View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by Directory of Open Access Journals

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

Technology and Design Tools for Portable
Software Development for Embedded Systems

Boris Sedov, Alexey Syschikov, Vera Ivanova
State University of Aerospace Instrumentation
Saint Petersburg, Russia
{boris.sedov, alexey.syschikov, vera.ivanova}@guap.ru

Abstract—Nowadays embedded systems are used in broad
range of domains such as avionics, space industry, automotive,
mobile devices, domestic appliances and so on. There is
enormous number of tasks that should be solved using
embedded systems. There are many tools and approaches that
allow developing of software for domain area experts, but
mainly for general purpose computing systems. In this article
we propose the complex technology and tools that allows
involving domain experts in software development for
embedded systems. The proposed technology has various
aspects and abilities that can be used to build verifiable and
portable software for a wide range of embedded platforms.

L INTRODUCTION
Why do we need such technology?

The performance of embedding systems is increasing and
they are used in more and more domain areas. The
complexity of tasks running on such systems is increasing
rapidly. There is a transition from simple control systems to
high-performance systems for image, audio, video
processing [1,2] and even decision making [3,4]. An
algorithmic and a programming complexity of such tasks
also increase fast. Embedding systems programming
specialists are no longer enough for solving such complex
tasks. A “two-in-one” developer is required: skilled domain
experts, who can solve a task, and a skilled programmer,
who can implement the algorithm efficiently. For specific
embedded platforms such developer additionally should
have a deep understanding of platform development
features. Our technology allows involving domain experts
into development process even without advanced skills in
programming.

Requirements to hardware platforms are always
contradictive. From a customer’s point of view the platform
should be small, cheap, with low power consumption, and it
should work perfectly. From a developer’s point of view
hardware platform should be fast, have a lot of memory and
other resources. In fact, unlike general purpose systems,
embedded system must solve allocated tasks according to
requirements and constraints. The performance and
resources should be sufficient for this and system should

have minimum of unnecessary resources. Our technology
allows performing an estimation and evaluation of program
requirements and hardware platforms, providing information
for selection of platform type and agreement of platform
characteristics.

The development of an algorithm and program should be
started before the selection of a specific platform
configuration is make to provide small time to market for a
completed hardware-software solution. During the
development process and exploitation the requirements can
be (and will be) changed. It may lead to changes in
hardware platform and its characteristics. Also the single
task can have dramatically different characteristics and
platform requirements depending on aspects of its
application. So it is possible that some program will be
applied on several platforms with different configurations
and different requirements to performance and other
characteristics. Our technology can provide various task
allocations to platforms depending on available resources
and computation requirements. It also provides estimations
of final hardware-software solutions characteristics.

Hardware platforms become out-of-date rapidly, but
computation tasks that are executed on them changes rarely.
Permanent change of hardware platform generations and
new configuration releases leads to permanent porting of
embedded software to new platforms. It also forces to
support a number of platforms of different generations with
different characteristics. Our technology provides solutions
portability to a wide class of platforms and their
configurations, and also technologies for porting solutions
onto other platforms.

11. TECHNOLOGY OVERVIEW

A. Technology structure

The technology of portable embedded software
development for a heterogeneous manycore embedded
systems provides a full cycle of software development for
embedded systems — from initial design stage to a ready to
use code for a particular hardware platform.

ISSN 2305-7254

https://core.ac.uk/display/201345157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

Technology structure

1

expert

j

r
|

Fig. 1. Technology structure

There are some trends on market [5, 6, 7], which are
similar on some way for proposed technology. One focused
on system-level modeling, not on programming. Other try
to mix design methodology with formal models (try create
formal language). But no complex solution is detected.

The presented technology consists of three basic stages
(Fig. 1):

e Algorithms design and programming.

e Simulation and early estimation.

e Deployment to target platforms.

Each of these stages is automated and has supporting
tools. The process is organized in a way that a developer has

an access to the results of each stage. It makes the
development process completely controllable.

Every component of the technology will be presented in
details below.
B. A program lifecycle

A lifecycle of the program development consist of three
key stages (Fig. 2).

e Program development and debugging.

e Preparation for a deployment to the selected
platform(s).

e Deployment to the various platforms.

87

At the first stage a domain expert design an algorithm,
develop and debugged a functional program. Design is
performed in the visual development environment using the
platform-independent execution tools.

- \\\.

Development ——> Simulation ——» Code generator

IR W | 4]

Platform 2

Platform 1 Platform 3

Fig. 2. A lifecycle of the program development

In fact, this stage corresponds to general-purpose
programs development using traditional development
technologies. The goal of this stage is getting a fully
functional, algorithmically correct and debugged program.
At this stage the simulator can be used to get platform-
independent metrics of a program. An iterative process can
be also applied for characteristics refinement. Engineers
have been using models in systems development processes
for years. What is changing as more companies adopt
model-driven development flows is the ability to take these

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

models and use them more efficiently and effectively
throughout the design process [8].

The second stage starts when the information about the
hardware platform architecture, structure and characteristics
becomes available for a developer. At this stage debugged
program is executed on the platform simulator. The
simulator provides a collection of platform-depended
metrics based on a modelling of a program execution on a
high-level platform model.

The developer can iteratively refactor the program using
metric analysis results until required performance
characteristics will be achieved. The simulator allows using
different platform configurations that makes possible
preparing the program for execution on all of chosen
hardware platforms which configurations are known.The
last stage is a deployment of the developed program directly
to the chosen hardware platforms. Within a technology this
deployment is performed by code generators. The code
generator produces a code for the selected program scheme;
this code will be used as an input for a particular hardware
platform compiler.

To port the program to the new target platform a code
generator should be developed. However, the complexity of
such development is reasonable, well-predicted and allows

making precise estimation of financial and time costs. Once
developed the code generator could be actively used, so the
costs become much less than a program development for
each platform configuration separately.

III. VISUAL DEVELOPMENT ENVIRONMENT

Visual development environment (VIPE) is designed for
development of the computational tasks. VIPE provides the
technology and instrumental support for algorithms design,
programming and debugging.

A. Visual programming language

Domain expert develops solutions for the task that would
be run on an embedded system. He uses the visual
environment for algorithms design (Fig. 3).

VIPE is wused for algorithms design and tasks
programming in various domains areas. The basic
instrument which is used for program development in VIPE
is the Visual Programming Language (VPL) [9].

VPL is an “action language” [8] that can be both
executed as a part of the model and translated into other
languages. VPL language is based on Asynchronous
Growing Processes (AGP) [10] formal computational
model. AGP model defines the language syntax, semantic of
language objects and construction of control units. The

¥ SURF.ckd - Coidatron wl —
I e | Wodew by
Wi Sody - Deleh ops Wrkipace W7o bk e
i B R e [0 | 3 00 | 2 i b | vt 4 P A S
Save Cpen Fasie PG R G ik .n_:. Waldste Ese Code RunTonurue Trpe R — b - Frev Mes -_,_: &_.;(e
ity -4 X Gnt good matkchay | Main = X Peoperter ax
Hasdel il
~ Wisin Lieary o 1]
functisaal Fonmila
Spl Cut e Cortec
brpans
5 Ruad (x])
Wit (] Risadd F 1
write F cofflen CvDrtectfiniea:
" ulich Load t Dwetect P Calculate
image = REYPOINLS = SEECTIPLES
for while -
Quiue -y T o o
Confrit el by A
wvirtual in wirnual gut L
oAy
~ oy ol
ol B,
’) 1 Matcing } = Get
b bl 500 eseriproes | - mg("m"dﬁ
petch
~ powarlib T
Fractional oy | Power
[t s Lag 2
mailbretn’ maeidoubie) |
Lisrary | Watch Drsject Toea x|
U ' [|
Commmmty -ax = = st iy
L 4 hia
e e Load Detect Cabcdate Gut g michas.
e, [} +| spl | - Tosypeincs + sl | I "ptmli Gt good matche
Marn Ll -[T
abject
Vit | Conmtanks Popect Tres | Hilpay
Vaaatan
Sutes ban place] T01AB0ISI80ATS Pace 3 Piace 4

Fig. 3. General view of the visual development

88

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

formal model provides the set of important properties of
the technology, such as: formal verification, debugging and
portability. The influence of the formal model to these
characteristics will be described in the next sections.

The investigation of the visual approach had shown its
great potential. It has cognitive advantages for developer,
such as clear view of development process, traceability of
the dependency graph and the calculations management
structure, natural parallelism and potential pipelining [11].

Visual approach allows a domain expert to concentrates
on a task solving by operating on visual images of the
domain area. He has no need to be a professional
programmer. This fact allows involving more domain
experts in the embedded systems software development.

Coarse-grained visual approach of the development
process gives the opportunity to separate a design process
from a programming (Fig. 4).

The domain expert designs a set of program blocks and
defines their relationships. There is no need for a domain
expert to understand implementation details of each block.
A programmer writes code for each block independently,
without full knowledge of the whole program structure.

Moreover the coarse-grained visual approach and a
development separation provides following advantages:

e Easy program development.

o FEasy changes in program structure.

e No direct programmer influence on a program
scheme.

e Local appearance of code errors.

e Possibility of auto-documenting of the program
scheme.

e Effective program maintenance during the whole
lifecycle.

e Decreasing of errors possibility without sacrificing
program obviousness.

o Flexibility and ease-of-change on any design stage.

B. Domain specific programming

The visual environment allows domain specific
languages (DSL) designing for a particular domain based on
coarse-grained libraries [12]. DSL libraries provide
convenience of design within an application domain (Fig. 5)
and enable re-use of development results. The more coarse-
grained libraries of different domains are developed, the
wider possibilities of results application appear.

* Separation of design
and programming

Expert

scene
2
Load - Detect Calculat
Imo:ge =+ spl =+ keypoints 1 spl [+ desccllulpto:s 1
- -
s
/ -+ Get
Matcing
) descrptors () %000 !

/

Programmer

Load Det
image =+ spl =) keypoints —+ spl)
- -

54 —
Calculate ¢ T

descriptors

ect

Template text

m@é

Open Save Save As.
Functionimplementation

int dhCalcairlight

(DataLink *inl1l, DatalLink *in31, DatalLink *out2:)

memcpy(&p, inll->Data, sizeof(int*))
CImg<double>* brightestDarkPixels =
memcpy(&p, in31-»Data, sizeof(int*)
CImg<double>* data = (CImg<double>*
float airLight[3] = { @.e, @.0, ©.0

s

(c
);
Jps
¥

Fig. 4. Separation of design and program

Img<double>*)p;

89

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

Library 0 X
E X
- | powerLib
Fractional Pov Power
Int power Log 2
max(byte) max(double)

~ | lowlevel_math

~ | lowlevel_bitwise

~ | opencvRef

| opency
cvSmooth cvloadlmage
cvBWFilter cvShowImage
cvReleaseallW cvWwait
cvReleaseWin cvLoadCascac

cvDrawRect cvSavelmage

cwGetImageR cvLoadImage
cvLoadImage cvBlurMatlib
cvShowMatlib cvCannyDetct
cvToColorlib cvCreateMatli
cvGetMatProp

Fig. 5. Coarse-grained library for image processing

C. Interactive tools

The development of computational tasks cannot be
performed without traditional development process support
tools. VIPE is not an exception for this: it provides to
developers the validation and interactive debugging tools.
Proposed tools apply features of the implementing approach,
collecting and displaying the most significant data for a
developer.

Validation ensures syntactic correctness of developed
visual programs. (Fig. 6).

Msn' bl=0
x
b
al o
x P
! | B
Mod | spl ——+ 1= cond
F T - -"
b~
|
| a
R I
[+
Wi
Vahdation
virtual has @ limks

Watch | Vakdaton

Fig. 6. Program scheme validation
The debugging tool provides well-known interactive

functions, such as step-by-step debugging, breakpoints,
watches etc. Besides this tool supports the features of an

90

applied approach and enables an access to such information
as history of data passing though the links, history of object
execution, paths, traces etc. (Fig. 7).

y e

i=5; i >= 0; j=i-1 (
434 436

Spl

467 7

LF

my for
321

- array,
L34 [446

472w

110
LSS REITRAISIAC) |

Fig. 7. Interactive debugging of the program

Implementation of the formal model-based approach
allows providing the developer with a formal verification
tool which verifies formal programs correctness “by
design”.

The visual development environment allows designing a
fully functional, debugged and algorithmically correct
program. The developed program is platform-independent.

The major feature of this technology is deep formal
model integration. Used formal AGP model allows spread
the development and debugging program results on any
form of a program execution. Formal model ensures that
program will run similarly and will get similar results with
no matter what kind of runtime environment (parallel,
sequential, shared memory, distributed memory etc.) will be
used.

IV. EARLY ESTIMATION AND EVALUATION

The tools for early estimation and evaluation are critically
important for reducing project schedules and improving a
result quality [13]. They are used to analyse the particular
task solution characteristics. They are oriented on an
interactive process of characteristics analysis and a program
scheme refinement (Fig. 8).

Main instruments of early estimation and evaluation are
the virtual simulator and the platform simulator.

A. Virtual simulator

A virtual simulator bridges the gap between the hardware
and software domains. It is both an abstraction of the design
as well as a simulation environment. A platform simulator
provides a representation of the design that can be used at
early stages of detailed development work to question,
validate, and test.

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

Transfer to the evaluate stage
Scheme correction

Fig. 8. Tools for early estimation and evaluation

The virtual simulator provides analysis of platform-
independent characteristics of a developed program. It
allows estimation of such characteristics as:

e maximal possible parallelism;

e computation space (amount of computations, used
memory etc.);

e computation time;

e amount and intensity of data exchange;

e other characteristics.

B. Platform simulator

Platform simulator allows analysis of the characteristics
of developed program execution on coarse-grained platform
models.

Platform simulator operates with a virtual hardware
platform which is a high-level representation of the
hardware that is used by both hardware and software
engineers. From the hardware engineer’s perspective, a
virtual hardware platform is a starting point for their detailed
design work. It accelerates this design process. From a
software engineer’s perspective, a platform simulator is a
simulation environment that lets them run and test their
software interfaces and functionality much earlier than they
could otherwise — prior to availability of the real hardware.

It allows an estimation of such characteristics as:

e requirements to embedded system cores performance;
e requirements to embedded system cores memory;

e computation cores occupation for the different
allocation variants and occupation balance;

e cffectiveness of hardware loading;

91

e bottlenecks of hardware platform, program and tasks
allocation.

The coarse-grained platform model includes a description
of platform structure; number, types and characteristics of
computation cores; structure and characteristics of their
interconnections.

A number of prototypes [14] is developed on the basis of
DCNSim simulation engine [15] (Fig. 9). DCNSim engine
is based on SystemC modelling language which is widely
used by modelling tools for embedded systems [16, 17].

“Modelng | Objects | Resuls |

Modeling period E Message level |Debug %

3UZLUUUNS, KOUTEr 2! PACKET SENT 0 OESTPOrt = ROUTErS
3025.000 ns, Router3: receive packet! Dest port = PES

3025.000 ns, Router3: packet sent to dest port = PES

3029.000 ns, PES: PARSING packet! DestProc = 10142 SrcProc = 10157 Packet type 0

3029.000 ns, PES.FuncProc 10142: setting input 4 to 84

3025.000 ns, PE5.FuncProc 10142: Input 4is ready!

FuncProc 10142 is ready! Invoking

Planning for process 10142 [Time = 5008

==============5tarting process: FuncProc 10142

3529.000 ns, PE5.FuncProc 10142: invoked functional { FuncProc 10142): 10142 on iteration = 2
====s====s=s====Fnising process: FuncProc 10142

3529.000 ns, PE5: Delete impermanent process with ID = 10142 from program!
==============5tarting process: FuncProc 10005

4500.000 ns, PE 1.FuncProc 10005: invoked functional { FuncProc 10005): 10005 on iteration = 3
4500.000 ns, PE 1.FuncProc 10005: | T:3 | with size = 4 sent to out port 10
====s=========Fnising process: FuncProc 10005

PackType: 0 |AccType: 2 |SrcProc: 10005 [SrcQut: 10 [DestProc: 10157 [Destin: 3 [Data: T:3 [Size: 4
FuncProc 10005 is ready! Invoking

Planning for process 10005 / Time = 15000

===s=s=s====s==5tarting process: FuncProc 10094

4500,000 ns, PE3.FuncProc 10094: invoked functional (FuncProc 10094): 10094 on iteration = 3
4500.000 ns, PE3.FuncProc 10084 | r | with size = 1 sent to out port 7
==============Finsing process: FuncProc 10094

PackType: 0 |AccType: 2 |SrcProc: 10094 [SrcOut: 7 [DestProc: 10157 [Destin: 0 |Data: r|Size: 1
FuncProc 10094 is ready! Invoking

Planning for process 10094/ Time = 15000

==============5tarting process: FuncProc 10!

020
4500.000 ns, PE2.FuncProc 10020: invoked functional { FuncProc 10020): 10020 on iteration = 3

Fig. 9. Platform simulator in DCNSim simulation environment

These prototypes are fully functional. Their use allowed
running an analysis of a number of use cases and getting
valuable results, performing a revision and refactoring of
programs. It provides a significant growth of solved tasks
performance.

At that moment the opportunities of a formal model, VPL
language and VIPE development environment were
significantly widened. We have plans for a development of
completely new simulation tools. There are several
simulation engines under investigation, including
perspective technology TLM 2.0 [18] among other variants.

V. INTEGRATION WITH TARGET PLATFORMS

For an integration of the development environment with a
target platforms technology that uses code generators is
considered.

Usage of code generation instead of code compiling is
one of the crucial ideas of the proposed technology.
Traditional retargetable compilers are very complex and can
hardly be extended. Moreover we should generate compiled
code for target platform, i.e. to make a backend we need to
make a full compiler.

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

Instead of this, we propose constructing backend code
generators. The reason is that code generators are much
easier to implement than full compilers and also there are
many people who know how to program a target platform
and only few people who knows how to compile for a target
platform. Moreover nearly all target platforms have at least
one ready compiler from some language (usually platform-
specific assembler, native C or platform-specific C), thus
there is no real need to make another compiler for the same
platform.

The technology solution provides rather simple tools of
code generation into a language, which is supported by
target platform compilers. Features of used formal model,
the programming language and the coarse-grained approach
ensure reasonable costs for a code generator development.

Code generators technology is based on coarse-grained
function templates. It is the most convenient when used with
coarse-grained domain libraries.

Code generator to C/C++ languages is performed by the
reference generator and is included in the main toolset.
Depending on a template code it produces either ANCSI C
or C++ code.

Additionally this code generator can produce a parallel
code based on a program scheme level parallelism. The
OpenMP 4.0 technology is used as a parallel runtime
engine. There are plans for support of a parallelism that is
implemented using native threads of an operation system.

Templates technology ensures a portability of the
application task solutions to a wide range of target platforms
without a significant changing of developed schemes.

Additionally to the base code generator, the prototypes of
code generators for the platform supporting MPI, MIPS
assembler and DSP assembler [19] were developed under
the approbation studies.

VI. CONCLUSIONS

The proposed technology ensures a support of a whole
embedded software lifecycle, from an algorithm design to a
deployment to an embedded system.

The formal model based development ensures the equal
execution of a debugged program in any runtime
environment.

An algorithm is created and debugged once. A program
scheme allows saving algorithmic results and transferring
embedded software to a more relevant hardware platforms
within a reasonable time and with reasonable efforts. There
is no need on rewriting code for each platform.

Technology guarantees rather easy way of introducing
new platforms and also enables an interaction with
additional instruments for functional capabilities extension.

92

Our plans for prospective elaborations are:

Formal verification of program schemes.

Scheme optimizations for a platform granularity
(aggregation, allocation, interactions).
Support of heterogeneous embedded
(hardware units, accelerators, DSP).

systems

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Ministry of Education and Science of the Russian
Federation under agreement n°14.575.21.0021.

REFERENCES
(1]

Joachim Keinert, Jirgen Teich. Design of Image Processing
Embedded Systems Using Multidimensional Data Flow. New
York, Springer, 2011.

N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, W. Luk.
A Reconfigurable Platform for Real-Time Embedded Video
Image Processing. Proceedings of 13th International
Conference, FPL 2003, Lisbon, Portugal, 2003.

Michael P. Georgeff, Francois Felix Ingrand. Decision-making
in an embedded reasoning system. /n Proceedings of the 11th
international joint conference on Artificial intelligence
(IJCAI'89), Vol. 2. USA, 1989, pp. 972-978.

Song Z1, Ji Z, Ma JG, Sputh B, Acharya UR, Faust O. 4
systematic approach to embedded biomedical decision making.
Computer methods and programs in biomedicine, 11/2011;
108(2). 2011, pp. 656-664.

A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, G. Karsai, Composing Domain-Specific Design
Environments. IEEE Computer, 2001.

J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M.
Humphrey, B. Ellis, VEST: An Aspect-based Composition
Tool for Real-time Systems, in: Proceedings of the IEEE Real-
time Applications Symposium. IEEE, Washington, DC, 2003

J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, Cadena:
An Integrated Development, Analysis, and Verification
Environment for Component-based Systems, in: Proceedings
of the 25th International Conference on Software Engineering,
Portland, OR, 2003.

Michelle Lange, Bill Chown. Communicate, execute, and
translate — oh my! The power of xtUML and virtual platforms.
Mentor Graphics, 2013.

Ivanov V., Sheynin Y, Syschikov A. Programming model for
coarse-grained distributed heterogeneous architecture
Proceedings of the XI Symposium on the issue of redundancy in
information systems /Edited by prof. Kruk E.A. — SPb.: SUAIL
2007, p.246-250.

Y.E. Sheynin, “Formal model of dynamic parallel
computations in parallel computing systems of experimental
data processing”, Scientific Instrumentation, 1999, vol. 9, #2.
€.22-29.

Sedov Boris, Alexey Syschikov, Vera Ivanova. Integrated
development environment for visual parallel programming.
10th Conference of Open Innovations Assosiation FRUCT and
2nd Finnish-Rusian Mobile Linux Summit: Proceedings
printed by State University of Aerospace Instrumentation
(SUAI). 2011. Pp. 131-135.

Vera A. Ivanova. Methods of domain-specific languages
development // Scientific session of SUAIL: Proceedings: In 3
parts. Part 1. Technical sciences / SPb SUAL SPb., 2014. Pp.
113-116

John Vargas. Reduce project schedules and increase quality
using model driven development for design, verification and
test. Michigan, Troy, 2013.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

[14]

[15]

[16]

Orlov Aleksandr, Alexey Syschikov. High-Level System-on-
Chip Simulator. [1th Conference of Open Innovations
Association FRUCT: Proceedings printed by State University
of Aerospace Instrumentation (SUAI), 2012. Pp. 27-35.
Sheynin Y.E., Volkov P.L., Onischenko L.V., Razhivin D.B.,
Cherniy A.S., Eganyan A.V., Nikolsky V.F., Kosyrev S.A.,
“Software support of the VLSI family “Multicore-designer” for
the construction of the parallel structures and distributed signal
processing systems”, “Questions of Radio electronics”, a series
of “Electronic computing equipment (EWT)”, issue 3, 2008.

S. Balandin, M. Gillet, I. Lavrovskaya, V. Olenev, A. Rabin, A
Stepanov, “Co-Modeling of Embedded Networks Using
SystemC and SDL”, International Journal of Embedded and

93

[17]

[18]

[19]

Real-Time Communication Systems (IJERTCS), Vol. 2 (1), pp
24-49. January-March 2011.

Frank Ghenassia, Transaction-Level Modeling with SystemC:
TLM Concepts and Applications for Embedded Systems.
Springer, 2005.

Brian Bailey, Felice Balarin, Michael McNamara, Guy
Mosenson, Michael Stellfox, Yosinori Watanabe. TLM-Driven
Design and Verification Methodology. Cadence, 2010.
Bukharenko Nikita, Syschikov Alexey. Code-generator of
parallel assembly code for digital signal processor. [1th
Conference of Open Innovations Association FRUCT:
Proceedings printed by State University of Aerospace
Instrumentation (SUAI), 2012. Pp. 136-143.

