
Technology and Design Tools for Portable 
Software Development for Embedded Systems 

 

Boris Sedov, Alexey Syschikov, Vera Ivanova 
State University of Aerospace Instrumentation 

Saint Petersburg, Russia 
{boris.sedov, alexey.syschikov, vera.ivanova}@guap.ru 

 
Abstract—Nowadays embedded systems are used in broad 

range of domains such as avionics, space industry, automotive, 
mobile devices, domestic appliances and so on. There is 
enormous number of tasks that should be solved using 
embedded systems. There are many tools and approaches that 
allow developing of software for domain area experts, but 
mainly for general purpose computing systems. In this article 
we propose the complex technology and tools that allows 
involving domain experts in software development for 
embedded systems. The proposed technology has various 
aspects and abilities that can be used to build verifiable and 
portable software for a wide range of embedded platforms. 

I. INTRODUCTION 
Why do we need such technology? 

The performance of embedding systems is increasing and 
they are used in more and more domain areas. The 
complexity of tasks running on such systems is increasing 
rapidly. There is a transition from simple control systems to 
high-performance systems for image, audio, video 
processing [1,2] and even decision making [3,4]. An 
algorithmic and a programming complexity of such tasks 
also increase fast. Embedding systems programming 
specialists are no longer enough for solving such complex 
tasks. A “two-in-one” developer is required: skilled domain 
experts, who can solve a task, and a skilled programmer, 
who can implement the algorithm efficiently. For specific 
embedded platforms such developer additionally should 
have a deep understanding of platform development 
features. Our technology allows involving domain experts 
into development process even without advanced skills in 
programming. 

Requirements to hardware platforms are always 
contradictive. From a customer’s point of view the platform 
should be small, cheap, with low power consumption, and it 
should work perfectly. From a developer’s point of view 
hardware platform should be fast, have a lot of memory and 
other resources. In fact, unlike general purpose systems, 
embedded system must solve allocated tasks according to 
requirements and constraints. The performance and 
resources should be sufficient for this and system should  
 

have minimum of unnecessary resources. Our technology 
allows performing an estimation and evaluation of program 
requirements and hardware platforms, providing information 
for selection of platform type and agreement of platform 
characteristics. 

The development of an algorithm and program should be 
started before the selection of a specific platform 
configuration is make to provide small time to market for a 
completed hardware-software solution. During the 
development process and exploitation the requirements can 
be (and will be) changed. It may lead to changes in 
hardware platform and its characteristics. Also the single 
task can have dramatically different characteristics and 
platform requirements depending on aspects of its 
application. So it is possible that some program will be 
applied on several platforms with different configurations 
and different requirements to performance and other 
characteristics. Our technology can provide various task 
allocations to platforms depending on available resources 
and computation requirements. It also provides estimations 
of final hardware-software solutions characteristics. 

Hardware platforms become out-of-date rapidly, but 
computation tasks that are executed on them changes rarely. 
Permanent change of hardware platform generations and 
new configuration releases leads to permanent porting of 
embedded software to new platforms. It also forces to 
support a number of platforms of different generations with 
different characteristics. Our technology provides solutions 
portability to a wide class of platforms and their 
configurations, and also technologies for porting solutions 
onto other platforms. 

II. TECHNOLOGY OVERVIEW 

A. Technology structure 
The technology of portable embedded software 

development for a heterogeneous manycore embedded 
systems provides a full cycle of software development for 
embedded systems – from initial design stage to a ready to 
use code for a particular hardware platform. 
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Fig. 1. Technology structure 
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Fig. 5. Coarse-grained library for image processing 
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Fig. 8. Tools for early estimation and evaluation 
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Instead of this, we propose constructing backend code 
generators. The reason is that code generators are much 
easier to implement than full compilers and also there are 
many people who know how to program a target platform 
and only few people who knows how to compile for a target 
platform. Moreover nearly all target platforms have at least 
one ready compiler from some language (usually platform-
specific assembler, native C or platform-specific C), thus 
there is no real need to make another compiler for the same 
platform. 

The technology solution provides rather simple tools of 
code generation into a language, which is supported by 
target platform compilers. Features of used formal model, 
the programming language and the coarse-grained approach 
ensure reasonable costs for a code generator development. 

Code generators technology is based on coarse-grained 
function templates. It is the most convenient when used with 
coarse-grained domain libraries. 

Code generator to C/C++ languages is performed by the 
reference generator and is included in the main toolset. 
Depending on a template code it produces either ANCSI C 
or C++ code. 

Additionally this code generator can produce a parallel 
code based on a program scheme level parallelism. The 
OpenMP 4.0 technology is used as a parallel runtime 
engine. There are plans for support of a parallelism that is 
implemented using native threads of an operation system.  

Templates technology ensures a portability of the 
application task solutions to a wide range of target platforms 
without a significant changing of developed schemes.  

Additionally to the base code generator, the prototypes of 
code generators for the platform supporting MPI, MIPS 
assembler and DSP assembler [19] were developed under 
the approbation studies. 

VI. CONCLUSIONS 
The proposed technology ensures a support of a whole 

embedded software lifecycle, from an algorithm design to a 
deployment to an embedded system. 

The formal model based development ensures the equal 
execution of a debugged program in any runtime 
environment. 

An algorithm is created and debugged once. A program 
scheme allows saving algorithmic results and transferring 
embedded software to a more relevant hardware platforms 
within a reasonable time and with reasonable efforts. There 
is no need on rewriting code for each platform. 

Technology guarantees rather easy way of introducing 
new platforms and also enables an interaction with 
additional instruments for functional capabilities extension. 

Our plans for prospective elaborations are: 

• Formal verification of program schemes. 
• Scheme optimizations for a platform granularity 

(aggregation, allocation, interactions). 
• Support of heterogeneous embedded systems 

(hardware units, accelerators, DSP). 
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