda)$. For all $\widetilde{\xi}_n \in H^n$, $f \in \mathfrak{H}$, we have

$$(f, \mathcal{W}_n(\lambda)\,\widetilde{\xi}_n)_{\mathfrak{H}} = \int_a^b (f(s), \widetilde{W}_n(s, \lambda)\widetilde{\xi}_n)ds =$$
$$= \int_a^b (\widetilde{W}_n^*(s, \lambda)f(s), \widetilde{\xi}_n)ds = (\mathcal{W}_n^*(\lambda)f, \widetilde{\xi}_n).$$

Therefore,

$$\mathcal{W}_{n}^{*}(\lambda)f = \int_{a}^{b} \widetilde{W}_{n}^{*}(s,\lambda)f(s)ds.$$
(11)

So we obtain the following statement:

Lemma 6. The operator $\mathcal{W}_n(\lambda)$ maps H^n continuously and one-to-one onto $\mathcal{K}_n(\lambda)$. The adjoint operator $\mathcal{W}_n^*(\lambda)$ maps \mathfrak{H} continuously onto H^n and acts by (11). Moreover, $\mathcal{W}_n^*(\lambda)$ maps $\mathcal{K}_n(\lambda)$ one-to-one onto H^n .

Lemma 7. There exist $\alpha, \beta > 0$ such that the inequalities

$$\alpha \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2} \leq \|\mathcal{W}_{n}(\lambda)\widetilde{\tau}_{n}\|_{\mathfrak{H}}^{2} \leq \beta \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2}, \ \widetilde{\tau}_{n} = (\tau_{1},...,\tau_{n}) \in H^{n},$$
(12)

$$\alpha \sum_{k=1}^{n} \Delta_{k}^{-1} \|\varphi_{k}\|^{2} \leq \|\mathcal{W}_{n}(\lambda)\widetilde{\tau}_{n}\|_{\mathfrak{H}}^{2} \leq \beta \sum_{k=1}^{n} \Delta_{k}^{-1} \|\varphi_{k}\|^{2}$$
(13)

hold for all $n \in \mathbb{N}$, where

$$\Delta_k = t_k - t_{k-1}, \quad \varphi_k = \int_{t_{k-1}}^{t_k} w_k^*(s,\lambda) w_k(s,\lambda) \tau_k ds.$$

Proof. Using (7), we get

$$\alpha \Delta_k \|\tau_k\|^2 \leqslant \int_{t_{k-1}}^{t_k} \|w_k(s,\lambda)\tau_k\|^2 \, ds \leqslant \beta \Delta_k \|\tau_k\|^2, \ \alpha,\beta > 0.$$

Therefore,

$$\alpha \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2} \leq \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} \|w_{k}(s,\lambda)\tau_{k}\|^{2} ds \leq \beta \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2}.$$

This implies (12). To prove (13), use (7) to obtain

$$\alpha_1 \Delta_k \|\tau_k\| \leq \|\varphi_k\| = \left\| \int_{t_{k-1}}^{t_k} w_k^*(s,\lambda) w_k(s,\lambda) \tau_k ds \right\| \leq \beta_1 \Delta_k \|\tau_k\|,$$

where $\alpha_1, \beta_1 > 0$. Hence, $\alpha_1 \Delta_k \|\tau_k\|^2 \leq \Delta_k^{-1} \|\varphi_k\|^2 \leq \beta_1 \Delta_k \|\tau_k\|^2$. Thus,

$$\alpha_{1} \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2} \leq \sum_{k=1}^{n} \Delta_{k}^{-1} \|\varphi_{k}\|^{2} \leq \beta_{1} \sum_{k=1}^{n} \Delta_{k} \|\tau_{k}\|^{2}.$$

Now, using (12), get (13). The Lemma is proved. \Box

Let \mathcal{H}_{-} , \mathcal{H}_{+} , $\mathcal{H}_{0} = l_{2}(H)$ be linear spaces of sequences, respectively, $\tilde{\tau} = \{\tau_{k}\}, \ \tilde{\varphi} = \{\varphi_{k}\}, \ \tilde{\xi} = \{\xi_{k}\}$ such that the series $\sum_{k=1}^{\infty} \Delta_{k} \|\tau_{k}\|^{2}, \sum_{k=1}^{\infty} \Delta_{k}^{-1} \|\varphi_{k}\|^{2}, \ \sum_{k=1}^{\infty} \|\xi_{k}\|^{2}$ converge, where $\tau_{k}, \ \varphi_{k}, \ \xi_{k} \in H$. These spaces become Hilbert spaces if we introduce scalar products as

$$(\widetilde{\tau},\widetilde{\eta})_{-} = \sum_{k=1}^{\infty} (\Delta_{k}\tau_{k},\eta_{k}), \quad \widetilde{\tau},\widetilde{\eta} \in \mathcal{H}_{-}, \quad (\widetilde{\varphi},\widetilde{\psi})_{+} = \sum_{k=1}^{\infty} (\Delta_{k}^{-1}\varphi_{k},\psi_{k}), \quad \widetilde{\varphi},\widetilde{\psi} \in \mathcal{H}_{+},$$
$$(\widetilde{\xi},\widetilde{\zeta})_{0} = (\widetilde{\xi},\widetilde{\zeta}) = \sum_{k=1}^{\infty} (\xi_{k},\zeta_{k}), \quad \widetilde{\xi},\widetilde{\zeta} \in \mathcal{H}_{0}.$$

In these spaces, the norms are defined by the equalities

$$\|\widetilde{\tau}\|_{-}^{2} = \sum_{k=1}^{\infty} \Delta_{k} \|\tau_{k}\|^{2}, \quad \|\widetilde{\varphi}\|_{+}^{2} = \sum_{k=1}^{\infty} \Delta_{k}^{-1} \|\varphi_{k}\|^{2}, \quad \|\widetilde{\xi}\|_{0}^{2} = \sum_{k=1}^{\infty} \|\xi_{k}\|^{2}.$$

The spaces \mathcal{H}_+ , \mathcal{H}_- can be treated as spaces with positive and negative norms with respect to \mathcal{H}_0 (see [3, ch.1], [9, ch.2]). So, $\mathcal{H}_+ \subset \mathcal{H}_0 \subset \mathcal{H}_-$ and $\alpha \|\widetilde{\varphi}\|_- \leq \|\widetilde{\varphi}\|_0 \leq \beta \|\widetilde{\varphi}\|_+$, where $\widetilde{\varphi} \in \mathcal{H}_+$, $\alpha, \beta > 0$, i.e., the space \mathcal{H}_0 is equipped with the spaces \mathcal{H}_+ , \mathcal{H}_- . The "scalar product" $(\widetilde{\varphi}, \widetilde{\tau}) = (\widetilde{\varphi}, \widetilde{\tau})_0$ is defined for $\widetilde{\varphi} \in \mathcal{H}_+$, $\widetilde{\tau} \in \mathcal{H}_-$. If $\widetilde{\tau} \in \mathcal{H}_0$, then $(\widetilde{\varphi}, \widetilde{\tau})_0$ coincides with the scalar product in \mathcal{H}_0 .

Let $\mathcal{T} \subset \mathcal{H}_{-}$ be a set of sequences vanishing starting from a certain number (its own for each sequence). The set \mathcal{T} is dense in the space \mathcal{H}_{-} . The operator $\mathcal{W}_{n}(\lambda)$ is the restriction of $\mathcal{W}_{n+1}(\lambda)$ to H^{n} . By $\mathcal{W}'(\lambda)$ denote an operator in \mathcal{T} , such that $\mathcal{W}'(\lambda)\tilde{\tau} = \mathcal{W}_{n}(\lambda)\tilde{\tau}_{n}$ for all $n \in \mathbb{N}$, where $\tilde{\tau} = (\tilde{\tau}_n, 0, ...)$. It follows from (12) that the operator $\mathcal{W}'(\lambda)$ admits an extension by continuity to the space \mathcal{H}_- . By $\mathcal{W}(\lambda)$ denote the extended operator. Moreover, we denote $\widetilde{W}(t, \lambda)\tilde{\tau} = (\mathcal{W}(\lambda)\tilde{\tau})(t)$, where $\tilde{\tau} = \{\tau_k\} \in \mathcal{H}_-$. For a fixed t, the operator $\widetilde{W}(t, \lambda)$ maps \mathcal{H}_- into H. Lemmas 5, 6 imply the following assertion.

Lemma 8. The operator $\mathcal{W}(\lambda)$ maps \mathcal{H}_{-} continuously and one-to-one onto ker $(L_{0}^{*} - \lambda E)$. A function u belongs to ker $(L_{0}^{*} - \lambda E)$ if and only if there exists $\tilde{\tau} = \{\tau_{k}\} \in \mathcal{H}_{-}$ such that $u(t) = (\mathcal{W}(\lambda)\tilde{\tau})(t) = \widetilde{W}(t,\lambda)\tilde{\tau}$.

The adjoint operator $\mathcal{W}^*(\lambda)$ maps \mathfrak{H} continuously onto \mathcal{H}_+ . Let us find the form of $\mathcal{W}^*(\lambda)$. Suppose $f \in \mathfrak{H}, \, \widetilde{\xi} \in \mathcal{T}, \, \widetilde{\xi} = \{\widetilde{\xi}_n, 0, \ldots\}$. Then

$$(\widetilde{\xi}, \mathcal{W}^*(\lambda)f) = (\mathcal{W}(\lambda)\widetilde{\xi}, f)_{\mathfrak{H}} = \int_a^b (\widetilde{W}(t, \lambda)\widetilde{\xi}, f(t))dt = \int_a^b (\widetilde{\xi}, \widetilde{W}^*(t, \lambda)f(t))dt.$$

Since $\mathcal{W}^*(\lambda)f \in \mathcal{H}_+$ and the set \mathcal{T} is dense in \mathcal{H}_- , we obtain

$$\mathcal{W}^*(\lambda)f = \int_a^b \widetilde{W}^*(t,\lambda)f(t)dt.$$
 (14)

Thus we obtain the following statement.

Lemma 9. The operator $\mathcal{W}^*(\lambda)$ maps \mathfrak{H} continuously onto \mathcal{H}_+ and acts by formula (14). Moreover, $\mathcal{W}^*(\lambda)$ maps $\ker(L_0^* - \lambda E)$ one-to-one onto \mathcal{H}_+ and $\ker \mathcal{W}^*(\lambda) = \mathcal{R}(L_0 - \overline{\lambda} E)$.

Lemma 10. Suppose that $f \in \mathfrak{H}$ and functions \widetilde{F}_{an} , \widetilde{F}_{bn} are defined as

$$\widetilde{F}_{an}(t) = -2^{-1}\widetilde{W}_{n}(t,\lambda)i\widetilde{J}_{n}\int_{a}^{t}\widetilde{W}_{n}^{*}(s,\overline{\lambda})f(s)ds,$$
(15)
$$\widetilde{F}_{bn}(t) = 2^{-1}\widetilde{W}_{n}(t,\lambda)i\widetilde{J}_{n}\int_{t}^{b}\widetilde{W}_{n}^{*}(s,\overline{\lambda})f(s)ds.$$

Then \widetilde{F}_{an} , $\widetilde{F}_{bn} \in \mathcal{D}(L_0^*)$ for all $n \in \mathbb{N}$. If the function f vanishes on $[t_n, b]$, then $L_0^*(\widetilde{F}_{an}) - \lambda \widetilde{F}_{an} = L_0^*(\widetilde{F}_{bn}) - \lambda \widetilde{F}_{bn} = 2^{-1}f$. Here \widetilde{J}_n is an operator in H^n acting by the formula $\widetilde{J}_n \widetilde{\xi}_n = (J\xi_1, \ldots, J\xi_n)$. **Proof.** Using (15), we get

$$\widetilde{F}_{an}(t) = \sum_{k=1}^{n} F_k(t), \quad F_k(t) = -2^{-1} w_k(t,\lambda) i J \int_{t_{k-1}}^{t} w_k^*(s,\overline{\lambda}) f(s) ds$$

The function F_k is continuous on the interval $[t_{k-1},t_k)$ and vanishes outside this interval. The function F_k does not change in the space \mathfrak{H} if changed at one point. Therefore, without loss of generality, the function F_k can be assumed to be continuous from the left at the point t_k . Then, taking into account Lemma 2, we obtain that F_k is a solution of equation (5) (in which $a = t_{k-1}$ and f is replaced by $2^{-1}f$) on the segment $[t_{k-1}, t_k]$. In [8] it is proved that every function $y \in \mathcal{D}(L_0)$ is a solution of equality (5) in which f is replaced by $g = L_0 y$. Therefore, we can apply Lagrange's formula (2) to the functions $y \in \mathcal{D}(L_0)$, F_k for $c_1 = t_{k-1}$, $c_2 = t_k$, $\mathbf{q} = \mu$, $\mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_0$. Since the measure \mathbf{p}_0 is continuous and the equality $y(t_{k-1}) = y(t_k) = 0$ holds, we obtain

$$\int_{t_{k-1}}^{t_k} (2^{-1}f(s) + \lambda F_k(s), y(s)) ds = \int_{t_{k-1}}^{t_k} (F_k(s), g(s)) ds$$

This implies that $\widetilde{F}_{an} \in \mathcal{D}(L_0^*)$ and $L_0^*(\widetilde{F}_{an}) - \lambda \widetilde{F}_{an} = 2^{-1}f$ if f(t) = 0 for $t > t_n$. We denote

$$\widetilde{\vartheta}_n = 2^{-1} i \widetilde{J}_n \int_a^b \widetilde{W}_n^*(t, \overline{\lambda}) f(t) dt = 2^{-1} i \widetilde{J}_n \mathcal{W}_n^*(\overline{\lambda}) f; \ u_n(t) = \widetilde{W}_n(t, \lambda) \widetilde{\vartheta}_n.$$

By Lemma 6, it follows that $u_n \in \ker_n(\lambda)$. Now the equality $\widetilde{F}_{bn}(t) = u_n(t) + \widetilde{F}_{an}(t)$ implies $\widetilde{F}_{bn} \in \mathcal{D}(L_0^*)$ and $L_0^* \widetilde{F}_{bn} - \lambda \widetilde{F}_{bn} = 2^{-1} f$ if f(t) = 0 for $t > t_n$. The Lemma is proved. \Box

Theorem 2. A function $y \in \mathfrak{H}$ belongs to $\mathcal{D}(L_0^*)$ if and only if there exists a function $f \in \mathfrak{H}$ such that

$$y(t) = \widetilde{W}(t,\lambda)\widetilde{\tau} - \sum_{k=1}^{\infty} w_k(t,\lambda)iJ \int_a^t w_k^*(s,\overline{\lambda})f(s)ds, \quad \widetilde{\tau} = \{\tau_k\} \in \mathcal{H}_-; \quad (16)$$

in this case $L_0^* y - \lambda y = f$. The series in (16) converges in \mathfrak{H} .

Proof. First we prove that if y has form (16), then $y \in \mathcal{D}(L_0^*)$. It follows from Lemma 8 that $\mathcal{W}(\lambda)\tilde{\tau} \in \ker(L_0^* - \lambda E)$. The function

$$z_k(t) = w_k(t,\lambda)iJ\int_a^t w_k^*(s,\overline{\lambda})f(s)ds = w_k(t,\lambda)iJ\int_{t_{k-1}}^t w_k^*(s,\overline{\lambda})f(s)ds$$

vanishes outside the interval $[t_{k-1}, t_k)$. We denote $f_k(t) = \chi_{[t_{k-1}; t_k)}(t)f(t)$. By (7), it follows that

$$||z_k(t)|| \leq \beta \int_{t_{k-1}}^{t_k} ||f(s)|| \, ds \leq \beta \Delta_k^{1/2} \, ||\chi_{[t_{k-1};t_k)}f||_{\mathfrak{H}}.$$

Therefore,

$$\|z_k\|_{\mathfrak{H}}^2 = \int_{t_{k-1}}^{t_k} \|z_k(t)\|^2 dt \leqslant \beta^2 \Delta_k \|\chi_{[t_{k-1}; t_k)} f\|_{\mathfrak{H}}^2.$$
(17)

We denote $u_n(t) = \sum_{k=1}^n z_k(t)$ and claim that the sequence $\{u_n\}$ converges in \mathfrak{H} . Indeed, using (17), we get

$$\|u_n\|_{\mathfrak{H}}^2 = \sum_{k=1}^n \|z_k\|_{\mathfrak{H}}^2 \leqslant \beta^2 \sum_{k=1}^n \Delta_k \left\|\chi_{[t_{k-1}; t_k)}f\right\|_{\mathfrak{H}}^2 \leqslant \beta^2 (b-a) \|f\|_{\mathfrak{H}}^2$$

Therefore the sequence $\{u_n\}$ converges to some function $u \in \mathfrak{H}$ and

$$u(t) = -\sum_{k=1}^{\infty} w_k(t,\lambda) i J \int_a^t w_k^*(s,\overline{\lambda}) f(s) ds, \quad \|u\|_{\mathfrak{H}} \leqslant \beta_1 \|f\|_{\mathfrak{H}}, \, \beta_1 > 0.$$

By Lemma 10, it follows that $u_n = 2\widetilde{F}_{an} \in \mathcal{D}(L_0^*)$ and $L_0^*u_n - \lambda u_n = \sum_{k=1}^n \chi_{[t_{k-1};t_k)} f$. Since the operator L_0^* is closed, we see that $u \in \mathcal{D}(L_0^*)$ and $L_0^*u - \lambda u = f$.

Now suppose that a function $\hat{y} \in \mathcal{D}(L_0^*)$ and $L_0^* \hat{y} - \lambda \hat{y} = f$. If the function y has the form (16), then the function $\hat{y} - y \in \ker(L_0^* - \lambda E)$. According to Lemma 8, there exists $\tilde{\xi} \in \mathcal{H}_-$ such that $\hat{y} - y = \mathcal{W}(\lambda)\tilde{\xi}$. Therefore, \hat{y} has form (16). The Theorem is proved. \Box

By standard transformations, equality (16) is reduced to the form

$$y(t) = \widetilde{W}(t,\lambda)\widetilde{\zeta} - 2^{-1}\sum_{k=1}^{\infty} w_k(t,\lambda)iJ \int_a^t w_k^*(s,\overline{\lambda})f(s)ds + 2^{-1}\sum_{k=1}^{\infty} w_k(t,\lambda)iJ \int_t^b w_k^*(s,\overline{\lambda})f(s)ds, \quad (18)$$

where $\widetilde{\zeta} = \{\zeta_k\} \in \mathcal{H}_-, \ \zeta_k = \tau_k - 2^{-1} i J \int_{t_{k-1}}^{t_k} w_k^*(s,\overline{\lambda}) f(s) ds.$

Let \widetilde{J} denote an operator in \mathcal{H}_{-} acting by the formula $\widetilde{J}\{\xi_k\} = \{J\xi_k\}$. Taking into account the convergence of the series in (18), we write equality (18) in the form

$$y(t) = \widetilde{W}(t,\lambda)\widetilde{\zeta} - 2^{-1}\widetilde{W}(t,\lambda)i\widetilde{J}\int_{a}^{t}\widetilde{W}^{*}(s,\overline{\lambda})f(s)ds + 2^{-1}\widetilde{W}(t,\lambda)i\widetilde{J}\int_{t}^{b}\widetilde{W}^{*}(s,\overline{\lambda})f(s)ds, \quad (19)$$

where $\widetilde{\zeta} \in \mathcal{H}_{-}, f = L_0^* y - \lambda y.$

4. The description of generalized resolvents. Let A be a symmetric operator acting in a Hilbert space \mathbf{H} and \widetilde{A} be a selfadjoint extension of A to $\widetilde{\mathbf{H}}$, where $\widetilde{\mathbf{H}}$ is a Hilbert space, $\widetilde{\mathbf{H}} \supset \mathbf{H}$, and scalar products coincide in \mathbf{H} and $\widetilde{\mathbf{H}}$. By P denote an orthogonal projection of $\widetilde{\mathbf{H}}$ onto \mathbf{H} . The function $\lambda \to R_{\lambda}$ defined as $R_{\lambda} = P(\widetilde{A} - \lambda E)^{-1}|_{\mathbf{H}}$, $\mathrm{Im}\lambda \neq 0$, is called a generalized resolvent of the operator A (see, e.g., [1, ch.9])

Theorem 3. Every generalized resolvent R_{λ} (Im $\lambda \neq 0$) of the operator L_0 is the integral operator

$$R_{\lambda}f = \int_{a}^{b} K(t, s, \lambda)f(s)ds.$$

The kernel $K(t, s, \lambda)$ has the form

$$K(t,s,\lambda) = \widetilde{W}(t,\lambda)(M(\lambda) + 2^{-1}\operatorname{sgn}(s-t)i\widetilde{J})\widetilde{W}^*(s,\overline{\lambda}),$$

where $M(\lambda): \mathcal{H}_+ \to \mathcal{H}_-$ is the bounded operator such that $M(\overline{\lambda}) = M^*(\lambda)$,

$$(\mathrm{Im}\lambda)^{-1}\mathrm{Im}(M(\lambda)\widetilde{x},\widetilde{x}) \ge 0$$
(20)

for every λ (Im $\lambda \neq 0$) and for every $\widetilde{x} \in \mathcal{H}_+$. The function $\lambda \to M(\lambda)\widetilde{x}$ is holomorphic for every $\widetilde{x} \in \mathcal{H}_+$ in half-planes Im $\lambda \neq 0$.

Proof. Suppose $y = R_{\lambda}f$. Then y has form (19). In this equality, $\tilde{\zeta} \in \mathcal{H}_{-}$ is uniquely determined by f and λ , $\operatorname{Im} \lambda \neq 0$, i. e., $\tilde{\zeta} = \tilde{\zeta}(f, \lambda)$. Indeed, if f = 0, then $\widetilde{W}(t, \lambda)\widetilde{\zeta} = R_{\lambda}0 = 0$. It follows from Lemma 8 that $\tilde{\zeta} = 0$. Moreover, $\tilde{\zeta}$ depends on f linearly. Consequently $\tilde{\zeta} = S(\lambda)f$, where $S(\lambda): \mathfrak{H} \to \mathcal{H}_{-}$ is a linear operator for fixed λ . We claim that the operator $S(\lambda)$ is bounded. Indeed, if a sequence $\{f_n\}$ converges to zero in the space \mathfrak{H} as $n \to \infty$, then the sequence $\{y_n\} = \{R_{\lambda}f_n\}$ converges to zero in \mathfrak{H} . Hence, the sequence $\{\mathcal{W}(\lambda)\widetilde{\zeta}_n\}$ (where $\widetilde{\zeta}_n = S(\lambda)f_n$) converges to zero in \mathfrak{H} . By Lemma 8, it follows that the sequence $\{S(\lambda)f_n\}$ converges to zero in the space \mathfrak{H}_{-} . Therefore $S(\lambda)$ is a bounded operator.

Now we prove that $\tilde{\zeta}(f,\lambda)$ is uniquely determined by the element $\mathcal{W}^*(\bar{\lambda})f \in \mathcal{H}_+$. Suppose $\mathcal{W}^*(\bar{\lambda})f = 0$. Consider a function equal to the sum of the last two summands in (19). This function belongs to $\mathcal{D}(L_0 - \lambda E)$. Therefore, $\mathcal{W}(\lambda)\tilde{\zeta}(f,\lambda)$ belongs to the range $\mathcal{R}(R_\lambda)$ of the operator R_λ . Hence, $\tilde{\zeta}(f,\lambda) = 0$. Thus, $S(\lambda)f = M(\lambda)\mathcal{W}^*(\bar{\lambda})f$, where $M(\lambda): \mathcal{H}_+ \to \mathcal{H}_-$ is an everywhere defined operator. Let $\mathcal{W}^*_0(\bar{\lambda})$ be a restriction of $\mathcal{W}^*(\bar{\lambda})$ to ker $(L_0^* - \bar{\lambda}E)$. By Lemma 9, it follows that $M(\lambda) = S(\lambda)(\mathcal{W}^*_0(\bar{\lambda}))^{-1}$. Hence $M(\lambda)$ is the bounded operator.

Let us prove that the function $\lambda \to M(\lambda)\tilde{x}$ is holomorphic for every $\tilde{x} \in \mathcal{H}_+$ (Im $\lambda \neq 0$). It follows from (19) and the holomorphicity of the function $\lambda \to R_\lambda$ that the function $\lambda \to \mathcal{W}(\lambda)S(\lambda)f$ is holomorphic. Using (6), we obtain that the function $\lambda \to S(\lambda)f$ is holomorphic. Now the holomorphicity of the function $\lambda \to M(\lambda)$ follows from Lemma 11. This Lemma is formulated after the proof of the Theorem. In Lemma 11 it should be taken that $\mathcal{B}_1 = \mathfrak{H}, \mathcal{B}_2 = \mathcal{H}_+, \mathcal{B}_3 = \mathcal{H}_-, T_1(\lambda) = \mathcal{W}^*(\overline{\lambda}), T_2(\lambda) = M(\lambda), T_3(\lambda) = S(\lambda).$

Note that the equality $R_{\lambda}^* = R_{\overline{\lambda}}$ implies $M(\overline{\lambda}) = M^*(\lambda)$.

Let us prove that (20) holds. It follows from Lemma 9 that there exists a function $f \in \mathfrak{H}$ such that $\widetilde{x} = \mathcal{W}^*(\overline{\lambda})f$. Let $p_k : \mathcal{H}_- \to H$ be the operator defined by the formula $p_k \widetilde{\xi} = \xi_k$, where $\widetilde{\xi} = \{\xi_k\} \in \mathcal{H}_-$. We denote $M_k(\lambda) = p_k M(\lambda)$ and

$$z(t) = W(t,\lambda)(M(\lambda)\widetilde{x} - 2^{-1}\widetilde{J}\widetilde{x}) = \sum_{k=1}^{\infty} w_k(t,\lambda)(M_k(\lambda)\widetilde{x} - 2^{-1}Jx_k),$$

where $\widetilde{x} = \mathcal{W}^*(\overline{\lambda})f$, $x_k = p_k \widetilde{x}$. We shall apply formula (2) to the functions

 $y = R_{\lambda}f$, z on the interval $[t_{k-1}, t_k]$. Using the argument from the proof of Lemma 10, we can assume that the function $w_k(t, \lambda)$ is continuous from the left at the point t_k . We note that $w_k(t_{k-1}, \lambda) = E$. Hence,

$$y(t_k) = z(t_k) = w(t_k)(M_k(\lambda)\widetilde{x} - 2^{-1}iJx_k),$$

 $y(t_{k-1}) = w(t_k)(M_k(\lambda)\tilde{x} + 2^{-1}iJx_k), \ z(t_{k-1}) = w(t_k)(M_k(\lambda)\tilde{x} - 2^{-1}iJx_k).$

Using (2), we get

$$(\lambda - \overline{\lambda})^{-1} \left(\int_{t_{k-1}}^{t_k} (R_\lambda f, f) dt - \int_{t_{k-1}}^{t_k} (f, R_\lambda f) dt \right) - \int_{t_{k-1}}^{t_k} (R_\lambda f, R_\lambda f) dt + \int_{t_{k-1}}^{t_k} ||z(t)||^2 dt = (\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M_k(\lambda)\widetilde{x}, \widetilde{x}).$$

Therefore,

$$(\mathrm{Im}\lambda)^{-1}\mathrm{Im}(R_{\lambda}f,f)_{\mathfrak{H}} - (R_{\lambda}f,R_{\lambda}f)_{\mathfrak{H}} + \|z\|_{\mathfrak{H}}^{2} = (\mathrm{Im}\lambda)^{-1}\mathrm{Im}(M(\lambda)\widetilde{x},\widetilde{x}).$$

Since $(\mathrm{Im}\lambda)^{-1}\mathrm{Im}(R_{\lambda}f, f)_{\mathfrak{H}} - (R_{\lambda}f, R_{\lambda}f)_{\mathfrak{H}} \ge 0$, we see that (20) holds. \Box

The function $\lambda \rightarrow M(\lambda)$ is called characteristic function (see [13]).

Lemma 11. [6] Let $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ be Banach spaces. Let bounded operators $T_3(\lambda) : \mathcal{B}_1 \to \mathcal{B}_3, T_1(\lambda) : \mathcal{B}_1 \to \mathcal{B}_2, T_2(\lambda) : \mathcal{B}_2 \to \mathcal{B}_3$ satisfy the equality $T_3(\lambda) = T_2(\lambda)T_1(\lambda)$ for every fixed λ belonging to some neighborhood of a point λ_0 and suppose the range of operator $T_1(\lambda_0)$ coincides with \mathcal{B}_2 . If the functions $T_1(\lambda), T_3(\lambda)$ are strongly differentiable at the point λ_0 , then the function $T_2(\lambda)$ is strongly differentiable at λ_0 .

5. Boundary value problems connected with generalized resolvents. To shorten the notation, we shall denote $\widetilde{W}(t,0) = \widetilde{W}(t)$, w(t,0) = w(t), W(0) = W. We put $\lambda = 0$ in formula (19). By Theorem 2, it follows that $y \in \mathcal{D}(L_0^*)$ and $L_0^* y = f$ if and only if y has the form

$$y(t) = \widetilde{W}(t)\widetilde{\zeta} - 2^{-1}\widetilde{W}(t)i\widetilde{J} \int_{a}^{t} \widetilde{W}^{*}(s)f(s)ds + 2^{-1}\widetilde{W}(t)i\widetilde{J} \int_{t}^{b} \widetilde{W}^{*}(s)f(s)ds,$$
(21)

where $\widetilde{\zeta} \in \mathcal{H}_-$. Each function $y \in \mathcal{D}(L_0^*)$ represented by (21) is associated with a pair of boundary values $\{Y, Y'\} \in \mathcal{H}_- \times \mathcal{H}_+$, where

$$Y = \Gamma_1 y = \widetilde{\zeta}, \quad Y' = \Gamma_2 y = \mathcal{W}^* f = \int_a^b \widetilde{W}^*(s) f(s) ds$$

Let Γ denote the operator that takes each $y \in \mathcal{D}(L_0^*)$ to the ordered pair $\{Y, Y'\}$, i.e., $\Gamma y = \{\Gamma_1 y, \Gamma_2 y\}$.

Theorem 4. The range $\mathcal{R}(\Gamma)$ of the operator Γ coincides with $\mathcal{H}_{-} \times \mathcal{H}_{+}$ and "the Green formula"

$$(L_0^*y, z)_{\mathfrak{H}} - (y, L_0^*z)_{\mathfrak{H}} = (Y', Z) - (Y, Z')$$
(22)

holds, where $y, z \in \mathcal{D}(L_0^*)$, $\Gamma y = \{Y, Y'\}$, $\Gamma z = \{Z, Z'\}$.

Proof. The equality $\mathcal{R}(\Gamma) = \mathcal{H}_{-} \times \mathcal{H}_{+}$ follows from Lemmas 8, 9. Let us prove (22). Suppose that the function y has form (21) and

$$z(t) = \widetilde{W}(t)\widetilde{\eta} - 2^{-1}\widetilde{W}(t)i\widetilde{J}\int_{a}^{t}\widetilde{W}^{*}(s)g(s)ds + 2^{-1}\widetilde{W}(t)i\widetilde{J}\int_{t}^{b}\widetilde{W}^{*}(s)g(s)ds,$$
(23)

where $\tilde{\eta} \in \mathcal{H}_{-}, g = L_0^* z$. Then

$$(f, \mathcal{W}\widetilde{\eta}) = (\mathcal{W}^* f, \widetilde{\eta}) = (Y', Z); \quad (\mathcal{W}\widetilde{\zeta}, g) = (\widetilde{\zeta}, \mathcal{W}^* g) = (Y, Z').$$
 (24)

In (21), we denote

$$\begin{split} \widetilde{F}_a(t) &= -2^{-1} \widetilde{W}(t) i \widetilde{J} \int_a^t \widetilde{W}^*(s) f(s) ds = -\sum_{k=1}^\infty 2^{-1} w_k(t) i J \int_a^t w_k^*(s) f(s) ds, \\ \widetilde{F}_b(t) &= 2^{-1} \widetilde{W}(t) i \widetilde{J} \int_t^b \widetilde{W}^*(s) f(s) ds = \sum_{k=1}^\infty 2^{-1} w_k(t) i J \int_t^b w_k^*(s) f(s) ds. \end{split}$$

We introduce the similar notation \widetilde{G}_a , \widetilde{G}_b for equality (23) by changing f to g. We define functions F_k , G_k by formulas

$$F_k(t) = -2^{-1} w_k(t) i J \int_{t_{k-1}}^t w_k^*(s) f(s) ds,$$

$$G_k(t) \!=\! -2^{-1} w_k(t) i J \!\!\! \int\limits_{t_{k-1}}^t \!\!\! w_k^*(s) g(s) ds.$$

Also, as in the proof of Lemma 10, it can be assumed, without loss of generality, that the functions F_k , G_k are continuous from the left at the point t_k . Arguing as in proof of Lemma 10, we apply Lagrange's formula (2) to the functions F_k , $2^{-1}f$ and G_k , $2^{-1}g$ on the segment $[t_{k-1}, t_k]$. Taking into account (6), we obtain

$$\int_{t_{k-1}}^{t_k} (2^{-1}f(s), G_k(s))ds - \int_{t_{k-1}}^{t_k} (F_k(s), 2^{-1}g(s))ds =$$

$$= 4^{-1} \left(iJW(t_k)iJ \int_{t_{k-1}}^{t_k} W^*(s)f(s)ds, W(t_k)iJ \int_{t_{k-1}}^{t_k} W^*(s)g(s)ds \right) =$$

$$= 4^{-1} \left(iJ \int_{t_{k-1}}^{t_k} W^*(s)f(s)ds, \int_{t_{k-1}}^{t_k} W^*(s)g(s)ds \right).$$

Therefore,

$$(2^{-1}f, \widetilde{G}_a)_{\mathfrak{H}} - (\widetilde{F}_a, 2^{-1}g)_{\mathfrak{H}} = 4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g).$$
(25)

We denote $u(t) = 2^{-1}\widetilde{W}(t)i\widetilde{J}\mathcal{W}^*f$, $v(t) = 2^{-1}\widetilde{W}(t)i\widetilde{J}\mathcal{W}^*g$. By Lemma 8, it follows that $u, v \in \ker(L_0^*)$ and $\widetilde{F}_b(t) = u(t) + \widetilde{F}_a(t)$, $\widetilde{G}_b(t) = v(t) + \widetilde{G}_a(t)$. Using (25), we get

$$(2^{-1}f, \widetilde{G}_b)_{\mathfrak{H}} - (\widetilde{F}_b, 2^{-1}g)_{\mathfrak{H}} = (2^{-1}f, \widetilde{G}_a)_{\mathfrak{H}} - (\widetilde{F}_a, 2^{-1}g)_{\mathfrak{H}} + (2^{-1}f, v)_{\mathfrak{H}} - (u, 2^{-1}g)_{\mathfrak{H}} = 4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g) - 4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g) - 4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g) - 4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g) = -4^{-1}(i\widetilde{J}\mathcal{W}^*f, \mathcal{W}^*g).$$
(26)

From (24), (25), (26), we obtain (22). The Theorem is proved.

We introduce operators $\delta_{-}: \mathcal{H}_{-} \to \mathcal{H}_{0}, \ \delta_{+}: \mathcal{H}_{+} \to \mathcal{H}_{0}$ by the formulas $\delta_{-}\widetilde{\tau} = \{\Delta_{k}^{1/2}\tau_{k}\}, \ \delta_{+}\widetilde{\varphi} = \{\Delta_{k}^{-1/2}\varphi_{k}\},$ where $\widetilde{\tau} = \{\tau_{k}\} \in \mathcal{H}_{-},$ $\widetilde{\varphi} = \{\varphi_{k}\} \in \mathcal{H}_{+}.$ The operator $\delta_{-}(\delta_{+})$ maps continuously and oneto-one \mathcal{H}_{-} onto \mathcal{H}_{0} (\mathcal{H}_{+} onto \mathcal{H}_{0} , respectively). Suppose that $y \in \mathcal{D}(L_{0}^{*}).$ We put $\mathcal{Y} = \gamma_{1}y = \delta_{-}\Gamma_{1}y; \ \mathcal{Y}' = \gamma_{2}y = \delta_{+}\Gamma_{2}y$ and $\gamma y = \{\gamma_{1}y, \gamma_{2}y\}.$ Then $\mathcal{R}(\gamma) = \mathcal{H}_{0} \times \mathcal{H}_{0}.$ Using (22), we get

$$(L_0^*y, z)_{\mathfrak{H}} - (y, L_0^*z)_{\mathfrak{H}} = (\mathcal{Y}', \mathcal{Z}) - (\mathcal{Y}, \mathcal{Z}'),$$
(27)

where $y, z \in \mathcal{D}(L_0^*), \gamma y = \{\mathcal{Y}, \mathcal{Y}'\}, \gamma z = \{\mathcal{Z}, \mathcal{Z}'\}.$

It follows from (27) that the ordered triple $(\mathcal{H}_0, \gamma_1, \gamma_2)$ is the space of boundary values (a boundary triplet in another terminology) for the operator L_0 in the sense of papers [11], [5] (see also [9], [12]).

We consider the boundary value problem

$$L_0^* y = \lambda y + h, \quad (K(\lambda) - E)\mathcal{Y}' - i(K(\lambda) + E)\mathcal{Y} = 0, \tag{28}$$

where $\{\mathcal{Y}, \mathcal{Y}'\} = \gamma y; h \in \mathfrak{H}; \lambda \to K(\lambda)$ is a holomorphic operator function in \mathcal{H}_0 such that $||K(\lambda)|| \leq 1; \operatorname{Im} \lambda > 0.$

From [5] and (27) we obtain the following statement.

Theorem 5. There exists a one-to-one mapping between boundary problems (28) and generalized resolvents of the operator L_0 . For any solution yof problem (28), a function R_{λ} defined by the equality $y = R_{\lambda}h$ is a generalized resolvent and, conversely, for any generalized resolvent R_{λ} there exists a function $K(\lambda)$ such that $y = R_{\lambda}h$ is the solution of (28).

References

- Akhiezer N. I., Glazman I. N. Theory of Linear Operators in Hilbert Space. New York: Dover Publications, 1993. [Russian edition: Vishcha Shkola, Kharkiv, 1978.]
- Baskakov A. G. Analysis of Linear Differential Equations by Methods of the Spectral Theory of Difference Operators and Linear Relations. Russian Math. Surveys, 2013, vol. 68, no. 1, pp. 69-116. DOI: https://dx.doi. org/10.1070/RM2013v068n01ABEH004822. [Russian edition: Uspekhi Mat. Nauk, 2013, vol. 68, no. 1, pp. 77-128. DOI: https://dx.doi.org/10. 4213/rm9505.]
- [3] Berezanski Yu. M. Expansions in Eigenfunctions of Selfadjoint Operators. Amer. Math. Soc., Providence, RI, 1968. [Russian edition: Naukova Dumka, Kiev, 1965.]
- Bruk V. M. On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order in a Space Vector-Valued Functions. Math. Notes, 1974, vol. 15, no. 6, pp. 563-568. DOI: https://link.springer. com/article/10.1007%2FBF01152836. [Russian edition: Mat. Zametki, 1974, vol. 15, no. 6, pp. 945-954.]
- [5] Bruk V. M. On a Class of Boundary Value Problems with Spectral Parameter in the Boundary Condition. Mathematics USSR-Sbornik, 1976, vol. 29, no. 2, pp. 186-192. DOI: http://dx.doi.org/10. 1070/SM1976v029n02ABEH003662. [Russian edition: Mat. Sbornik, 1976, vol. 100, no. 2, pp. 210-216.]

- Bruk V. M. On Boundary Value Problems Associated with Holomorphic Families of Operators. Funct. Anal., 1989, no. 29, Ulyanovsk, pp. 32-42. (in Russian)
- Bruk V. M. Boundary Value Problems for Integral Equations with Operator Measures. Probl. Anal. Issues Anal., 2017, vol. 6 (24), no. 1, pp. 19-40.
 DOI: http://dx.doi.org/10.15393/j3.art.2017.3810.
- [8] Bruk V. M. On Self-Adjoint Extensions of Operators Generated by Integral Equations. Taurida Journal of Comp. Science Theory and Math., 2017, no. 1, pp. 17-31. DOI: http://tvim.info/.
- [9] Gorbachuk V. I., Gorbachuk M. L. Boundary Value Problems for Operator Differential Equations. Dordrecht-Boston-London: Kluver Acad. Publ., 1991. [Russian edition: Naukova Dumka, Kiev, 1984.]
- [10] Khrabustovskyi V. Analogs of Generalized Resolvents for Relations Generated by a Pair of Differential Operator Expressions One of which Depends on Spectral Parameter in Nonlinear Manner. Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, no. 4, pp. 496-535. DOI: http://mi.mathnet.ru/jmag578.
- [11] Kochubei A. N. Extensions of Symmetric Operators and Symmetric Binary Relations. Math. Notes, 1975, vol. 17, no. 1, pp. 25-28. DOI: https://link.springer.com/article/10.1007/2FBF01093837\ protect\kern-.1667em\relax. [Russian edition: Mat. Zametki, 1975, vol. 17, no. 1, pp. 41-48.]
- [12] Rofe-Beketov F. S., Kholkin A. M. Spectral Analysis of Differential Operators. World Scientific Monograph Series in Mathematics, vol. 7, Singapure, 2005.
- [13] Straus A. V. On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order. Izv. Akad. Nauk SSSR, Ser. Matem., 1957, vol. 21, no. 6, pp. 785-808. DOI: http://mi.mathnet.ru/izv4048.

Received April 04, 2018. In revised form, August 08, 2018. Accepted August 11, 2018. Published online August 31, 2018.

Saratov State Technical University 77, Politehnicheskaja str., Saratov 410054, Russia E-mail: vladislavbruk@mail.ru