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The uncertainty risk driver within a life annuity context: an overview 

Abstract 

The paper analyzes the longevity effects on the portfolio valuations. This is a relevant topic, in particular from the 

perspective of insurers/sponsors of pension funds. The models chosen for actuarial calculations have to capture the 

survival trend and to project its forecasted future improvements. The uncertainty in the choice is a huge concern and 

constitutes a relevant systematic risk driver itself, called uncertainty risk therein. Aim of the paper is to measure the 

uncertainty risk and to show its trend in several contexts, meaningful in portfolio valuations. 

To this purpose the authors provide a suitable risk index and apply it in three different valuations: the initial value of an 

immediate life annuity portfolio; the fund of a pension annuity portfolio; the surplus of a portfolio consisting of 

deferred life annuities. Some graphs illustrate the results. 

Keywords: conditional expectation, pension annuities, stochastic survival functions. 
JEL Classification: C53, G17, G22, G32. 
 

Introduction1 

The increasing expansion of life expectancy in 

developed countries is one of the most insidious risk 

drivers in various contexts of the contemporary 

economic system, especially with regard to 

retirement income security and intergenerational 

issues relating to the running of pension funds 

(people in retirement vs. people in the workforce). 

From the perspective of insurers/sponsors of 

pension funds, longevity risk is the systematic 

demographic risk linked with the prospect of facing 

future payments for longer durations than the 

expected ones (as the life expectancy of policy 

holders systematically increases). It is the downside 

of the demographic risk, opposing the insurance 

risk, which arises from accidental deviations of the 

mortality phenomenon itself. 

In particular, managing pension funds must face the 

devastating combined effects between longevity risk 

and financial risk drivers; the last ones are due to 

both the volatility of return on investments and 

interest rate risk connected to lowering interest 

rates. This is more pronounced in the current 

context of global economic crisis, with regard to 

both social security and individual pension plans. 

The choice of an appropriate management tool of 

the longevity risk is quite not simple and all the 

various ongoing solutions display strengths and 

weaknesses. Among the various solutions we recall 

traditional methods consisting of balancing hedging 

techniques, where compensating effects between 

opposite demographic risks are reached; reinsurance 

is another answer to the problem, even if it involves 
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cost-related and high interest risk correlation. 

Moreover transferring demographic risk to capital 

markets (LTR, i.e. Longevity Risk Transfer) is 

another possible key, even if a complete regulatory 

and structural arrangement of markets arising 

therefrom is still a remote goal. 

Further alternatives lie in constructing survival-

indexed contracts and the recent actuarial literature 

proposes several suggestions in those terms 

(cf. Richter et al., 2011; Piggot et al., 2005; Denuit et 

al., 2011; Maurer et al., 2013; D’Amato et al., 2013). 

Longevity risk essentially takes shapes by two aspects, 

called, respectively, rectangularization and expansion.  

The first one consists of an increasing concentration 

of deaths around the mode of the death curve, at 

adult ages; as consequence, the shape of the survival 

function tends to assume a rectangular configuration, 

so the term rectangularization is used to explain 

such phenomenon. 

The second aspect, called expansion, by virtue of 

the previous one, concerns the mode of the curve of 

deaths, which tends to the ultimate age, itself 

moving towards very old ages. 

It is evident that the reliability of mortality tables, 

which capture the survival trend and project its 

forecasted future improvements, is a huge concern. 

Within portfolios of products with longevity risk 

exposure, the choice of adequate projected 

mortality tables constitutes a relevant systematic 

risk driver, i.e. a model risk due to the uncertainty 

of the proper choice. 

In Pitacco (2007) the risk of systematic deviations 

due to such choice is set in the context of 

parameter risk/table risk, linked up to the models 

for projecting mortality and their parameters. So 

the expression uncertainty risk can be properly 
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used for defining the risk connected to all what 

concerns the systematic deviations of the 

demographic technical bases. 

In this paper we will deep the uncertainty risk, 

analyzing it by means of a suitable risk measure. We 

will give particular attention to the uncertainty 

arising from the choice of incorrect demographic 

tables, so the conditional variance is the proper tool 

for measuring this specific risk. For this reason we 

are not interested in other forms of risk 

quantification (quantiles, Tail VaR and so on) 

(cf. also Coppola et al., 2011). 

We will quantify the uncertainty risk in several 

contexts, meaningful in portfolio valuations. 

Under specified hypotheses for demographic and 

financial assessments, we will show the behavior 

of the uncertainty risk index. Within this 

framework, we will provide a feasible way to 

compare the risk trends with the specific aim of 

building hedging strategies. 

The layout of the paper is the following: Section 1 

we provide a measure of the uncertainty risk and 

extend results we already obtained (cf. Coppola et 

al., 2002; 2008 and 2011; Di Lorenzo et al., 2002). 

In Section 3 we apply the demographic risk 

measure proposed in Section 2 to (a) the initial 

value of an immediate life annuity portfolio; (b) a 

pension annuity portfolio fund; (c) the surplus of a 

portfolio consisting of deferred life annuities. In all 

the three cases the impact of the uncertainty risk is 

quantified and discussed by means of suitable 

numerical examples. Some concluding remarks 

close the paper. 

In Appendix a brief outline of the survival functions 

used in the applications is presented. 

1. Systematic risk indexes 

Let us consider a portfolio of c homogeneous 

variable annuities, where each policy is issued to 

each of c lives aged x and ah ( 1h ) is the variable 

installment payable, for instance, at the end of 

each year h, while (x) survives. Let indicate by 

K  the random variable representing the curtate-

future-lifetime of the i-th life insured and by Zi 

the random present value of the annuity for the i-

th life insured: 

( )1,...,
(0, )x

i
i hh K

Z a v h


   

v (0,h) being the stochastic present value at time 

t = 0 of one monetary unit at time t = h. iZ  is 

defined to be 0 if 
( )x

iK  is 0. 

Let us assume the following set of hypotheses (cf. 
Coppola et al., 2000 and 2002): 

1. the random variables 
( )x

iK are independent and 

identically distributed; 

2. the random variables iZ  are independent and 

identically distributed, conditioning on the 

knowledge of ,...2,1)),0(( ssv  

3. the random variables 
( )x

iK  and ),0( sv  are 

mutually independent. 

Moreover let T be the random survival function 

from which the projected life tables are inferred, 

 
1

c

i i
Z c Z




 
the portfolio value and 

c

cZ )(
 

the average cost per policy. 

In the following we synthetically denote the 

demographic uncertainty risk by uncertainty risk. 

We recall the risk filters provided by Coppola 

et al. in (2002): 

Definition 1A. 














 T
c

cZ
EVUR

)(
 is a measure 

of the uncertainty risk. 

Definition 2. 














 T
c

cZ
VEIR

)(
 is a measure of 

the investment risk. 

Now we give another formulation of the overall 

systematic risk filter. Differently from Coppola et al. 

(2002), here we study the variance when the number 

of policies tend to infinity. 

The following result holds: 

Proposition 1. Under the hypotheses (1), (2), (3), 

the limiting value of the variance of the average cost 

per policy, when the number of contracts tend to 

infinity, is a measure of the systematic risks.  

Proof: 

Since 

     
1

(0, ) ,i i h h x

h

E Z E E Z T a E p E v h




         

we obtain 

     
1

( ) (0, ) .h h x

h

E Z c c a E p E v h




                   (1) 

Moreover 
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       
1

2 2 2 2

1 2 1

(0, ) 2 (0, ) (0, ) ,
h

i i h h x h x h r r x

h h r

E Z E E Z T a E p E v h E p a a E v h v r E p
  

  

                 
  

hence: 

   2 2 2
, 1

1 1 1
( ) ( 1) (0, ) (0, ) .

c c

i ji i j i h k h xk xi h k
i j

E Z c E Z Z Z cE Z c c a a E p p E v h v k
 

  

             
           (2) 

Let us consider the average cost per policy 
c

cZ )(
; by virtue of the pooling nature of the insurance risk, its 

impact can be controlled by increasing the number of policies. 

We observe that: 

  22( ) 1 1
1i i j i

Z c
V E Z E Z Z E Z

c c c

                 
                                                                                            (3) 

and 

    

     

22

, 1

, 1

( )
lim (0, ) (0, )

(0, ) (0, ) .

c i i i x j x i j

i j

i j i x j x

i j

Z c
V E Z E Z E p p a a E v i v j

c

a a E p E p E v i E v j










            

   




                                                     (4) 

Now we observe that the sum of the two indexes introduced in Definitions 1A e 2A coincides with the result 
in equation (4). In fact: 

       

   

     

, 1 , 1

, 1 , 1

, 1 , 1

(0, ) (0, ) (0, ) (0, )

cov (0, ) (0, ) (0, ) (0, )

(0, ) (0, )

i x j x i j i j i x j x

i j i j

i j i x j x i j i x j x

i j i j

i j i x j x

i j i j

UR IR E p p a a E v i v j a a E p E p E v i E v j

a a E p p v i v j a a E p p E v i v j

a a E p E p E v i E v j

 

 

 

 

 

 

         

        

   

 

 

  .

 

Finally, by comparing to the last side of formula (4): 








 
c

cZ
VIRUR c

)(
lim

 

                                                                                              
QED 

The previous result means that the risk of very large 
portfolios is the systematic risk in the two forms of 
uncertainty and investment risks. This is consistent 
with what is stated in Coppola et al. (2000); in that 
paper the dependence on the number of policies 
came to light from the formulas of each risk 
measure and determined its behavior. 

The preceding result can be easily extended to a 

portfolio of deferred life annuities. 

2. The uncertainty risk: applications 

The annuity contractual structure, both in immediate 
and deferred cases, suffers a complex sensibility to 
the uncertainty of the main variables involved in all 
the financial evaluations. In particular, focusing on 
the mortality/longevity risk, a wide literature and 
several evidences show how its impact varies 
accordingly to the ages and to the specific 

contractual period. For instance, in the case of 
pension annuities, during the working period, when 
the annuitants pay the premiums, the insurer suffers 
the mortality risk (higher mortality means less 
premium payments) but probably this risk will not 
be so relevant in light of the young ages of the 
payers. On the contrary the longevity risk, 
particularly in its systematic and unremovable risk 
component (sometimes called aggregated longevity 
risk, cf. Olivieri et al., 2011), becomes important 
during the retirement period. This importance is not 
homogeneously spread during the retirement period, 
revealing age intervals in which it is particularly 
strong. In the preceding section we measured the 
importance of the impact of the aggregated 
longevity risk by means of the specific risk measure 
we indicated as Uncertainty Risk, and we think that 
the information provided by the description of this 
risk filter referred to a portfolio of policies and 
 



Problems and Perspectives in Management, Volume 13, Issue 3, 2015  

21 

studied as function of the time and of the age at 

issue of the pensioners/annuitants, can provide very 

useful indication to the insurer for building correct 

hedging strategies. These activities are realized in 

different forms: one of the most common is the buy-

out plan, with which the pension plan transfers all 

the risks, including the longevity risk, to the 

insurer/reinsurer (cf. Blake et al., 2013). 

An alternative is a buy-in strategy: for example it 

can be specifically set for hedging the systematic 

longevity risk, aiming to a de-risking activity. 

Besides, other forms of hedging were explored. 

Initially (about ten years ago) a variety of bonds 

issued to the longevity hedging aim diffused. Often 

they suffered an insufficient demand, were 

characterized by a complex structure not easily 

correctly designable (think for example to the basis 

risk impact) and gave rise to a rigid and not liquid 

market. Successively new kinds of derivatives 

proliferated (i.e. q forward, longevity swaps). 

An interesting and wide overview of the different 

hedging strategies developed in the market are 

reported in Blake et al. (2013), as a proof of the 

great interest in this topic. 

In the following subsections we apply the risk 

measuring approach proposed in the paper to a life 

annuity portfolio, specifically to its initial 

consistency, the portfolio fund and the portfolio 

surplus. In all the applications, aiming to purely 

illustrative purposes, we assume that the 

instantaneous rate of return on investment is 

described by a Vasicek process: 

  )()()( tdWdttrtdr    

with 0.07, 0.02, 0.04      and initial 

position r(0)=0.025. 

Under this stochastic hypothesis, 
( )

( , )

j

t
r s ds

v t j e
  

is lognormally distributed. 

Moreover the models we consider for depicting the 
future survival are the standard Lee Carter model 
(LC) (Lee and Carter, 1992), the Booth, 
Maindonald and Smith model (BMS) (Booth et al., 
2002) and the Cairns, Blake and Dowd model 
(CBD) (Cairns et al., 2006). Measuring the impact 
of the uncertainty risk, as previously defined, is 
strongly affected by the reliability degree the 
insurer assigned to the demographic modes. In this 
example we assume to assign to LC and to BMS 
the reliability degree 0.4, to CBD 0.2. The study is 
referred to Italian male population. The most 
projected model is the CBD, followed by BMS and 
then LC (cf. D’Amato et al., 2015). 

In Appendix we briefly recall the three survival 
models. 

We emphasize that the choice of all the afore 

mentioned financial and demographic processes is 

intended to provide an example; such choice can be 

modified depending on the application requirements. 

2.1. Application to the portfolio initial value. 

In this subsection we will show some graphical 

evidences of the Uncertainty Risk Measure. Our 

first application concerns the initial value of an 

immediate life annuity portfolio. In Figure 1 we 

consider the UR proposed by the Definition 1A 

referred to the average cost per policy 
c

cZ )(
 and 

show its trend when the age at issue varies from 20 

to 80 and the time from 0 to 80. The figure shows 

that the Uncertainty Risk is characterized by a high 

concentration around the age 70, pointing out the 

existence of one risky age interval. This 

circumstance highlights that the older the insured is, 

the higher the initial UR is. High concentration is 

generally perceived as a good new from the hedging 

point of view, allowing for targeted and localized 

strategies. Moreover the younger the annuitant is at 

issue, the higher the UR in the risky age interval is. 

The same trend is clearly shown in Figures 2 and 3 
referred to the portfolio value Z(c), respectively with 
the initial consistency of 500 and 10000 
homogeneous policies, under the same hypothesis. 

2.2. Application to the portfolio fund. This second 

application regards a pension annuity portfolio fund 

of c policies, to which we adapt the risk measure in 

Definion 1A. The policies are issued on lives aged x 

and consist of a sequence of premiums P paid at the 

beginning of each contract term in case of life, till 

the retirement age occurring after n years. Then the 

insurer will pay a sequence of constant benefits R at 

the beginning of each contract term in case of life. 

The premiums are deposited in a fund earning 

interest term by term (cf. Olivieri et al., 2003). 

If F(k) is the portfolio fund at time k, kN the number 

of survivors at time k belonging to the initial cohort 

of c annuitants/pensioners,   the extreme age and *
ki

 

the random interest rate earned in the period (k-1, k), 

we have the two following different cases referred, 

respectively, to the first n years (i.e. working period) 

and to the subsequent years (i.e. the retirement one): 

  *( ) 1 1 k kF k F k i N P   
      

1, 2,..., 1,k n 
 

  *( ) 1 1 k kF k F k i N R   
   

, 1,..., .k n n x    
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Here we report the portfolio fund value in three different forms, in dependence of the valuation time 
position: 

 1 *

0 1
( ) 1

hh

i j hi j i
F h N P i N P



  
   

                        
1, 2,..., 1h n 

 

                            
  *( ) 1 1 ,n nF n F n i N R   

 

and 

     1* *

1
( ) 1 1 1 ,

n m n mn m

j q n mp ni n q pp
F n m F n i N R i nN R

  

  
          

this last with 1, 2,..., .m n   

The uncertainty risk measure, can be written as: ( ) .UR V E F k T       

 

The application is based on a portfolio of 1000 policies 
issued on insureds aged 45, entering in the retirement 
phase at age 65, that is after 20 years. The annuity the 
insurer will pay in case of life of the pensioner is 
R=100, payable at the beginning of each year. 

We will perform the risk analysis focusing on the 
retirement period, that is from age 65 on. 

In Figure 4 we can observe the trend of the 
uncertainty risk assuming a fixed rate of 3% and the 
LC model for the premium calculation. 

The index always increases, assuming very low 
values at the beginning of the retirement phase. 

Differently from Figure 4, Figure 5 reports the 
Uncertainty Risk when the same hypotheses for the 
premium calculation and for the fund dynamics are 
considered. Specifically it means that also the 
premium is calculated by means of the same 
technical bases used for the fund dynamic. The UR 
moves differently from the preceding case, assuming 
generally definitely lower values and presenting a 
maximum around age 83, that is after 18 years of 
retirement. In particular, the uncertainty risk 
decreases after this age, showing a slightly 
increasing trend for very old ages. 

2.3. Application to the portfolio surplus. In this 

section we analyze the uncertainty risk with regard 

to a portfolio of immediate identical policies, with 

benefits due in case of life to a cohort of c insureds 

aged x at issue (cf. Coppola et al., 2011). 

We define the portfolio surplus at time t (cf. Lisenko 

et al., 2007; and Coppola et al., 2011) as the 

difference between the value of the assets 

accumulated until t and the value of the liabilities 

from t until the portfolio maturity. 
Following the basic lines of Coppola et al. (2011), 

we introduce the liability tV  as follows: 

 , ,t j jj t
V N Y v t j


                                            (5) 

where v(t, j) is the value at time t of one monetary 

unit due at time j, jN  the number of survivors at 

time j, jY  (j > t) the difference at time j between the 

insurer’s obligations and the net premiums. 

Then we introduce the asset tA : 

 ,, 


tj
jjt jtvYNA  

where jX  is the difference between the premiums 

collected and the benefits due. 

As clearly pointed out by Lisenko et al. (2007), the 

value of the assets, also called retrospective gain in 

actuarial context, is the accumulated value of 

premiums collected minus benefits paid before t; the 

value of the liabilities, also called prospective loss, 

is the discounted value of benefits minus premiums 

due after t. 

Now, considering the surplus tS  of a portfolio of 

identical policies issued to c insured aged x, it holds: 

 ,, j
jjt jtvXNS  

with jX  the difference between premiums and 

benefits and: 

     ( )
, 1 , ,

sign t j

v t j i t j


   

where  jti , is the structured interest rate in the time 

interval between t and j and: 

, 0
.

1, 0

x
for x

signx x

for x


 

 

 

Applying the uncertainty risk measure introduced in 
Section 1 to St, we obtain: 

 1 , ,t j jj
UR V E S T V E X E v t j T                  
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with 1j the indicator function which assumes the 

value 1 if the claim happens at time j, 0 otherwise. 

Finally we obtain: 

 2 , .t j x jj
V E S T c V p X E v t j T              

The surplus analysis provides information about 

the financial position of the business under 

consideration. It improves when the loading 

factor, say ,  applied to premium calculation 

increases. 

To this in-depth analysis the following observations 

are relevant (cf. Coppola et al., 2011): 

Proposition 2. For each  ,,...,2,1 ni under the 

same hypotheses in section 1 and posing jN  

multinomial  
c

S
pjc t

x ,,,  converges in distribution 

to the random variable  , .t j j xj
Г X p v t j

 
 

To this proposition we add the following result 
involving the standard deviation of the surplus (with 
respect to the systematic demographic uncertainty), 
considered per unit of mean surplus: 

Remark 1. 

  
 

   
  lim .

t
V p X E v t, j TV E S T j j x j

θ p X E v t, jE S j j x jt


   

This is evident, because in the case of immediate 

annuity the only premium to capitalize is the single 

premium paid at the issue time. 

The portfolio we consider in this application 
consists of c=1000 immediate life annuities. 
In Figure 6 the Uncertainty Risk of the portfolio 
surplus is represented, for age at issue varying from 
40 to 65 and time of valuation from 5 to 40 years. 

In Figure 6 we can observe that the uncertainty risk 
index trend increases when the age at issue 
increases, pointing out the highest values 30 years 
after the issue time. 

 

Fig. 1. The uncertainty risk of the average cost per policy, age from 20 to 80, time from 0 to 80 

 

Fig. 2. The uncertainty risk of the initial value of the portfolio, age from 20 to 80, time from 0 to 80, c = 500 



Problems and Perspectives in Management, Volume 13, Issue 3, 2015  

24 

 

Fig. 3. The uncertainty risk of the initial value of the portfolio, age from 20 to 80, time from 0 to 80, c = 10000 

 

Fig. 4. The uncertainty risk trend in fund valuation. Different hypotheses for premium and fund 

 

Fig. 5. The uncertainty risk trend in fund valuation. Same hypotheses for premium and fund 

 

Fig. 6. The uncertainty risk index of the portfolio surplus, x = 40, 50, 55, 60, 65; t = 5, 10, 20, 30, 40 
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Conclusions 

To conclude, we would like to briefly illustrate the 
strategic significance of the results presented in this 
work. Our study engaged with the issue of 
demographic model selection for actuarial valuations 
within the picture of life insurance portfolios, drawing 
particular attention to the systemic impact of survival 
trend improvements. Within this context, knowledge 
of the risk linked to model selection, the uncertainty 
risk, is of prime importance, as it paves the way for the 
implementation of effective hedging strategy and 
management line. Moreover, formalizing and 
quantifying the uncertainty risk is useful within a 
predictive context, as well as within a comparative 
context: it can serve as a basis for business decision 
and can be easily updated year-by-year as the 
demographic and investment conditions modify. 

By consequence, this work was especially 
concerned with the definition and quantification of 
uncertainty risk informed by the randomness of 
this particular choice; the analysis is performed 
taking into account also the interplay between the 
systemic demographic risk and the investment risk, 
whose impact is averaged out within the 
uncertainty risk valuation. 

Large attention has been given to the graphic 
representation of risk index dynamics, too; 
empirical evidence shows, for example, a significant 
risk concentration in given age and time ranges. 
Being the evidences all got on financial quantities 
affected by both the return rate and the mortality 
randomness, the methodology allows for 
identification of precise hedging actions and 
adequate contractual structures. 
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Appendix 

We briefly recall the main notations concerning the three survival models used in Section 2. See also Brian 

(2013), Blake et al. (2006), Lee et al. (1992), Booth et al. (2002) for a deeper understanding here. 

A1. The LC model 

The Lee-Carter (LC) model involves the logarithm of the mortality rate at a given age x in a given year t, as 
follows: 

, ,ln x t x x t x tm k      

with 

♦ ,x tm = death rate at the age x in the year t; 

♦ x = age-specific component (not dependent on time) at age x; 

♦ x = age-specific component (not dependent on time), which incorporates mortality variations linked 

with variations of the general mortality level (sensitivity parameter); 

♦ tk = time component which expresses the general mortality level in year t; 

♦ ,x t = error term with zero mean and finite variance. 

In particular, x  is the mean of ,ln x tm  throughout the observation period. 

In order to estimate the parameters, which are not fully observable, Lee and Carter used the following 
normalizing positions: 
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can be obtained by a linear regression and finally: 

,ln x t x xm     

Lee and Carter modeled tk  by means of an ARIMA(0,1,0) process. 

A2. The BMS model 

The Booth-Maindonald-Smith (BMS) model improves the LC model, by modifying the time component and 
studying the optimal fitting period, coherently with linearity of the time component. 
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In particular, the model is the following: 

( ) ( )

, ,1
ln

n i i

x t x x x x ti
m k  


    

in which 

♦ ,x tm = death rate at the age x in the year t; 

♦ x = age-specific component (not dependent on time) at age x; 

♦ ( )i

xa = age-specific components (not dependent on time), which incorporate mortality variations as the 

general mortality level varies; 

♦ ( )i

tk  = time component which expresses the general mortality level in year t; 

♦ ,x t = error term; 

♦ n = the rank of the approximation; 

A3. The CBD model 

The Cairns-Blake-Dowd (CBD) model involves a two factor model for describing the evolution in time of 
the mortality curve. 

Specifically, the model focuses on the ratio of the mortality yq  to the survival rate yp : 

1 2ln .
y

y

q
A A y error

p
    

For       1 2, A t A t A t  Cairns, Blake and Dowd adopt the model 

     1 1 ,A t A t CZ t      

with   is a constant 2 1  vector, C is a constant 2 2  upper triangular matrix, Z(t) is a two-dimensional 

standard normal random variable. 
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