
Smart-M3-Based Robots Self-Organization in 
Pick-and-Place System 

 

Alexander Smirnov*†, Alexey Kashevnik*†, Nikolay Teslya*†, Sergey Mikhailov *†, Anton Shabaev‡ 
*SPIIRAS, St.Petersburg, Russia 

†ITMO University, St.Petersburg, Russia 
‡Petrozavodsk State University (PetrSU), Petrozavodsk, Russia 

{smir, alexey, teslya}@iias.spb.su, mikhaylovsergeyandreevich@gmail.com, ahabaev@petrsu.ru 
 

Abstract—This paper presents an approach for robots self-
organization for pick-and-place scenario based on Smart-M3 
information sharing platform that provide possibilities of 
information sharing between different services in smart space. 
In scope of the approach the reference model for robots self-
organization has been developed. To provide semantic 
interoperability, the ontologies for the robots participating in 
the scenario, have been built. The scenario implementation is 
based on Lego® Mindstorms EV3 set for robot construction, 
which is one of the most popular sets for education at the 
moment. 

I. INTRODUCTION 
Self-organising systems are characterised by their 

capacity to spontaneously (without external control) 
produce a new organisation in case of environmental 
changes. These systems are particularly robust, since they 
adapt to changes, and are able to ensure their own 
survivability [1]. 

Self-organization of robots requires cyber-physical 
infrastructure allowing robots to operate in physical part 
while their interaction has to be organized in cyber part. 
Cyber-physical systems are spreading wide all over the 
world [2-5]. They are based on real time interaction 
between physical world and cyber world. Such systems rely 
on communication, computation and control infrastructures 
typically consisting of several levels for the two worlds 
with various resources as sensors, actuators, computational 
resources, services, etc. 

One of the examples of cyber-physical system is a 
“smart home” system, which implements room cleaning 
scenario by automatically controlled robots interacting with 
each other [6]. In this scenario the self-organization of three 
types of robots is considered: (i) robot vacuum cleaner that 
can create room map using the light-sensitive sensors and 
clean the room using the map (e.g. Yujin Robot iClebo Arte 
YCR-M05), (ii) manipulating robot (e.g. FESTO Robotino 
XT), allowing to move light furniture (e.g. chairs, or coffee 
table) or decorative elements (pots with flowers, vases, etc.) 
for efficient cleaning, (iii) adaptive illumination control 

system for illumination level changing, depending on the 
current situation. All of them should interact with each 
other to solve different tasks. For example, vacuum cleaner 
needs light to create a room map. Therefore, it should “ask” 
illumination control system to raise illumination level in the 
room. Vacuum cleaner may find different obstacles while 
cleaning, and will have to “ask” manipulating robot to 
move them away until the cleaning has ended. 

Scenario, developed in this paper, solves the task of 
pick-and-place an object from one point to another. Two 
robots participate in the scenario: the manipulating robot 
and the pipeline robot. The pipeline robot scans object 
characteristics and provides the object to the manipulating 
robot. The manipulating robot takes the object and based on 
it characteristics moves it to another place. 

Presented scenario enhances the research work [7], 
which provides scenario for object searching by robots and 
organizes their behavior. Robots have to decide, which of 
them has to approach the object and bring it to the storage. 
The regular scenario can describe this example. Two or 
more robots receive a task to act, e.g. find an object and 
bring it to a storage. Only one robot should handle this task. 
For this purpose, robots should interact to decide, which 
one will bring the object to the storage. Interaction process 
includes the object finding, distances measurement and 
information sharing between robots. 

For self-organization of the robots the smart space 
technology is used, which allows to provide information for 
sharing between different services of the system. This 
technology [8], [9] aims in the seamless integration of 
different devices by developing ubiquitous computing 
environments, where different services can share 
information with each other, make different computations 
and interact for joint tasks solving. 

The open source Smart-M3 platform [10] has been used 
for organization of smart space infrastructure for robots 
self-organization. The use of this platform enables to 
significantly simplify further development of the system, 

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



include new information sources and services, and to make 
the system highly scalable. The key idea of this platform is 
that the formed smart space is device-, domain-, and 
vendor-independent. Smart-M3 assumes that devices and 
software entities can publish their embedded information 
for other devices and software entities through simple, 
shared information brokers. The Smart-M3 platform 
consists of two main parts: information agents and kernel 0. 
The kernel consists of two elements: Semantic Information 
Broker (SIB) and information storage. Information agents 
are software entities, installed on mobile devices of the 
smart space users and other devices, which host smart space 
services. These agents interact with SIB through the Smart 
Space Access Protocol (SSAP). The SIB is the access point 
for receiving the information to be stored, or retrieving the 
stored information. All this information is stored in the 
information storage as a graph that conforms with the rules 
of the Resource Description Framework (RDF) [12] and 
[13]. In accordance with these rules all information is 
described by triples "Subject - Predicate - Object". 

For the robot constructing, authors are suggested to use 
the robot kits applicable in the education process, which 
allow to design and built robots from modules. The kit 
should meet several requirements to provide functionality 
for the scenario implementation: it should include at least 
distance and brightness sensors, gyroscope, a set of motors, 
and powerful control block with programming possibilities 
and wireless network connection to join the smart space. 
Lego® Mindstorms1 is one of the most popular sets in robot 
constructing education. The latest system, called the Lego® 
Mindstorms EV3, was released on September 1, 2013 [14]. 
A standard Education EV3 Core set consists of the 
following components (Fig. 1 shows only control block 
with available sensors and motors): 

• Control block called Brick (ARMv9 core CPU 300 
MHz, 64 Mb RAM, 16 Mb flash memory and 
microSDHC port (supports microSD and 
microSDHC memory cards with capacity up to 
32 Gb), USB host, WiFi through USB dongle, 
Bluetooth, speaker, LCD display and 6 hardware 
buttons). 

• Motors (one medium motor and two large motors). 

• Sensors: ultrasonic sensor (for distance 
measurement, from 3 to 150 cm), touch sensor (for 
handling touching), gyroscopic sensor (for 
measurement of turn angle and turn acceleration), 
light sensor (for brightness measurement and color 
detection).  

• More than 550 Lego parts. 

 

                                                           
1 http://mindstorms.lego.com 

 
Fig. 1. Lego® Mindstorms EV3 Education kit 

Infrared sensor with remote control and third-party 
sensors developed by other companies can be added. Up to 
four EV3 control blocks can be connected using a USB 
cable and thereby enabling robot to have sixteen output 
ports and sixteen input ports all controlled from the main 
EV3 Brick. 

Lego® Mindstorms has own IDE for robot actions 
programming. It allows to program actions by graphical 
programming language using blocks with customized 
parameters. These blocks cover all robot functionality, but 
for the advanced features it is possible to use development 
environment with high-level program languages. Robot can 
also be controlled manually from iOS2 and Android3 
applications via Bluetooth connection. 

The rest of the paper is structured as follows. Analysis of 
operation systems for Lego® Mindstorms EV3 control 
block is presented in Section II. Section III describes 
developed reference model for robots self-organization. 
Section IV presents developed ontological models of two 
types of robots participating in the pick-and-place scenario. 
Scenario implementation is presented in Section V. The 
results are summarized in Conclusion. 

II. OPERATING SYSTEMS FOR LEGO® MINDSTORMS EV3 
CONTROL BLOCK 

There are many projects providing usage of the different 
program languages support for EV34. One of them provides 
environment for compiling programs under existing control 
brick’s OS (e.g. NXTGCC, Lego.NET, different libraries 
for GCC, etc.) The second class of projects provides 
controlling the EV3-based robot using different languages 
through the Bluetooth and/or USB interfaces 
(NXT_Python, OCaml-mindstorm, LabVIEW, etc). The 

                                                           
2 https://itunes.apple.com/app/lego-mindstorms-robot-commander/ 
id681786521 
3 https://play.google.com/store/apps/details? 
id=com.lego.mindstorms.robotcommander 
4 http://en.wikipedia.org/wiki/Lego_Mindstorms 
#Programming_languages_2 

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 211 ----------------------------------------------------------------------------



third class provides a replacement of the existing OS. Due 
to the fact, that Lego® Mindstorms EV3 control block is 
based on the ARMv9 processor and the main OS is Linux-
based, it is possible to run another Linux-based OS, that is 
built for ARM architecture. Using Linux-based OS allows 
writing programs with any supported programming 
language. There are two options: replacement of the kernel 
embedded into the control block (ROBOTC), and installing 
additional OS on SD-card without replacing the existing OS 
(brickOS, LeJOS, ev3dev). 

The use of additional OS without replacing the existing 
is more preferred due to the fact that it cannot corrupt the 
data on the brick. Existing OS still can be booted and used. 
Interaction with control block in the case of replacement is 
faster than through the Bluetooth interface. 

One of the Linux-based systems is a project called 
brickOS5. This is an open-source embedded operating 
system providing a C and C++ programming environment 
for the Lego® Mindstorms Robotics Kits. 

The alternative to brickOS is a project called LeJOS6 
(acronym from Lego Java Operating System). It provides 
the full featured embedded OS with GUI. LeJOS provides 
Linux environment with Java Runtime Environment. 
LeJOS Java bindings implement access to the robot’s 
hardware. It allows Lego Mindstorms robots to be easily 
programmed using Java language. Some of LeJOS main 
features are [14]: 

• object oriented language (Java); 
• pre-emptive threads (determined context switching); 
• (multi-dimensional) arrays; 
• synchronization; 
• exceptions; 
• types of variable including float, long, and String; 
• most of the standard Java classes are available; 
• well-documented robotics APIs. 

The ev3dev7 is another interesting project, which 
provides a Debian-based OS for EV3. It provides a  
console system available through SSH, which can be  
 
updated and extended by using extensive Debian 
repository. For hardware access, ev3dev provides drivers 
and language bindings for C++, Google Go, Node.js and 
Python programming languages. Other languages also can 
be used, but interface libraries then need to be implemented 
by yourself. 

Due to the Linux kernel, all systems include firmware 
for the wireless network USB-adapters. It makes possible to 
connect robots to the local area network and unite them to 

                                                           
5 http://brickos.sourceforge.net/ 
6 http://www.lejos.org/ 
7 https://github.com/ev3dev 

the smart space. For the robot realization, the LeJOS has 
been used, because it provides the most powerful software 
development environment (threads with synchronization, 
standard classes and types of variable) as well as wide 
device type support (all native devices and 3rd party sensors 
and motors). 

III. REFERENCE MODEL 
Fig. 2 presents the reference model of the pick-and-

place system, proposed in the paper. The system is divided 
into two main paths: physical space and smart space. Two 
kinds of robots interact with each other in the physical 
space: the manipulating robot and the pipeline robot. Each 
robot has physical part, which implements manipulations in 
the physical space, and control service, which interacts with 
other services in the smart space and controls the physical 
part. People, observing and interacting with robots in the 
physical space, can control them through a smart space 
service installed on their personal mobile device. 
Information services interact with other services in smart 
space. They provide calculations and different types of 
information for the robots and people. 

To provide semantic interoperability between robots 
their interaction in smart space is based on ontologies. Each 
robot uploads its ontology to the smart space ontology 
library when it connects to the system. The ontology 
represents the robot. It contains information about robot 
requirements and possibilities. Robot requirements 
represent the information, which the robot needs for 
starting its scenario. Robot possibilities is the information 
that robots can provide in scope of the considered system. 

Proposed robots interaction scheme in the smart space is 
presented in Fig. 3. Robot1 and robot2 connect to the system 
and upload their ontologies to smart space ontology library. 
For this purpose special services are used that implement 
robots logic and interaction in the smart space.  

When a service has information that can be helpful for 
other services in the smart space, it uploads this information 
according to previously uploaded own ontology. If a 
service requires information for performing an action 
according to the system scenario, it uses the ontology 
matching service to determine, if needed information is 
accessible in the smart space or not. Ontology matching 
service [15] and [16] implements matching of the service 
ontology with the smart space ontology library and 
determines, which information in the smart space 
corresponds to the required one. If the ontology matching 
service finds this information, the service downloads it 
from the smart space. 

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 212 ----------------------------------------------------------------------------



 
Fig. 2. Robots Interaction Reference Model in Cyber-Physical System 

 

Fig. 3. Robots Interaction in Smart Space Based on Ontology Matching 

IV. ROBOT ONTOLOGIES 
Authors present their expertise in ontology development 

for cyber-physical systems in [17]. The manipulating robot 
ontology consists of the following main classes (see Fig. 4). 
There are three top level classes: “Actions” (actions the 
manipulation robot implements), “Sensors” (sensors 
installed in the manipulating robot), and “Object” (object 
the manipulating robot moves). Class “Actions” is 
classified as movements (class “Movement”) and gripping 
(Class “Grip”). There are two sensors is installed to the 
manipulating robot (gyroscope and ultrasonic sensor). In 
the proposed ontology the corresponding classes 
(“Gyroscope” and “Ultrasonic”) is associated with class 
“Sensors” with relationship “is_a”. At the same time 
manipulating robot movement requires gyroscope and 
ultrasonic sensor (classes “Gyroscope” and “Ultrasonic” is 
associated with class “Movement” with relationship 
“requires”). Type of object determines position where the 
object has to be placed (class “Object” is associated with 
class “Movement” with relationship determines). Gripper 
of manipulating robot has to take the object and move it 
(class “Grip” is associated with class “Object”). 

 
Fig. 4. Manipulating Robot Ontology 

The following properties have been defined in the 
manipulating robot ontology: 

• Property “has_color” for the class “Object”. List of 
possible values are (“red”, “green”, “blue”). Based 
on value of this property the manipulating robot 
determines the places where the object has to be 
placed. 

• Property “has_gripping_velocity” for the class 
“Grip”. Value is a positive number that determines at 
the moment gripper speed. The property is used by 
the pipeline robot to understand that at the moment 
manipulating robot is taking the object and pipeline 
has to be remain stopped. 

• Property “has_movement_velocity” for the class 
“Movement”. Value is a positive number that 
determines at the moment manipulating robot 
movement speed. The property can be used by other 
system services to determine the time when the object 
can be accessible in destination position. 

The pipeline robot ontology consists of the following 
main classes (see Fig. 5). There are three top level classes: 
“Movement” (different types of movement that pipeline 
robot can implement), “Sensors” (sensors installed in the 
manipulating robot), and “Object” (object the pipeline 
robot moves and determine color). Class “Pipeline” has 
taxonomical relationship (“is_a”) with the class 
“Movement” as this type of movement is supported by the 
pipeline robot. Class “ColorSensor” has taxonomical 
relationship (“is_a”) with the class “Sensor” as this sensor 
type is installed for the pipeline robot. Sensors are installed 
in the pipeline (class “Sensors” has “installed_in” 
relationship with the class “Pipeline”). Object is placed in 
pipeline that moves it (class “Object” has “placed_in” 
relationship with the class “Pipeline”). For determining 
color of the object when it moves in pipeline the color 
sensor is used (class “ColorSensor” has relationship 
“determine_color” with class “Object”). 

The following properties have been defined in the 
pipeline robot ontology. 

 

Service2 

Ontology Matching 
Service 

Smart Space 
Ontology Library 

Ontology2 

Service1 

Ontology1 

Smart Space

Robot

Robot2

Cyber-Physical System 

Robots 

People 

Information 
Services 

Physical Space Smart Space 

is_a

is_a
is_a

is_a

is_a

is_ais_a

takes
determines

requires

requires

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 213 ----------------------------------------------------------------------------



 
Fig. 5. Pipeline Robot Ontology 

• Property “has_color” for the class “Object”. List of 
possible values are (“red”, “green”, “blue”). Based 
on the color sensor output the property is take on the 
appropriate value. 

• Property “has_velocity” for the class “Pipeline”. 
Value is a positive number that determines at the 
moment the pipeline speed. The property can be used 
for smart space services for estimation of time when 
the object will be ready for manipulation. 

• Property “is_ready_for_manipulation” for the class 
object. Value of this property is a Boolean variable 
that is “true” if pipeline robot is completing move the 
object and “false” if the object is moving. 

V. PICK-AND-PLACE SYSTEM SCENARIO 
Two types of robots participat in the scenario: pipeline 

robot (Fig. 6) and manipulating robot (Fig. 7). The first one 
is stationary and has a pipeline that moves objects from the 
location to the destination. It has a color sensor that 
determines the color of the moved object. When the robot is 
moving the object, the pipeline velocity is shared with 
smart space by the following triple in according with the 
pipeline robot ontology (see Section IV). 

(“Pipeline”, “has_velocity”, [pipeline velocity])  

When the color is determined, it is shared with smart 
space by the following way. 

(“Object”, “has_color”, [object color]) 

When the object has been moved to the destination 
point and is ready for manipulation by the manipulating 
robot, the related triple is shared with smart space by 
pipeline robot.  

(“Object”, “is_ready_for_manipulation”, 1) 

(“Pipeline”, “has_velocity”, 0) 

The second robot has possibility to load an object from 
pipeline at the location, move to destination, unload the 
object, and return to the initial location. The manipulating 
robot subscribes to the information in smart space if an 
object is ready for manipulation. 

(“Object”, “is_ready_for_manipulation”, None) 

 

Fig. 6. Pipeline robot 

 
Fig. 7. Manipulating robot 

When the pipeline robot moves the object to the 
destination point and shares with the smart space 
appropriate information the manipulating robot gets 
notification and moves to the object location. It shares with 
the smart space the movement velocity. 

(“Movement”, “has_movement_velocity”, velocity) 

Then it takes the object using the onboard gripper. 
When the gripper is taking the object the robot shares the 
gripping velocity with the smart space. 

(“Grip”, “has_gripping_velocity”, velocity) 

The manipulating robot queries information of object 
color from the smart space to determine the place, where 
the object has to be unloaded. 

(“Object”, “has_color”, None) 

Then the robot moves the object to the place according 
to the object color obtained from smart space (Fig. 8). 

is_a

is_a

is_a
is_a

determines_color

placed_in

is_a
installed_in

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 214 ----------------------------------------------------------------------------



 
Fig. 8. Pick-and-Place System Scenario 

VI. CONCLUSION 
The paper presents reference model and scenario 

implementation of Smart-M3-based robots self-
organization in pick-and-place system. Developed 
ontologies for pipeline and manipulating robots support 
semantic interoperability between them. Interaction 
between robots is organized based on smart space 
technology. For the implementation, the Smart-M3 
information sharing platform is used, which enables to 
significantly simplify further development of the system, 
include new information sources and services, and to make 
the system highly scalable. Two robots are used for the 
pick-and-place system scenario implementation. In the 
future work authors plan to extend the scenario for more 
than two robots. 

During the implemented scenario evaluation, the 
following problems have been identified and will be studied 
in the future work. 

• Lego Mindstorm EV3 sensors have low accuracy, 
which sometimes does not allow to complete the 
scenario. E.g., gyroscope sensor accumulates error that 
causes inaccurate robot turn. In the future authors plan 
to use different sensors for robot positioning to increase 
the accuracy (e.g., for turn measurement the gyroscope, 
and ultrasonic sensor that measures distances to walls 
can be used). 

• The lack or excessive room light cause inaccurate color 
determination by color sensor. Scenario room has to be 
isolated from the natural light and artificial light has to 
be enough for the ultrasonic sensor. 

• Half-discharged battery of the robots causes 
unpredictable behavior of the sensors and engines. 

ACKNOWLEDGMENT 
The presented results are part of the research carried out 

within the project funded by grants # 13-07-00336, 13-07-
12095, 13-01-00286 of the Russian Foundation for Basic 
Research, program P40 “Actual Problems of Robotics” of  

the Presidium of the Russian Academy of Sciences. This 
work was partially financially supported by Government of 
Russian Federation, Grant 074-U01, and by the Ministry of 
Education and Science of Russia within research project # 
14.574.21.0060 (RFMEFI57414X0060) of Federal Target 
Program "Research and development on priority directions 
of scientific-technological complex of Russia for 2014-
2020".   

REFERENCES 
[1] G. Serugendo, M. Gleizes, A. Karageorgos, “Self-Organisation 

and Emergence in MAS: An Overview”, Informatica, 30, 2006, 
pp. 45–54. 

[2] L. Monostori, “Cyber-physical Production Systems: Roots, 
Expectations and R&D Challenges”, Procedia CIRP, vol. 17, 
2014, pp. 9–13. 

[3] M. Mikusz, “Towards an Understanding of Cyber-physical 
Systems as Industrial Software-Product-Service Systems”, 
Procedia CIRP, vol. 16, 2014, pp. 385–389. 

[4] Y. Chen, J. Luo, W. Li, E. Zhang, J. Shi, “Self-Organization 
Framework and Simulation Realization of Transportation Cyber-
Physical System”, CICTP 2014, 2014, pp. 584–595. 

[5] T. Li, J. Cao, J. Liang, J. Zheng, Towards context-aware medical 
cyber-physical systems: design methodology and a case study, 
Cyber-Physical Systems, 2014, Web: 
http://www.tandfonline.com/doi/full/10.1080/23335777.2014.972
686#abstract. 

[6] A.M. Kashevnik, A.V. Ponomarev, S.V. Savosin, “Hybrid 
Systems Control Based on Smart Space Technology”, SPIIRAS 
Proceedings, vol. 4(35), 2014, 212-226 (in Russian). 

[7] N. Teslya, S. Savosin, “Smart-M3-Based Robot Interaction in 
Cyber-Physical Systems”, Proceedings of the 16th Conference of 
Open Innovations Association FRUCT, 2014, pp. 108-114. 

[8] D. J. Cook and S. K. Das, “How smart are our environments? an 
updated look at the state of the art”, Pervasive and Mobile 
Computing, vol. 3, no. 2, 2007, pp. 53–73. 

[9] S. Balandin and H. Waris, “Key properties in the development of 
smart spaces”, in Proc. 5th Int’l Conf. Universal Access in 
Human-Computer Interaction, Springer-Verlag, 2009, pp. 3–12. 

[10] Smart-M3 at Sourceforge, Web: 
http://sourceforge.net/projects/smart-m3. 

[11] J. Honkola, H. Laine, R. Brown, O. Tyrkko, “Smart-M3 
Information Sharing Platform”, in Proc. ISCC 2010, IEEE Comp. 
Soc.; Jun. 2010, pp. 1041-1046. 

[12] T. Berners-Lee, R. Fielding, L. Masinter, RFC 3986 – Uniform  
Resource Identifier (URI): Generic Syntax, URL: 
http://tools.ietf.org/html/rfc3986. 

[13] Resource Description Framework (RDF). W3C standard, Web: 
http://www.w3.org/RDF/. 

[14] Coming Fall 2013: LEGO MINDSTORMS EV3, URL: 
http://www.lego.com/en-us/mindstorms/news/2013/january/ 
announcing-lego-mindstorms-ev3/. 

[15] A. Smirnov, A. Kashevnik, N. Shilov, S. Balandin, I. Oliver, S. 
Boldyrev, “On-the-Fly Ontology Matching in Smart Spaces: A 
Multi-Model Approach”, Proceedings of the Third Conference on 
Smart Spaces, 2010, pp. 72–83. 

[16] S. Balandin, S. Boldyrev, I. J. Oliver, T. Turenko, A.V. Smirnov, 
N. G. Shilov, A. M. Kashevnik, “Method and apparatus for 
ontology matching”, US 2012/0078595 A1, 2012. 

[17] A. Smirnov, T. Levashova, N. Shilov, K. Sandkuhl, “Ontology 
for Cyber-Physical-Social Systems Self-Organisation”, 
Proceedings of the 16th Conference of Open Innovations 
Association FRUCT, Oulu, Finland, 27-31 October 2014,  
pp. 101-107. 

 

_______________________________________________________PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 215 ----------------------------------------------------------------------------


