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ABSTRACT 
In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is 
evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The 
structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core 
losses, reduction of stator weight and elimination of cogging torque. In addition, the generator output voltage is 
sinusoidal in low speed operation and has a linear relationship with rotor speed, which makes it a suitable option for 
wind turbine applications. The simulation results of the proposed generator coincide very well with the experimental 
results on a system realized in the laboratory.  
 
KEYWORDS: Axial flux permanent magnet synchronous generator, Air-cored, 3D finite element analysis, 
Wind turbine. 

 
1. INTRODUCTION 

 Growing environmental concerns and attempts to 
decrease dependency on fossil fuel sources are 
bringing renewable energy resources to the tendency 
of the electrical power sector [1]. Wind power is one 
of the renewable energies received more attention 
due to its clean and economical advantages. It is 
predicted that by 2020 up to 12% of the world's 
electrical energy will be supplied by wind turbine 
[2].  

Wind turbines are categorized into two classes: 
fixed speed and variable speed. Nowadays, variable 
speed wind turbines have become more universal 
than traditional fixed speed turbines because of the 
more efficient energy production, enhanced power 
quality and improved dynamic performance during 
grid disturbances [3,4]. In addition, mechanical 
stresses can be decreased in variable speed wind 
turbines respect to fix ones [5]. Variable speed wind 
turbines use different generators such as: variable-
speed doubly fed induction generator, which utilizes 
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a frequency converter between the rotor windings 
and the grid; and variable-speed synchronous 
generator, which is either a wound rotor 
synchronous generator or a Permanent-Magnet 
Synchronous Generator (PMSG). Synchronous 
generators provide great flexibility to meet different 
technical requirements with power ratings from a 
few kilowatts to a few megawatts in wind turbine 
applications [6]. PMSG can be designed with a large 
number of poles and directly coupled with the 
turbine. As a result, installation and maintenance 
costs are reduced and provide an advantage over 
Induction Generator (IG) based turbines where a 
gearbox is an essential component of the system.  
Permanent Magnet (PM) generators are classified into 
radial-flux and Axial-Flux (AF) machines, in view 
of the flux direction. As compared to traditional 
radial flux machines, the AF machines show innate 
and useful modularity features and can achieve 
higher power density levels, particularly if a high 
number of poles are considered. On the other hand, 
in the case of distributed windings, it is difficult to 
achieve a high pole number. In fact, in order to 
secure a minimum possible size of the tooth pitch, 
reduction of the number q of slots (pole phase) is 
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required which consequences declining of the 
performance quality [7-9]. Several trials [7-12] have 
been reported in the literature to present advantages 
of using axial flux PM synchronous generator 
(AFPMSG) in wind turbines.  

The iron core used in AFPMGS increase the 
weight of the machine. In addition, there are large 
axial forces between the permanent magnet rotor 
and the iron core, which must be regulated carefully 
during assembly. An alternative solution is to hold 
the axial flux topology with an air-cored armature 
structure with concentrated armature coils [13], [14]. 
A coreless AFPM can operate at higher efficiency 
than traditional machines because of the absence of 
the core losses. Adoption of ironless windings results 
in a considerable reduction in the stator weight. In 
addition, the cogging torque would be eliminated by 
using an ironless stator. This paper presents 3D FEM 
analysis of an air-cored axial flux permanent magnet 
synchronous generator for low speed, direct drive 
applications. Although, Refs. [13, 15] are also 
dealing with air-cored axial flux AFPMSG 
applications, the authors of this study try to obtain 
more performance characteristics and evaluate the 
structure in larger in view of voltage and size. This 
paper also presents experimental tests on a system 
realized in the laboratory.  

The paper is organized as follows; Section 2 
introduces the topology and structure of the 
proposed generator considered in this study. Three 
dimensional Finite Element Modeling (FEM) of the 
machine is explained in Section 3. Section 4 
addresses the experimental system realized in the 
laboratory. Section 5 illustrates the results of the 
FEM analysis and experimental tests. Finally, 
conclusions will be given in the last section. 

 

2. MACHINE STRUCTURE 
The considered machine is a double-rotor single-
stator axial-flux permanent magnet synchronous 
generator. Fig. 1(a) shows the presented generator 
structure, consisting of one stator and two rotor 
parts. Ironless stator winding is located in the air gap 
between the rotor discs. Circular flat-shaped high-
energy Neodymium-Iron-Boron (Nd-Fe-B) magnets 
are mounted on surfaces of the solid-iron rotor disk. 
The rotor discs are constructed of steel S232JR 

structure, and supporting parts. Air-core windings 
are kept in position by non-magnetic non-
conducting stator disc, rather than iron slots. Absent 
stator teeth and back-iron yoke results in elimination 
of the cogging torque and iron losses, axial magnetic 
forces between the rotor and stator, and easier 
assembly. This form of AFPM generator is 
considered as a high-efficiency machine. The 
magnets on each rotor disc are directly aligned with 
an opposite pole in the structure. In the North-South 
(NS) topology, the main flux flows from one rotor to 
another rather than travels circumferentially along 
stator core and decrease the necessity of stator yoke. 
Rotor discs and arranged pole magnets are shown in 
Fig. 1(b). 
 

 
 
 
 
 
 
 

(a) 
 
 

 

(b) 
Fig. 1. Proposed machine, (a) coreless double-rotor single-

stator (AFPMSG), (b) arrange of Nd-Fe-B magnets. 

 
Flux paths in the machine are shown in Fig. 2. As 

shown in Fig. 2, the flux in the rotor core ( rΦ ) is 

half of the pole flux in the air gap ( gΦ ). Rotor core 

thickness ( rl ) can be calculated using flux equality 

and known parameters as follows [13]: 
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AFPMSG, the electromagnetic field and circuit-
coupled approach based on the A-V-A formulation 
is used. From the well-known Maxwell’s equations, 
the computation of the magnetic field, based on the 
A-V-A formulation with the Coulomb gauge, leads 
to the following equation [16]: 

   .ev A v A J    
                                    (17) 

 . . 0
A

V J
t


 

     


                           (18) 

The governing equation in the permanent magnet 
region is described as follows: 

     0

0

[ ]
. ( )e

v M
v A v A

v
     


                   (19) 

where, A


 and V  are the magnetic vector potential 

and scalar electric potential, respectively.  v is the 

reluctivity matrix and   is the conductivity 

matrix. ev is defined as one-third of the reluctivity 

matrix. J


is the current density, 0M


is the remanent 

intrinsic magnetization vector and 0v  is the 

reluctivity of the free space. Full meshed model of 
the considered generator is illustrated in Fig. 3.  
 

Table 1. Design parameters of the constructed machine. 
Parameters Value 

coilN  300 

phasesN ,  600 

Electrical power (w) 300 
Number of poles 8 

Number of coils 6 

Number of phases 3 

Radius of circular magnet 25 (mm) 

Distance between center of discs and 
permanent magnets 

100 (mm) 

Inner radius of coil 6 (mm) 

outer radius of coil 115 (mm) 

Permanent Magnet Axial Length 10 (mm) 

Air gap between permanent magnets 20 (mm) 

Thickness of back iron 10 (mm) 

Speed 600 (rpm) 

Axial length of generator 60 (mm) 

Outer radius of back iron disc 150 (mm) 

Permanent Magnet Residual Flux 
Density 

1.20 (T) 

The number of nodes, line elements, surface 
elements and volume elements of the developed 
FEM model are listed in Table 2. 
 

Table 2. FEM meshed model characteristics. 
Number of nodes 48053 
Number of elements 7113 
Number of surface elements 86046 
Number of volume elements 202525 

 
 
 
 
 
 

Fig. 3. FEM result:  meshed model of the proposed 
generator. 

 
The value of the flux density in various parts of 

the machine is an important and effective parameter 
in both core losses and the amount of saturation to 
which the machine is exposed. The revelation of the 
varying flux density at various machine parts is 
studied using the developed FEM model. Fig. 4(a) 
presents the magnetic flux density distribution in the 
generator. Fig. 4(b) and 4(c) illustrate magnetic flux 
density values in back iron and PMs of the 
considered machine. It is observed that the 
maximum flux density in back iron is 1.2 T which is 
appropriate value of flux density and lower than the 
field saturation value of the magnetic iron. Air gap 
magnetic flux density is shown in Fig. 4(d), where 
the amount of flux density value is (0.7 T). It is 
observed that the magnetic flux density values are 
acceptable and suitable. 

 

4. EXPERIMENTAL SETUP 
According to the main specifications and 
dimensions given in Table 1, the case study 
AFPMSG has been constructed and tested in order  
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(a) 
 

(b) 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 

(d) 
Fig. 4. Magnetic flux density distribution in the: (a)  all 

generator parts, (b) back iron, (c) PMs, (d) Air gap. 

 
 

to demonstrate the possibility of experimental tests 
of the proposed solution. The machine was driven 
by an induction motor fed by a frequency converter 
and loaded with a resistive load bank. Under load 
conditions, the most important effect of the armature 
reaction field in surface of the permanent magnets is 
the possibility of partially or totally demagnetizing 
of the magnets. The stator of the constructed 
AFPMSG can be seen in Fig. 5 (a). Windings are 
connected electrically in star connection. Fig. 5(b) 
shows in detail the rotor discs of the machine. The 
completed generator is shown on the laboratory test 
bench in Fig. 5 (c).  
 

(a) 

 

 

 

 

 

(b) 

 

(c) 

Fig. 5. (a) Detailed structure of the rotor discs, (b) 
Winding coil of the stator, (c) Experimental setup and case 

study generator. 

 
Each of the phase coils includes 300 turns and the 

total number of phase turns is then 600. Both ends of 
the phase windings are available in a connection 
box. As a result, renders possible changing of the 
machine's electrical connection from star to delta. 
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5. FEM AND EXPERIMENTAL 
RESULTS 

The no-load phase voltage of the generator with 600 
rpm shaft speed is shown in Fig. 6, while the two 
armature coils in each phase are connected in series. 
The corresponding experimental results, for the 
same conditions with FEM analysis, are shown in 
Fig. 7. The voltage signals with approximately 60-V 
of peak value for both sets of results proves the 
accuracy of the model.  

Figure 8(a) indicates the voltage signals obtained 
from the experimental tests where a 3 phase R-L 
load ( mH 68L ,15 R ) is connected to the 

machine. Fig. 8 (b) shows one phase voltage and 
load current. 

Figure 9 illustrates the line-to-neutral voltage with 
respect to the load current of the machine. As it is 
obvious from the figure, a low voltage drop is seen 
between the no load and full load conditions. 
 

 
(a) 

(b) 
Fig. 6. 3-D FEM, no-load voltage at 600 r/min: (a) 3 

phase, (b) one phase. 

 (a) 

 
(b) 

Fig. 7. Experimental, no-load voltage at 600 r/min: (a) 3 
phase, (b) one phase. 

 

(a) 

(b) 
Fig. 8. Experimental test, (R-L load connected to the 

machine) at 600 r/min: (a) 3 phase load voltage, (b) one 
phase voltage and load current. 
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Fig. 9. FEM output voltage amplitude versus load current 
at 600 r/min. 

 
No-load test of the machine was also performed 

with variable speed condition. Figure 10 illustrates 
the relation between the induced voltage and speed 
of the machine in both of the simulation and 
experimental tests. It is easily observed that a linear 
relation exists between the voltage and speed of the 
rotor. 
 

Fig. 10. FEM and experimental output voltage versus 
variable speed of the machine. 

 

As it has been depicted in the given results from 
Fig. 6 to Fig. 10, the output voltage of the machine is 
nearly sinusoidal in low speed operation and has 
linear relation with the rotor speed. Therefore, the 
output voltage of the constructed AFPMSG is 
controllable and can be regulated easily. These 
characteristics of the suggested topology make it 
suitable for wind turbine application. Future work 
ought to focus on other aspects of the machine like 
dynamic modeling of the machine and detailed 
consideration of the efficiency. In addition, more 
exhaustive tests on the constructed AFPMSG is 
highly desirable in the future works to establish 
more reliable machine for wind turbine applications. 
 

6. CONCLUSIONS 
This research work presented performance 
evaluation of an air-cored slotless axial flux 
permanent magnet synchronous generator, which is 

suitable for low speed applications such as wind 
turbines. Simple structure, and low cost are the main 
advantages that achieved. The simulation and 
experimental test results on a system realized in the 
laboratory proved that the considered generator has a 
sinusoidal output voltage in low speed operation, 
which is a linear function of the speed. FEM 
analysis results were depicted proper distribution of 
the electromagnetic flux on various parts of the 
machine. All these characteristics of the suggested 
topology make it suitable for wind turbine 
application.  
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