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Abstract 

Determining the events that affect Power Quality (PQ) disturbances is remarkable 

for consumers. The most important aspects in the assessment of PQ disturbances 

are real-time monitoring of PQ disturbances and their fast interpretation. In this 

study, Artificial Neural Networks (ANNs) was used as a classifier benefiting 

from estimated parameters in PQ disturbances based on Discrete Wavelet 

Transform (DWT) on the real-time environment for determining the disturbances 

in power systems. Voltage signals (sag, swell, interruption, transient, harmonic 

and normal) used in this study were recorded from real grids. DWT was used for 

featuring the extraction and calculation of the wavelet coefficients, and 

subsequently, calculated energy levels were used as an input to ANN. The results 

revealed analyzing the real data processed with DWT and ANN with 100% 

accuracy proved the superiority of this study. Based on the results of this study, 

identification of real-time PQ disturbances provided an important advantage for 

the firms and industry. Particularly, the reasons for the failures in the system 

related to PQ disturbances were simultaneously diagnosed, as well. 

Keywords: Artificial neural networks, Detection of power quality, Discrete wavelet 

transform, Real-time monitoring. 

 
 

1. Introduction 

Although both new appliances produced as a result of developed technology 

and the ones used previously have increased life quality of the consumers, these 
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Nomenclatures 
 

aJ Scaling coefficient 

dJ Wavelet coefficient 

f(n) Discrete signal 

f(t) Input signal 

g(n) High pass filter  

h(n) Low pass filter  

Greek Symbols 

Φ Scaling function 

Ψ Wavelet function 
 

Abbreviations 

ANN Artificial Neural Network 

CWT Continuous Wavelet Transform  

DWT Discrete Wavelet Transform 

EMD Empirical Mode Decomposition  

FT Fourier Transform 

GT Gabor Transform 

HHT Hilbert Huang Transform 

HT Hilbert Transform 

IMF Intrinsic Mode Function 

PQ Power Quality 

ST S-Transform 

STFT Short Time Fourier Transform 

appliances have seriously led to the electrical breakdown of the networks they feed 

from the pure sinusoidal wave pattern. Thus, the operation of factories in the 

industry is negatively affected by this. In addition, this causes many problems like 

damaging of equipment in power systems, electronic power circuits of 

microcontrollers and high-technology tools [1]. PQ disturbance also leads to 

several problems like a failure in loads, instability and short lifetime [2]. 

Power Systems have been designed in a way taking sinusoidal voltage with 

certain frequency and amplitude as a reference. Incidents occurring in PQ appear 

as any disturbances on the amplitude, frequency or wave type of the voltage. 

Parameters defining the electrical PQ are arranged as short-term voltage 

sags/swells, over-voltages and under-voltages, harmonics, instabilities between 

phases and voltage fluctuations according to IEC 61000-4-30 standard [3]. In 

power systems, PQ is an important factor. PQ can be defined as supplying a 

noiseless and steady power for the consumers [4]. 

In the literature, different methods have been used to form a feature extract so 

as to locate the disturbances in the power system. These methods are frequently 

based on the purpose of determining the time-frequency dispersion with methods 

like Fourier Transform (FT), Short-Term Fourier Transform (STFT), S-Transform 

(ST), Wavelet Transform (WT), Hilbert Huang Transform (HHT) and Gabor 

Transform (GT). In addition, they also depend on revealing determinant features 

representing the original sign through energy, entropy and various statistical 

processes and decreasing the data size. 
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FT is usually used in specifying the harmonic components in the signal. PQ 

disturbances are unstable signals. A window function is used in methods employing 

STFT; however, STFT requires a great number of calculations [5]. S-Transform is 

a time-frequency analysis method like STFT and WT. In this method, the analysis 

is performed in frequency domain changing the position in Gaussian function as a 

special window function [6]. WT method and feature extraction tools are applied 

for determining the PQ disturbances, [7]. WT is used in unstable signals and reveals 

good results, but the performance of management decreases in noisy signals. HHT 

has a wide area of usage in the analysis of nonlinear and non-stationary signals. It 

consists of two main parts: 

Empirical Mode Decomposition (EMD) and Hilbert Transform (HT) [8]. EMD 

is separated into different frequency components called Intrinsic Mode Function 

(IMF). Being separated into components by EMD, these signals can be analyzed 

for their frequency, amplitude and phases amplitude via HT [9]. GT is a developed 

function of STFT. GT is defined as time-frequency analysis taking FT of a window 

function to be selected in the time domain. GT is a special form of the STFT that 

uses the Gaussian Window Function [10]. 

ANN Systems are used as an effective method for classifying the problems of 

PQ disturbances. ANN Systems are used in classification architecture based on 

complex feature parameters like frequency components and wave types [11-13]. 

Most of the devices measuring PQ disturbances calculates RMS values of current 

and voltage, power factor, power values, and harmonic components. Classification of 

PQ disturbances is hard in terms of time and costs due to complex algorithms. 

Classification of PQ disturbances is calculated with a PC recording required 

parameters instead of embedded systems [14]. In this study, Haar function was used 

for obtaining the feature vector. Because Haar function makes calculations in less 

time with less load of the process, the processes could be conducted at the real-time. 

Because the Db4 function is generally used in PQ disturbances and this function has 

more load of the process, it has not been used in real-time analyses [13]. 

In this study, it was aimed to develop an intelligent event recognition and 

classification technique that was effective, reliable and had a robust structure for 

determining the PQ disturbances. With this study, a new PQ monitoring system, a 

hardware structure of this system and a software architecture were designed. Power 

system operators and consumers connected to the power systems were aimed to 

monitor the PQ parameters of the system with the help of designed PQ monitoring 

system easily. It was also aimed to provide advantages such as taking necessary 

precautions detecting the factors causing disruption in PQ. 

The PQ monitoring device designed for the study was placed in both the 

welding workshop of Vocational School of Technical Sciences and Machine 

department, Electrical and Energy department electrical machines laboratory, 

which were located in Adıyaman University campus and in the concrete plant 

located in the centre of Adıyaman/Turkey. 

2.  Essentials of Wavelet Transform 

WT is a time-frequency transform method, which has recently been used for 

analyzing PQ disturbances. Wavelet Decomposition technique is a powerful tool 

employed in the assessment of PQ disturbances [12] and is used for the analysis of 
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stable and unstable signals [15]. The greatest feature of WT distinguishing it from FT 

is that while only frequency information is acquired in FT, the acquired data consist 

of both frequency and time information in WT [16]. So that the times when all 

frequency changes appear in analysis of the system can sensitively be determined. 

One of the important properties of WT it is having a wide window width for low-

frequencies while also having a narrow width for high-frequencies. Thus, it is 

possible to provide optimum time-frequency resolution at all frequency ranges [17]. 

WT is examined in two ways, Continuous Wavelet Transform (CWT) and 

DWT. Since CWT uses all scales in calculations and gives many details about the 

signal calculation of coefficients of wavelets, it is difficult and time-consuming. In 

DWT, wavelet coefficients are calculated only for discrete time scales rather than 

all-time scales. Thus, analysis can be more easily performed in a shorter period. 

Therefore, DWT is used more frequently [18]. 

For a given f(t) signal, K level of DWT, with both wavelet function and scaling 

function, can be defined as Eq. (1) [13]. 







n

J

j

jj

j

n

J ntndntnatf
1

0

2/ )2(2)()()()(                (1) 

where aJ, is the Jth scaling coefficient, dj, is jth wavelet coefficient, ϕ(t) is scaling 

function, Ψ(t) is wavelet function, J represents the highest level of wavelet 

transform and t represents time. Scaling function and wavelet function are used to 

separate the sign in different resolution levels in multi-resolution decomposition. 

Wavelet function detail coefficients are aj Eq. (2) and scaling function approach 

coefficients are dj Eq. (3) for the separated signal with Wavelet transform. 
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where; h denotes coefficients of the low pass filter and g denotes the coefficients 

of the high pass filter [19]. 

2.1. Parseval’s Theorem in DWT 

According to Parseval’s Theorem, for a discrete f(n) signal, the energy dissipated 

on the resistance in the frequency region equals to the sum of the squares of the 

spectrum coefficients of Fourier transform.  
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where; N is the number of samples and ck denotes the spectrum coefficients of 

Fourier transform. To apply Parseval’s Theorem to DWT method, we can obtain 

the following equation regarding Eqs. (1) and (4). 

 












J

j k

j

k

J

Jt

kd
N

ka
N

tf
N 1

222
)(

1
)(

1
)(

1               (5) 

Therefore, the energy of the disturbed signal can be obtained by Eq. (5). In this 

equation, the first term on the right represents the approximate level of the discrete 
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signal, while the second term states the detail level of the discrete signal [20]. This 

second term representing the detail levels of the disturbed signal is used in feature 

extraction process of the PQ disturbances. 

3.  Artificial Neural Networks 

ANNs are information processing units developed regarding the biologic neural system. 

The most important feature of it is that it can learn from experiences. ANNs have been 

developed for automatically fulfilling the abilities of human brain like creating and 

forming new information and discovering through learning. A neural network includes 

connected cells in layers and networks connecting these layers (Fig. 1). 

In classifications of PQ disturbances, as a final stage, they were classified with 

the method of neural network management. And the input neuron number, hidden 

layer number, neuron number and output neuron number were found to be 9, 1, 11, 

and 6, respectively. 

 
Fig. 1. Typical architecture of ANN. 

4.  Data Set (Experimental Setup) 

In this study, the data used in PQ disturbances’ classification were recorded as 

being directly measured by different companies at different times. 

It was aimed to classify PQ disturbances in real-time. A PQ monitoring device 

(Fig. 2) was designed using a dsPIC33FJ128GP804 microcontroller. The 

microcontroller with 40 MIBS processor speed had 128 kB program memory. The 

program codes developed by MPLAB interface were prepared by C compiler. 

The grid voltage signals were recorded with 6.4 kHz sampling frequency from 

measurement points determined with PQ monitoring device. Totally, 1280 data 

including 128 data in each period out of 10 periods were saved for the analysis. 

The wavelet coefficients of this data were found with WT method using 

MATLAB program. The feature vector was obtained calculating the energy levels 

of the wavelet coefficients with the help of Parseval theorem. The model was 

created by training process with ANN classification method. The obtained model 

coefficients were uploaded on the microcontroller. 

The feature vector of the voltage signals recorded on the variable was calculated 

using WT and Parseval theorem. The obtained feature vectors were classified with 
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ANN training coefficients. Classified PQ disturbances were recorded on SD card 

in the monitoring device. When there was no PQ disturbance, the normal grid 

voltage signal analysis was performed, and "normal" recording was conducted on 

the memory card. 

 

 

Fig. 2. Grid voltage monitoring device. 

The PQ monitoring device designed as microcontroller-based was connected to 

the measuring points specified in the power grid in a single phase. The phase voltage 

values to which they were connected were recorded with a sampling frequency of 6.4 

kHz. Two different variables were defined in the software architecture. While the 

voltage values were recorded in one of the variables, the other saved data were 

analyzed with statistical operations. As shown in Fig. 3, while a period of 200 ms was 

recorded for a period of 10 ms, analysis of data recorded in the variable b for the 

previous 200 ms period was performed in these analyzes; the feature vector was 

calculated in 93.47 ms. At 3.34 ms, the feature vector was classified as PQ 

disturbances according to the ANN method. Disturbance types classified for 6,63 ms 

were saved in the memory card in the PQ monitoring device. The data of a variable 

for 96.56 ms. waited to be saved. Statistical analyzes were performed when a variable 

was recorded at the end of 200 ms. While analysis was made in a variable, the data 

was again saved in variable b. This process continued in a continuous infinite loop. 

 
Fig. 3. Real-time monitoring duty cycle. 

4.1.  Feature extraction 

Each coefficient of WT could be separated in their own energy levels and in their 

frequency period. Ranges of frequency bands in high-resolution Wavelet 

Transform Decomposition were presented in Table 1. WT coefficients could be 

used to associate the energies obtained using Parseval’s Theorem with every PQ 

disturbances in voltage signals. 
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In this study, Haar function was chosen as the wavelet function. Wavelet Haar 

made us have less workload and faster analyses possible. Coefficients for nine 

levels were acquired using DWT with Haar function. Energy levels were obtained 

through DWT Coefficients and Parseval’s Theorem. 

Table 1. Ranges of frequency bands in high-resolution decomposition. 

Decomposition Levels Frequency Range(Hz) 

d1 3200-1600 

d2 1600-800 

d3 800-400 

d4 400-200 

d5 200-100 

d6 100-50 

d7 50-25 

d8 25-12,5 

d9 12,5-6,25 

a9 12,5-6,25 

4.2.  Classification 

In the ANN classification method, nine energy levels calculated with Parseval Theorem 

using DWT coefficients were taken as input. A hidden layer with 11 neurons was used. 

Output layer had six neurons because of six different PQ because of six different PQ 

disturbances neurons were used. Output layer had six neurons because of six different 

PQ disturbances. A developed classification algorithm was presented in Fig. 4. 

  
Fig. 4. Proposed method for the classification of PQ disturbances. 
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5.  Results 

In this study, PQ disturbances were classified with nine energy distribution patterns 

in the wavelet domain. In the obtained data, while x-axis indicated time, y-axis was 

voltage amplitude over per unit. The samples were recorded for 10 periods of 200 

milliseconds with developed grid monitoring device, and their graph was drawn 

with MATLAB software. Every disturbance sign recorded through electronic 

application circuit was primarily separated into nine levels with Haar Wavelet 

filter, and subsequently, its detail energy levels were acquired with the Parseval’s 

Theorem (Eq. 5). In literature, db4 wavelet filter of the DWT was noticed to be 

used frequently. In this study, these processes were completed with less workload 

in a shorter time using Haar filters. 

5.1.  Normal 

In Figs. 5 (a) and (b), normal signal and energy decomposition of this normal signal 

when no PQ disturbances occurred were shown. Normal signals were classified as 

a reference to other PQ disturbances. 

In Figs.5(c) and (d), E7 corresponded to 50 Hz value which was the 

fundamental frequency component of the energy-level power grids. E3, E4 and E5 

energy levels indicated harmonic components in normal signals as the odd 

harmonic values were more visible in the power grids. E1 and E2 indicated high-

frequency components of energy levels. No significant changes occurred in E1 and 

E2 energy levels in cases where there were no high-frequency PQ disturbances in 

power grids. Since E8 and E9 energy levels corresponded to components with 

smaller values than the fundamental frequency value, there was no change in these 

levels. The energy distributions of the analyzed signals corresponded to DWT 

frequency bands as shown in Table 1. 

5.2. Swell 

Swell occurred when there was a 10% increase in the amplitude of the voltage 

signals in Fig. 7(a) and (b). 

It was seen that as a result of the disturbance, a rise in the energy levels of the 

DWT coefficients appears Figs. 6(c) and (d). As result of voltage swell that was 

noticed in Figs. 6(c) and (d), especially E7 component with 50 Hz. basic frequency 

band, the normal sine signal had a larger value than the energy level E7. Since there 

was no frequency difference in the voltage of the grid after the swell, the amplitudes 

of the energy levels increased proportionally. In case of voltage swell events, there 

was no change in the values of E8 and E9 energy levels as there were not any lower 

frequencies than the fundamental frequency. 

5.3. Transient 

Temporary disturbances like beats lasted from 50 nanoseconds to one millisecond, 

and they could reach up to sudden high voltage values. Temporary events mainly 

occurred due to capacitor switching and harmonic distortion Figs. 8(a) and (b).  

Transient events showed a large change (increase) in energy levels E2, E3, E4 

and E5 as there were high-frequency components in PQ disturbances. E7 energy 

level corresponded to the fundamental frequency value of 50 Hz. In transient events 
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of PQ disturbances, values of E8 and E9 energy levels were observed as low since 

low-frequency components were not usually found in Figs. 8(c) and (d). 

 

(a) Normal-1 signal waveform. 

 
(b) Normal-2 signal waveform. 

 
(c) Energy distribution for nine decomposition  

levels of the normal-1 signal. 

 

(d) Energy distribution for nine decomposition 

levels of the normal-2 signal. 

Fig. 5. Normal signal. 
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(a) Sag-1 signal waveform. 

 

(b) Sag-2 signal waveform. 

 

(c) Energy distribution for nine decomposition levels of the sag-1 signal. 

 

(d) Energy distribution for nine decomposition levels of the sag-2 signal. 

Fig. 6. Sag signal. 
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(a) Swell-1 signal waveform. 

 

(b) Swell-2 signal waveform. 

 

(c) Energy distribution for nine decomposition levels of the swell-1 signal. 

 

(d) Energy distribution for nine decomposition levels of the swell-2 signal. 

Fig. 7. Swell signal. 
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(a) Transient-1 signal waveform. 

 

(b) Transient-2 signal waveform. 

 

(c) Energy distribution for nine decomposition 

levels of the transient-1 signal. 

 

(d) Energy distribution for nine decomposition 

levels of the transient-2 signal. 

Fig. 8. Transient signal. 
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5.4. Interruption 

The interruption could appear when a power system had failures as result of 

malfunctioning of control systems. This interruption could last from 0,5 period to 

1 minute in Figs. 9(a) and (b).  

As could be seen in Figs. 9(c) and (d) the energy levels had decreased at the 

end of voltage’s falling to values of zero or close to zero as result of interruption. 

The values in the energy levels dropped to the level of 0.25 pu. As result of 

interruption, the normal signal energy level was 0.95 pu. 

 

(a) Interruption-1 signal waveform. 

 

(b) Interruption-2 signal waveform. 

 

(c) Energy distribution for nine decomposition 

levels of the interruption-1 signal. 

 

(d) Energy distribution for nine decomposition 

levels of the interruption-2 signal. 

Fig. 9. Interruption signal. 
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5.5.  Harmonic 

Harmonics was a destructive effect taking place as a frequent compound of 

sinusoidal voltage and had a sinusoidal form. Semi-conductor components could 

be ranked as one of the most important reasons. Since harmonic PQ disturbances 

rarely happened on grid voltages, data belonging to these PQ disturbances were 

produced by MATLAB Figs. 10(a) and (b). Analyses were conducted producing 

harmonic signals with THD values changing between 8 and 15. 

 

(a) Harmonic-1 signal waveform. 

 

(b) Harmonic-2 signal waveform. 

 
(c) Energy distribution for nine decomposition 

levels of the harmonic-1 signal. 

 

(d) Energy distribution for nine decomposition 

levels of the harmonic-2 signal. 

Fig. 10. Harmonic signal. 
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Acquired energy distributions were classified utilizing from ANN method. The 

ANN system was developed using C codes. The parameters used in ANN were: 

Input Layer Neuron  : 9 

Hidden Layer   : 1 

Hidden Layer Neuron  : 11 

Output Layer Neuron   : 6 

Training Sample Number  : 90 (15 samples for every disturbance) 

Activation Function  : Sigmoid Function 

A rule of thumb was used to select a number of the neurons and layers of the 

ANN. The error rate during the training process was 0.001. Each PQ disturbance 

was analyzed with nine levels of DWT. Six different PQ disturbances frequencies 

of the acquired results and their amplitudes were examined according to IEEE 

standards [3]. 

Acquired DWT coefficients were classified with ANNs method. The results 

obtained with classification method were presented in Table 2. Totally, 90 datasets 

were used for training, and 30 datasets were used for testing. The confusion matrix 

representing PQ disturbances identified in ANN classification was shown in Fig. 11. 

Table 2. Accuracy of the classification system for each class of disturbance. 

Disturbance 

Train Test 

Correctly 

Classified 
Total 

Accuracy 

(%) 

Correctly 

Classified 
Total 

Accuracy 

(%) 

Normal 15 15 100 5 5 100 

Sag 15 15 100 5 5 100 

Swell 15 15 100 5 5 100 

Transient 15 15 100 5 5 100 

Interruption 15 15 100 5 5 100 

Harmonic 15 15 100 5  100 

 

 

Fig. 11. Confusion matrix of PQ disturbances. 
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5.6. Performance Comparisons 

In this section, the classification results obtained with real data were compared with 

the results of ANN classifiers that were evaluated as reference using the proposed 

algorithm. The correct classification was chosen as the criterion in the performance 

comparison. The comparison results were presented in Table 3. 

As seen in Table 3, the classification of PQ disturbances by the proposed method 

was superior to that of studies carried out on noiseless conditions [21-25]. This 

increase in the correct classification ratio when compared with other studies could be 

attributed to the acquisition of energy feature vector without losing the distinguishing 

characteristics of the signal and the generalization ability of the ANN classifier. 

 

Table 3. Performance comparison of classification technique results (%). 

Disturbance 

Type 

Ref. [21] 

WT-FkNN 

Ref. [22] 

WT-ANN 

Ref. [23] 

WT-ANN 

Ref. [24] 

WT-ANN 

Ref. [25] 

WT-ANN 

Purposed 

method 

Normal - - 100 100 100 100 

Sag 97,64 100 95,4 94 99,5 100 

Swell 94,11 100 95 100 100 100 

Transient 94,53 100 - 100 99,5 100 

Interruption 100 - 94,6 100 93 100 

Harmonic 100 100 100 100  100 

 

6. Conclusion 

In this paper, ANN system was developed for classifying PQ disturbances. The real 

data collected from grids in a real environment and in real-time, and the 

disturbances from the grid were classified. Six types of common PQ disturbances 

were considered. The collected real data were processed with DWT Haar function, 

and energy levels were calculated and classified with ANN. Feature extraction and 

training of ANN parameters were coded in dsPIC33FJ128GP804 microcontroller. 

The proposed DWT-ANN system was tested with thirty unseen real data distorted 

voltage signals to verify its classification accuracy. It was finally noticed that DWT-

ANN system correctly classified 100% of the tested signal. Thus, the DWT-ANN 

system could be considered as accurate for classifying PQ disturbances.  

This study was different from other studies carried out until today because of 

using the WT-Haar function for analyzing measurement data made on real grids. 

The use of Haar function provided a significant advantage on WT functions in 

terms of the least amount of processing in the shortest time to complete the 

operations. At the same time, WT showed that it was a very useful method for 

detecting power systems because of its convenience of providing time and 

frequency information together and creating software. Upon determining this, it 

was concluded that it could instantly be used for determining the disturbances of 

PQ of the power grids in real time. 
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