
Technology and Design Tools for Portable
Software Development for Embedded Systems

Boris Sedov, Alexey Syschikov, Vera Ivanova
State University of Aerospace Instrumentation

Saint Petersburg, Russia
{boris.sedov, alexey.syschikov, vera.ivanova}@guap.ru

Abstract—Nowadays embedded systems are used in broad

range of domains such as avionics, space industry, automotive,
mobile devices, domestic appliances and so on. There is
enormous number of tasks that should be solved using
embedded systems. There are many tools and approaches that
allow developing of software for domain area experts, but
mainly for general purpose computing systems. In this article
we propose the complex technology and tools that allows
involving domain experts in software development for
embedded systems. The proposed technology has various
aspects and abilities that can be used to build verifiable and
portable software for a wide range of embedded platforms.

I. INTRODUCTION
Why do we need such technology?

The performance of embedding systems is increasing and
they are used in more and more domain areas. The
complexity of tasks running on such systems is increasing
rapidly. There is a transition from simple control systems to
high-performance systems for image, audio, video
processing [1,2] and even decision making [3,4]. An
algorithmic and a programming complexity of such tasks
also increase fast. Embedding systems programming
specialists are no longer enough for solving such complex
tasks. A “two-in-one” developer is required: skilled domain
experts, who can solve a task, and a skilled programmer,
who can implement the algorithm efficiently. For specific
embedded platforms such developer additionally should
have a deep understanding of platform development
features. Our technology allows involving domain experts
into development process even without advanced skills in
programming.

Requirements to hardware platforms are always
contradictive. From a customer’s point of view the platform
should be small, cheap, with low power consumption, and it
should work perfectly. From a developer’s point of view
hardware platform should be fast, have a lot of memory and
other resources. In fact, unlike general purpose systems,
embedded system must solve allocated tasks according to
requirements and constraints. The performance and
resources should be sufficient for this and system should

have minimum of unnecessary resources. Our technology
allows performing an estimation and evaluation of program
requirements and hardware platforms, providing information
for selection of platform type and agreement of platform
characteristics.

The development of an algorithm and program should be
started before the selection of a specific platform
configuration is make to provide small time to market for a
completed hardware-software solution. During the
development process and exploitation the requirements can
be (and will be) changed. It may lead to changes in
hardware platform and its characteristics. Also the single
task can have dramatically different characteristics and
platform requirements depending on aspects of its
application. So it is possible that some program will be
applied on several platforms with different configurations
and different requirements to performance and other
characteristics. Our technology can provide various task
allocations to platforms depending on available resources
and computation requirements. It also provides estimations
of final hardware-software solutions characteristics.

Hardware platforms become out-of-date rapidly, but
computation tasks that are executed on them changes rarely.
Permanent change of hardware platform generations and
new configuration releases leads to permanent porting of
embedded software to new platforms. It also forces to
support a number of platforms of different generations with
different characteristics. Our technology provides solutions
portability to a wide class of platforms and their
configurations, and also technologies for porting solutions
onto other platforms.

II. TECHNOLOGY OVERVIEW

A. Technology structure
The technology of portable embedded software

development for a heterogeneous manycore embedded
systems provides a full cycle of software development for
embedded systems – from initial design stage to a ready to
use code for a particular hardware platform.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201345157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Technology structure

 There are some trends on market [5
similar on some way for proposed techno
on system-level modeling, not on program
to mix design methodology with formal
formal language). But no complex solution

The presented technology consists of
(Fig. 1):

• Algorithms design and programming
• Simulation and early estimation.
• Deployment to target platforms.

Each of these stages is automated an
tools. The process is organized in a way th
an access to the results of each stag
development process completely controlla

Every component of the technology w
details below.

B. A program lifecycle
A lifecycle of the program developme

key stages (Fig. 2).

• Program development and debuggin
• Preparation for a deployment

platform(s).
• Deployment to the various platforms

, 6, 7], which are
logy. One focused
mming. Other try
models (try create
n is detected.

three basic stages

g.

nd has supporting
hat a developer has
ge. It makes the
able.

will be presented in

nt consist of three

ng.
to the selected

s.

At the first stage a domain
develop and debugged a fun
performed in the visual develop
platform-independent execution

Fig. 2. A lifecycle of the program deve

In fact, this stage corre
programs development usin
technologies. The goal of th
functional, algorithmically cor
At this stage the simulator ca
independent metrics of a progr
be also applied for character
have been using models in sys
for years. What is changing
model-driven development flow

n expert design an algorithm,
nctional program. Design is
pment environment using the
n tools.

elopment

esponds to general-purpose
ng traditional development
his stage is getting a fully
rrect and debugged program.
an be used to get platform-
ram. An iterative process can
ristics refinement. Engineers
stems development processes

as more companies adopt
ws is the ability to take these

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 87

models and use them more efficientl
throughout the design process [8].

The second stage starts when the info
hardware platform architecture, structure
becomes available for a developer. At th
program is executed on the platform
simulator provides a collection of p
metrics based on a modelling of a progra
high-level platform model.

The developer can iteratively refactor
metric analysis results until requir
characteristics will be achieved. The simu
different platform configurations that
preparing the program for execution o
hardware platforms which configuration
last stage is a deployment of the developed
to the chosen hardware platforms. Within
deployment is performed by code gene
generator produces a code for the selected
this code will be used as an input for a p
platform compiler.

To port the program to the new targe
generator should be developed. However,
such development is reasonable, well-pre

Fig. 3. General view of the visual development

ly and effectively

ormation about the
and characteristics

his stage debugged
m simulator. The
platform-depended
am execution on a

the program using
red performance

ulator allows using
makes possible

on all of chosen
ns are known.The
d program directly

n a technology this
erators. The code
d program scheme;
particular hardware

et platform a code
 the complexity of

edicted and allows

making precise estimation of fi
developed the code generator c
costs become much less than
each platform configuration sep

III. VISUAL DEVELOP

Visual development environ
development of the computatio
technology and instrumental su
programming and debugging.

A. Visual programming languag
 Domain expert develops sol
be run on an embedded sy
environment for algorithms des

VIPE is used for algo
programming in various d
instrument which is used for pr
is the Visual Programming Lan

VPL is an “action langua
executed as a part of the mod
languages. VPL language i
Growing Processes (AGP)
model. AGP model defines the
language objects and constru

inancial and time costs. Once
could be actively used, so the

a program development for
parately.

PMENT ENVIRONMENT
nment (VIPE) is designed for
onal tasks. VIPE provides the
upport for algorithms design,

ge
lutions for the task that would
ystem. He uses the visual
sign (Fig. 3).

orithms design and tasks
domains areas. The basic
rogram development in VIPE

nguage (VPL) [9].

age” [8] that can be both
del and translated into other
s based on Asynchronous
[10] formal computational
language syntax, semantic of

uction of control units. The

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 88

formal model provides the set of impo
the technology, such as: formal verificatio
portability. The influence of the forma
characteristics will be described in the nex

The investigation of the visual approa
great potential. It has cognitive advantag
such as clear view of development proce
the dependency graph and the calculat
structure, natural parallelism and potential

Visual approach allows a domain expe
on a task solving by operating on visu
domain area. He has no need to b
programmer. This fact allows involvin
experts in the embedded systems software

Coarse-grained visual approach of
process gives the opportunity to separate
from a programming (Fig. 4).

The domain expert designs a set of pr
defines their relationships. There is no n
expert to understand implementation deta
A programmer writes code for each blo
without full knowledge of the whole progr

Fig. 4. Separation of design and program

ortant properties of
on, debugging and
al model to these
xt sections.

ach had shown its
ges for developer,
ess, traceability of
tions management
 pipelining [11].

ert to concentrates
ual images of the
be a professional
ng more domain
development.

the development
e a design process

rogram blocks and
need for a domain
ails of each block.
ock independently,
ram structure.

Moreover the coarse-grain
development separation provide

• Easy program developme
• Easy changes in program
• No direct programmer

scheme.
• Local appearance of code
• Possibility of auto-doc

scheme.
• Effective program main

lifecycle.
• Decreasing of errors po

program obviousness.
• Flexibility and ease-of-ch

B. Domain specific programmi
The visual environment

languages (DSL) designing for
coarse-grained libraries [12
convenience of design within a
and enable re-use of developm
grained libraries of different
wider possibilities of results app

ned visual approach and a
es following advantages:

ent.
structure.

influence on a program

e errors.
cumenting of the program

ntenance during the whole

ossibility without sacrificing

hange on any design stage.

ing
allows domain specific

a particular domain based on
]. DSL libraries provide

an application domain (Fig. 5)
ment results. The more coarse-

domains are developed, the
plication appear.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 89

Fig. 5. Coarse-grained library for image processing

�. Interactive tools
The development of computational

performed without traditional developmen
tools. VIPE is not an exception for th
developers the validation and interactive
Proposed tools apply features of the imple
collecting and displaying the most sign
developer.

Validation ensures syntactic correctn
visual programs. (Fig. 6).

Fig. 6. Program scheme validation

The debugging tool provides well-k
functions, such as step-by-step debugg
watches etc. Besides this tool supports t

tasks cannot be
nt process support

his: it provides to
e debugging tools.
menting approach,

nificant data for a

ness of developed

known interactive
ging, breakpoints,
the features of an

applied approach and enables a
as history of data passing thoug
execution, paths, traces etc. (Fig

Fig. 7. Interactive debugging of the pro

Implementation of the for
allows providing the develope
tool which verifies formal
design”.

The visual development env
fully functional, debugged a
program. The developed progra

The major feature of this
model integration. Used forma
the development and debuggi
form of a program execution.
program will run similarly and
no matter what kind of run
sequential, shared memory, dis
used.

IV. EARLY ESTIMATIO

The tools for early estimation
important for reducing project
result quality [13]. They are u
task solution characteristics.
interactive process of character
scheme refinement (Fig. 8).

Main instruments of early e
the virtual simulator and the pla

A. Virtual simulator
A virtual simulator bridges t

and software domains. It is both
as well as a simulation enviro
provides a representation of th
early stages of detailed deve
validate, and test.

an access to such information
gh the links, history of object
g. 7).

ogram

rmal model-based approach
er with a formal verification

programs correctness “by

vironment allows designing a
and algorithmically correct
am is platform-independent.

technology is deep formal
al AGP model allows spread
ing program results on any
. Formal model ensures that
d will get similar results with
ntime environment (parallel,
tributed memory etc.) will be

ON AND EVALUATION
n and evaluation are critically
t schedules and improving a
used to analyse the particular

They are oriented on an
ristics analysis and a program

estimation and evaluation are
atform simulator.

the gap between the hardware
h an abstraction of the design
nment. A platform simulator

he design that can be used at
elopment work to question,

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 90

Fig. 8. Tools for early estimation and evaluation

The virtual simulator provides analy
independent characteristics of a develo
allows estimation of such characteristics a

• maximal possible parallelism;
• computation space (amount of co

memory etc.);
• computation time;
• amount and intensity of data exchan
• other characteristics.

B. Platform simulator
Platform simulator allows analysis of

of developed program execution on coarse
models.

Platform simulator operates with a
platform which is a high-level repre
hardware that is used by both hardw
engineers. From the hardware engineer
virtual hardware platform is a starting poin
design work. It accelerates this design
software engineer’s perspective, a platfo
simulation environment that lets them r
software interfaces and functionality much
could otherwise – prior to availability of th

It allows an estimation of such characte

• requirements to embedded system co
• requirements to embedded system co
• computation cores occupation f

allocation variants and occupation b
• effectiveness of hardware loading;

ysis of platform-
oped program. It
s:

omputations, used

nge;

the characteristics
e-grained platform

virtual hardware
esentation of the

ware and software
r’s perspective, a
nt for their detailed

process. From a
orm simulator is a
run and test their
h earlier than they
he real hardware.

eristics as:

ores performance;
ores memory;
for the different
alance;

• bottlenecks of hardware
allocation.

The coarse-grained platform
of platform structure; number,
computation cores; structure
interconnections.

A number of prototypes [14
DCNSim simulation engine [1
is based on SystemC modellin
used by modelling tools for emb

Fig. 9. Platform simulator in DCNSim

These prototypes are fully f
running an analysis of a numb
valuable results, performing a
programs. It provides a signifi
performance.

At that moment the opportun
language and VIPE develo
significantly widened. We hav
completely new simulation
simulation engines under
perspective technology TLM 2.

V. INTEGRATION WITH

For an integration of the dev
target platforms technology th
considered.

Usage of code generation i
one of the crucial ideas of
Traditional retargetable compil
hardly be extended. Moreover
code for target platform, i.e. to
make a full compiler.

platform, program and tasks

m model includes a description
, types and characteristics of
and characteristics of their

] is developed on the basis of
5] (Fig. 9). DCNSim engine

ng language which is widely
bedded systems [16, 17].

simulation environment

functional. Their use allowed
ber of use cases and getting

a revision and refactoring of
ficant growth of solved tasks

nities of a formal model, VPL
opment environment were
e plans for a development of

tools. There are several
investigation, including

.0 [18] among other variants.

 TARGET PLATFORMS
velopment environment with a
hat uses code generators is

instead of code compiling is
f the proposed technology.
ers are very complex and can
we should generate compiled

o make a backend we need to

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 91

Instead of this, we propose constructing backend code
generators. The reason is that code generators are much
easier to implement than full compilers and also there are
many people who know how to program a target platform
and only few people who knows how to compile for a target
platform. Moreover nearly all target platforms have at least
one ready compiler from some language (usually platform-
specific assembler, native C or platform-specific C), thus
there is no real need to make another compiler for the same
platform.

The technology solution provides rather simple tools of
code generation into a language, which is supported by
target platform compilers. Features of used formal model,
the programming language and the coarse-grained approach
ensure reasonable costs for a code generator development.

Code generators technology is based on coarse-grained
function templates. It is the most convenient when used with
coarse-grained domain libraries.

Code generator to C/C++ languages is performed by the
reference generator and is included in the main toolset.
Depending on a template code it produces either ANCSI C
or C++ code.

Additionally this code generator can produce a parallel
code based on a program scheme level parallelism. The
OpenMP 4.0 technology is used as a parallel runtime
engine. There are plans for support of a parallelism that is
implemented using native threads of an operation system.

Templates technology ensures a portability of the
application task solutions to a wide range of target platforms
without a significant changing of developed schemes.

Additionally to the base code generator, the prototypes of
code generators for the platform supporting MPI, MIPS
assembler and DSP assembler [19] were developed under
the approbation studies.

VI. CONCLUSIONS
The proposed technology ensures a support of a whole

embedded software lifecycle, from an algorithm design to a
deployment to an embedded system.

The formal model based development ensures the equal
execution of a debugged program in any runtime
environment.

An algorithm is created and debugged once. A program
scheme allows saving algorithmic results and transferring
embedded software to a more relevant hardware platforms
within a reasonable time and with reasonable efforts. There
is no need on rewriting code for each platform.

Technology guarantees rather easy way of introducing
new platforms and also enables an interaction with
additional instruments for functional capabilities extension.

Our plans for prospective elaborations are:

• Formal verification of program schemes.
• Scheme optimizations for a platform granularity

(aggregation, allocation, interactions).
• Support of heterogeneous embedded systems

(hardware units, accelerators, DSP).

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation under agreement n°14.575.21.0021.

REFERENCES

[1] Joachim Keinert, Jürgen Teich. Design of Image Processing
Embedded Systems Using Multidimensional Data Flow. New
York, Springer, 2011.

[2] N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, W. Luk.
A Reconfigurable Platform for Real-Time Embedded Video
Image Processing. Proceedings of 13th International
Conference, FPL 2003, Lisbon, Portugal, 2003.

[3] Michael P. Georgeff, Francois Felix Ingrand. Decision-making
in an embedded reasoning system. In Proceedings of the 11th
international joint conference on Artificial intelligence
(IJCAI'89), Vol. 2. USA, 1989, pp. 972-978.

[4] Song Z1, Ji Z, Ma JG, Sputh B, Acharya UR, Faust O. A
systematic approach to embedded biomedical decision making.
Computer methods and programs in biomedicine, 11/2011;
108(2). 2011, pp. 656-664.

[5] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, G. Karsai, Composing Domain-Specific Design
Environments. IEEE Computer, 2001.

[6] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M.
Humphrey, B. Ellis, VEST: An Aspect-based Composition
Tool for Real-time Systems, in: Proceedings of the IEEE Real-
time Applications Symposium. IEEE, Washington, DC, 2003

[7] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, Cadena:
An Integrated Development, Analysis, and Verification
Environment for Component-based Systems, in: Proceedings
of the 25th International Conference on Software Engineering,
Portland, OR, 2003.

[8] Michelle Lange, Bill Chown. Communicate, execute, and
translate – oh my! The power of xtUML and virtual platforms.
Mentor Graphics, 2013.

[9] Ivanov V., Sheynin Y, Syschikov A. Programming model for
coarse-grained distributed heterogeneous architecture
Proceedings of the XI Symposium on the issue of redundancy in
information systems /Edited by prof. Kruk �.�. – SPb.: SUAI,
2007, p.246-250.

[10] Y.E. Sheynin, “Formal model of dynamic parallel
computations in parallel computing systems of experimental
data processing”, Scientific Instrumentation, 1999, vol. 9, #2.
�.22–29.

[11] Sedov Boris, Alexey Syschikov, Vera Ivanova. Integrated
development environment for visual parallel programming.
10th Conference of Open Innovations Assosiation FRUCT and
2nd Finnish-Rusian Mobile Linux Summit: Proceedings
printed by State University of Aerospace Instrumentation
(SUAI). 2011. Pp. 131-135.

[12] Vera A. Ivanova. Methods of domain-specific languages
development // Scientific session of SUAI: Proceedings: In 3
parts. Part I. Technical sciences / SPb SUAI. SPb., 2014. Pp.
113-116

[13] John Vargas. Reduce project schedules and increase quality
using model driven development for design, verification and
test. Michigan, Troy, 2013.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 92

[14] Orlov Aleksandr, Alexey Syschikov. High-Level System-on-
Chip Simulator. 11th Conference of Open Innovations
Association FRUCT: Proceedings printed by State University
of Aerospace Instrumentation (SUAI), 2012. Pp. 27-35.

[15] Sheynin Y.E., Volkov P.L., Onischenko L.V., Razhivin D.B.,
Cherniy A.S., Eganyan A.V., Nikolsky V.F., Kosyrev S.A.,
“Software support of the VLSI family “Multicore-designer” for
the construction of the parallel structures and distributed signal
processing systems”, “Questions of Radio electronics”, a series
of “Electronic computing equipment (EWT)”, issue 3, 2008.

[16] S. Balandin, M. Gillet, I. Lavrovskaya, V. Olenev, A. Rabin, A
Stepanov, “Co-Modeling of Embedded Networks Using
SystemC and SDL”, International Journal of Embedded and

Real-Time Communication Systems (IJERTCS), Vol. 2 (1), pp
24-49. January-March 2011.

[17] Frank Ghenassia, Transaction-Level Modeling with SystemC:
TLM Concepts and Applications for Embedded Systems.
Springer, 2005.

[18] Brian Bailey, Felice Balarin, Michael McNamara, Guy
Mosenson, Michael Stellfox, Yosinori Watanabe. TLM-Driven
Design and Verification Methodology. Cadence, 2010.

[19] Bukharenko Nikita, Syschikov Alexey. Code-generator of
parallel assembly code for digital signal processor. 11th
Conference of Open Innovations Association FRUCT:
Proceedings printed by State University of Aerospace
Instrumentation (SUAI), 2012. Pp. 136-143.

___PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION

-- 93

