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Abstract—Unified Extensible Firmware Interface (UEFI) 
is a software interface between an operating system and 
platform firmware designed to replace a traditional BIOS. In 
general, UEFI has many technical advantages over BIOS (pre-
OS environment, boot and run-time services, CPU-
independent drivers etc.) including also powerful security 
mechanisms (e.g. secure boot, update, etc.). They are aimed to 
provide platform integrity, be root of trust of security 
architecture, control all stages of boot process until it pass 
control to authenticated OS kernel. From the other side UEFI 
technology is the focus of many new potential threats and 
exploits and presents new vulnerabilities that must be 
managed. The main goal of this research is to provide analysis 
of the UEFI security issues, find the point and source of the 
security problems and classify them. The paper describes the 
architectural and implementation troubles of UEFI which lead 
to threats, vulnerabilities and attacks. It also includes 
extensive review of the previous research activities in this area 
and the results of our own experiments. As the result of the 
work some recommendation about how to make this young 
technology more safe and secure are provided.  

Keywords–UEFI Secure Boot, Boot firmware, Bootkit, 
Rootkit. 

I. INTRODUCTION 
Secure Boot mechanism aimed to provide platform 

integrity, be root of trust of security architecture, control 
all stages of boot process until it pass control to 
authenticated OS kernel. 

The task of hardware initialization process and 
transition control to the operating system and system power 
on is accomplished by specialized system firmware, usually 
referred to as Basic Input-Output system (BIOS). The 
executable code (usually called boot firmware) is stored in 
non-volatile memory of computer. 

BIOS place in architecture and in procedure of system 
start up is very important, because it is a root of trust for 
platform. BIOS accomplish full control of platform from 
computer power on until it passes control to operating 
system kernel. This special role of boot firmware makes it 
potentially attractive target for attack. Unauthorized BIOS 
firmware update, injection of malicious code to BIOS can 
be used to compromise and take control over components 

loaded later in the boot process, like operating system or 
hypervisor. And such infection shall be persistent, since 
malware written into boot firmware can be used to re-infect 
operating system even if it was re-installed. Since boot 
firmware works before operating system kernel even loaded 
to memory or takes control, special security software like 
antivirus can’t detect the invasion. 

Two factors raise attention to boot firmware: 

1) Change of technologies in boot firmware. An 
evolutionary change of boot firmware technologies occurs 
right now. A new Unified Extensible Firmware Interface 
(UEFI) takes place of old legacy BIOS that prevailed 
without significant changes for over 30 years. 

2) In increased number of bootkit and rootkit attacks. 
Many companies that develop antivirus software expect 
that such attacks shall be main trend in nearest future. 

New standard brings both new possibilities and new 
threats. With deployment of new unified interface based on 
well-documented specification and common API and 
protocols gives malware developers an opportunity to infect 
a wide range of new systems. Rich possibilities of new 
interface give them additional ways to attack the platform. 
At the same time, these possibilities may be used by UEFI 
developers to protect system from malware. 

The rest of the paper organized as follows. In section II 
a brief review of UEFI interface, its architecture and key 
components, is presented. In section III, security issues of 
UEFI technologies are analyzed, potential threat, attacks on 
UEFI and recommendations for protection of UEFI BIOS. 

II. UEFI TECHNOLOGY 
A. Unified Extensible Firmware Interface 

UEFI – unified extensible firmware interface – is an 
interface between the operating system and firmware that 
control hardware. Its main role in the boot process is the 
following [1]:  

1) Execute core root of trust (small core block of 
firmware that executes first and is capable of verifying the 
integrity of other firmware components). 
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2) Initialize and test low-level hardware. 
3) Load and Execute Additional Firmware Modules. 
4) Select boot device, call Boot Loader and pass control 

to operating system kernel. 
In addition, UEFI gives possibility to develop 

extensions (drivers and applications). 

UEFI is developed by the UEFI Forum [2]. The forum 
developed several specifications, the most interesting for 
current research are the UEFI Specification [3] (the 
specification of standard itself, defines basic interfaces, 
prtocols, data structures, etc.) and PI Specification [4] 
(defines the boot process, UEFI boot stages and interfaces 
between them). The main stages of UEFI boot process and 
key components are discussed in the next chapter. 

B. Platform Initialization 

The UEFI boot process pass through several stages, 
each stage has its own role and potentially may pose certain 
security risks: 

� SEC. When an EFI system is powered on, the SEC 
(Security) phase of EFI is the first code that is 
executed within EFI. This phase serves as a root of 
trust for the system and handles platform reset 
events, among other things.  

� PEI. The PEI (Pre-EFI Initialization) phase 
(platform-specific), which is responsible for 
initializing the CPU and main memory. It prepares 
platform for next stages, which are written on C 
language. It locates and executes PEIM modules. 

� DXE. The DXE (Driver eXecution Environment) 
phase is where the majority of the system 
initialisation takes place. First, the DXE core 
produces a set of Boot and Runtime Services. Boot 
Services provide drivers, applications and Boot 
Loaders that run within the EFI environment with a 
number of services such as allocating memory and 
loading executable images. Boot services are 
destroyed before pass control to OS kernel. 
Runtime Services provide specific services to code 
running within the EFI environment or within the 
OS kernel once it has taken control of the system. 
Once these services have been established, the 
DXE dispatcher discovers and executes DXE 
drivers from the firmware volume, expansion 
ROMs on devices connected to the PCIe bus, and 
connected disks. 

� BDS. The Boot Device Selection phase is 
responsible for discovering the possible boot 
devices, selecting one to boot from, loading the 
Boot Loader and executing it. 

C. UEFI Security Mechanisms 

The boot firmware is potentially attractive target for 
attack and should face many threats. In the UEFI 

specification (version 2.3.1) special attention is given to the 
security issues. The main component of UEFI security is 
Secure Boot module (chapter 27 of specification). 

The key components of UEFI Secure boot are: 

1) UEFI Image Signing. The main aspect of UEFI 
Secure Boot – ability to use cryptography (digital 
signatures and hashes) for local authentication and 
verification of UEFI images (drivers, applications). 
Specification describes platform public key infrastructure 
based on PKI. UEFI keys are stored in Secure Boot. The 
following keys are define by specification (Fig. 1): 

� Platform Key (PK). This is a root key, created for 
this exact platform. PK Key Owner (usually 
hardware manufacturer) can modify all other keys. 

� Key Exchange Key (KEK) – the owner of this key 
(usually OS vendor) can update db/dbx keys. 

� db – all allowed certificates and hashes are stored 
here (white list). 

� dbx  – all forbidden certificates and hashes are 
stored here (black list). 

Platform Key (PK)
Public half of the key in firmware the 

establishes a trust relationship between the 
platform owner and platform firmware 

Key Exchange Key (KEK)
Public part of the key is enrolled into the 

platform firmware establishing a trust 
relationship between the firmware and the 

OS. It determines who is authorized to 
update the DB and DBX

Authorized Signature Database 
(DB)

DB of authorized signing certificates and 
digital signatures

Signature

Signature

Signature

Certificate in PK can be 
self-signed

Microsoft stores its keys in (a) 
DB because it allows to run MS-
signed efi-applications and also 
(b) in KEK because it provides a 
way to  add new keys to DB Chain of Trust

OS Kernel

UEFI
OS Loader

Run!

Signature

 
 
Fig. 1. Hierarchy of UEFI Trusted Key Databases and “ideal” Chain of 
Trust (a sequence of verification of certificates and signatures) for a secure 
OS boot.  
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2) UEFI Authenticated Variable. Time-Based 
Authenticated Write Access used to update Authenticated 
variables like keys db. Updated variables must be signed. 
PK cert verifies PK/KEK update. KEK verifies db/dbx 
update. Certdb verifies general authenticated EFI variable 
updates. 

3) UEFI Secure Update. This component is used to 
authenticate firmware update images using digital signature 
verification. In order to enable the Secure Boot mode on a 
platform one should do the following: 

� Enroll Platform Key (PK) and other keys, if 
needed. 

� Set value of SetupMode variable to USER_MODE 
(stored in NVRAM). 

� Adjust SecureBootEnable variable (stored in 
NVRAM). 

UEFI variable can be updated using the UEFI runtime 
service SetVariable. UEFI provides write-protected service 
for Authenticated variables, based on asymmetric key 
technology. In order to update variable value, it should be 
signed with appropriate key. Disabling of Secure Boot, as 
well as deploying new PK should be done only in users 
Physical Presence. 

Verifying UEFI image signature (or hash) is a task of a 
library called DxeImageVerificationLib. The same library 
defines image verification policies applied to different 
types of images (like IMAGE_FROM_FV 
(ALWAYS_EXECUTE), 
IMAGE_FROM_FIXED_MEDIA, 
IMAGE_FROM_REMOVABLE_MEDIA, 
IMAGE_FROM_OPTION_ROM). 

If UEFI image is not signed by a trusted key, and it’s 
hash is not found in db, the image shall not be loaded. If 
Boot Loader signature verification fails, the operating 
system shall not load. 

What elements are verified depends on verification 
policies in specific UEFI implementation on a platform. By 
default, signature of drivers and components stored in 
firmware is not verified (policy ALWAYS_EXECUTE for 
IMAGE_FROM_FV). There is no signature verification on 
first boot stages (SEC + PEI). Thus, such modules must be 
stored in write-protected non-volatile memory. 

In general, Secure Boot mechanism aimed to provide 
platform integrity, be root of trust of security architecture, 
control all stages of boot process until it pass control to 
authenticated OS kernel. 

III. UEFI SECURITY 
A. Common Notes 

Analyzing the UEFI Platform Initialization stages (PI), 
we observe that the following blocks may be a subject of 
attack and may theoretically pose a threat: 

� Malware PEIM modules. 
� Malware DXE and UEFI drivers and UEFI 

applications (on DXE stage). 
� Malware Boot Loader (on BDS stage). 

B. Attack Goals 

The primary attack goals are: 

1) Modification of UEFI firmware/injection of malware 
DXE drive. Malicious adding or replacing DXE driver is 
needed for: 

� First step leading to further injection of exploit to 
Boot Loader or kernel. 

� Malware DXE driver may be used itself, for 
example, for gathering information (like password 
interception, etc.), sending it over network. 

2) Substitution of Boot loader/OS loader, patching OS 
kernel on pre-boot. It is a classical boot kit attack. It can be 
used for: 

� Start infected operation system with exploits (e.g., 
disabling OS security modules, privileges 
escalation, bypass authentication, etc.). It is 
possible since Boot Loader hold control before it 
gives control to OS kernel (see [5]); 

� Injection of hidden malware hypervisor (Virtual 
Machine based rootkits, VMBRs, see [6]) 

The attack technique may be the following: 

� Exploiting vulnerabilities in Operating System for 
attack on UEFI. One can use UEFI runtime 
services or firmware update mechanisms (e.g., for 
unauthorized firmware update, injection of security 
keys, modifying boot order, etc.). Another way is 
substitution of files in EFI GPT System Partition 
(ESP) (e.g., substitution of Boot Loader file). 

� An “evil maid” attack. An attack during a short-
time physical access to hardware during platform 
power-on 

C. Where an attack can come from 

In order to persist in a system, malware (like DXE 
driver or Boot Loader) should be stored somewhere. UEFI-
based malware can be stored in a number of locations: 

1) Hard disks (or SSD). Malware can be stored 
anywhere on system disk. In particular, it can be EFI 
System Partition (ESP), where UEFI Boot Loaders are 
usually stored. 

2) SPI-flash with EFI firmware. 

3) Option ROM. Storing malware DXE drivers in option 
ROMs of expansion cards (like video or network adapters). 
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D. Secure Boot Modes 

As mentioned earlier, UEFI specification has special 
part called Secure Boot designed to protect system 
integrity. That’s why all attacks on UEFI can be separated 
on two classes: 

� Attacks on UEFI with Secure Boot OFF 
� Attacking UEFI Secure Boot 

Each class of attacks shall be examined separately. At 
first, let’s investigate basic attack vectors on UEFI with 
disabled Secure Boot. 

IV. UEFI SECURITY ANALYSIS. SECURE BOOT OFF 
Utilization of UEFI platforms with disabled Secure 

Boot mode provides attacker with a variety of possibilities. 
This is a fee for extendibility, well documented modular 
structure, detailed specification and availability of a full-
featured development kit. Lack of authentication of loaded 
DXE drivers and UEFI applications before execution gives 
possibility to take control over system by simply 
substitution of standard DXE driver or Boot Loader file. 
The fact that standard OS loaders are stored in known 
directories on disk in pre-defined paths makes this task 
even easier. 

Several successful attacks on UEFI with disabled 
Secure Boot were reported. For example, in [5] described 
an attack on Windows 8 that injected boot kit by replacing 
standard Windows Boot Loader by a malware Boot Loader 
by copying it to EFI\Microsoft\Boot directory. 

The primary attack vectors on UEFI with disabled 
secure boot: 

1) Modification of UEFI firmware by unauthorized 
firmware update. This can be done easily, since UEFI in 
this case does not ensure the authenticity of the firmware 
update image.  One can use UEFI runtime service to 
schedule firmware update from Operating System.  

2) Add malware DXE driver (or patch existing DXE 
driver) 

� DXE driver can be stored on fixed drive or USB 
(no need to re-flash firmware). 

� Modification of driver load order can results in  
load of malware driver on early boot stage. 

3) Injection of malware Boot Loader file (usually stored in 
a known directory in FAT32 EFI System partition).  

� One can substitute OS Boot Loader (e.g., 
bootmgrfw.efi for Microsoft Windows, see [5]). 
Since Boot Loader is stored in protected EFI 
System partition, in order to substitute 
bootmgrfw.efi loader for Microsoft Windows one 
need to start “file copy” with administrative 
privileges. 

� Or substitute fallback Boot Loader (\EFI\BOOT\ 
bootx64.efi) (see  [7]). bootx64.efi serves as the 
fallback boot loader if none is specified in the 
firmware's flash storage. 

� Add your own Boot Loader (.efi application) and 
modify boot order using UEFI runtime services. 

4) Patch ROMs in expansion cards (Option ROMs): 
network cards, video cards, storages, etc.  

� Such attacks were described in [8]. 
� In [9] an attack on Mac UEFI platform using re-

flashing Option ROM was demonstrated. 
� Also there also is such an exotic variant of attack, 

as re-sellingof malware-flashed hardware. 

5) Modify GUID Partition Table (GPT).  
 
When analyzing UEFI work and OS load with the secure 
boot turned off the following facts should be taken to 
consideration (in other words why users and administrators 
turn off the Secure Boot so often?): 

1) Not all operating systems and hypervisors support 
UEFI Secure Boot yet (although this tends to improve).  

2) Various problems arise with UEFI Secure Boot and 
dual-boot systems. The problems arise from the fact that 
user in most cases does not have access to PK flashed on 
factory, and injection of new PK/KEK is not trivial task yet 
for ordinary user. 

3) Secure Boot is optional and can be easily turned off 
by a user in UEFI BIOS settings. A possibility to turn 
secure boot off is part of specification (as well as possibility 
to enroll new PK). Specifically, this is a requirement for all 
certified platforms with Windows 8. Abhorrence that some 
members of Linux community hold to Secure Boot mode, 
reckoning it a Microsoft-driven technology, and existing 
limitations for dual-boot systems, raise a possibility of 
turning Secure Boot off. 

4) Guest operating systems (in virtualized environments) 
do not directly interact with Secure Boot of host platform. 
This means that host platform Secure Boot does not impact 
boot process of guest operating systems. 

As a result of this section we can conclude that UEFI 
with a disabled Secure Boot is exposed to various attacks. 
Since UEFI provides rich possibilities for developers, UEFI 
platform with disabled security module is even more 
vulnerable than legacy BIOS. 

V. UEFI SECURITY ANALYSIS.  
ATTACKING SECURE BOOT. 

With Secure Boot enabled, all UEFI images are 
authenticated and their digital signatures are verified before 
execution. Thus, enabling of Secure Boot should ensure 
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that no malware DXE driver or application shall be loaded. 
The straight attack with substitution of Boot Loader file 
with a malware one shall fail, since its digital signature 
shall be invalid. 

The main goal of attack on secure boot is to avoid 
verification somehow and execute unsigned code. If this 
goal is achieved, all attacks on secure boot from the 
previous section can be performed. There is a number of 
ways to achieve this goal: 

1) Disable Secure Boot (Illegally turn it off) 

� Delete or corrupt PK EFI variable in NVRAM (см. 
[10]). 

� Change state of SetupMode and SecureBootEnable 
variables, stored in NVRAM. 

2) Violate the integrity of Secure Boot 

� For example, patch DxeImageVerificationLib 
library to change the verification policies. 

3) Execute code, signed by invalid keys 

� Add invalid certificate or hash to a db variable, 
stored in NVRAM. 

� Now all images signed by that key shall pass 
verification. 

4) Execute code without signature verification 

� Inject malware code to platform firmware or 
Option ROM, or 

� Execute malware code in compatibility with 
Legacy BIOS mode. 

Potential vulnerabilities, possible threats and attack 
vectors on systems with the enabled UEFI Secure Boot 
shall be examined further in this section (Fig. 2). 
Vulnerabilities may be both in UEFI architecture, and in the 
UEFI BIOS implementation on specific platforms. 

A. Threats from Compatibility Support Module 

Compatibility Support Module (CSM) is a module 
allowing legacy operating systems and some option ROMs 
that do not support UEFI to still be used. It emulates BIOS 
environment for such systems. And this module can be 
used to avoud UEFI Secure Boot verification mechanisms. 
When Secure Boot mode is enabled, the Compatibility 
Support Module must be unavailable. This is, by the way, 
part of the Windows Hardware Certification Requirements 
(section System.Fundamentals.Firmware.UEFISecureBoot 
in [11]): “Mandatory. When Secure Boot is Enabled, 
Compatibility Support Modules (CSM) must NOT be 
loaded.” 

A proper implementation of this requirement is up to 
UEFI platform manufacturers. 

 

B. Threats in UEFI Firmware Update Mechanism 

This is one of the most dangerous attack vectors. Since 
there is a necessity to update UEFI firmware, such 
mechanism is provided. Once malware is stored in 
firmware, it may infect operating system, block further 
firmware updated, and it is not verified by UEFI Secure 
Boot. 

An increasing number of attacks on BIOS (including 
UEFI) encouraged National institution of Standards and 
Technology (NIST) to issue a document NIST 800-147 
BIOS Protection Guidelines [1]. This document contain 
general recommendations for protection of BIOS (including 
UEFI BIOS), focusing on secure firmware update process. 

The primary sources of threats (according to [1]): 

� User-initiated installation of a malicious firmware 
update 

� Leveraging weak BIOS security controls or 
exploiting vulnerabilities in the system BIOS itself 
to reflash or modify the system BIOS.  

� Launching an organization-wide attack through 
network-based system management tools. For 
example: infection of organization-maintained 
update server to push a malicious system BIOS to 
computer systems across the organization. 

� Leveraging “reset to factory settings” mechanism 
to rollback to an authentic but vulnerable system 
BIOS. 

NIST 800-147 document provides guidelines for 
preventing the unauthorized modification of BIOS 
firmware. These recommendations are quite general, but 
following them allows reducing a risk of platform infection 
as a result of threats discussed above. Section 3.1 
concentrates on recommendations for secure BIOS update 
process, including: 

� The authenticated BIOS update mechanism, 
providing authentication and integrity of BIOS 
update images; 

� Non-bypassability features, to ensure that there are 
no mechanisms that allow the system processor or 
any other system component to bypass the 
authenticated update mechanism. 

Specifically, a secure BIOS update process must 
provide: 

� Employment of digital signatures to ensure the 
authenticity of the BIOS update image 

� Protection of relevant regions of the system flash 
memory containing the system BIOS prior to 
executing firmware or software that can be 
modified without using an authenticated update 
mechanism. Protections should be enforced by 
hardware. 
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UEFI provides a number of protocols and mechanisms 
to follow these recommendations (signed update images, 
protection from “replay BIOS update” or “reset to old 
firmware” attacks, etc.). UEFI protects firmware from write 
on early stages of boot, and verifies digital signature of 
update image before it is applied. According to UEFI 
specification, in Secure Boot mode only signed updates are 
allowed (Signed UEFI Capsule based update). In Windows 
Hardware Certification Requirements (see. [11] section 
System.Fundamentals.Firmware.UEFISecureBoot, 
paragraph 8) all those mechanisms, as well as flash write-
lock on early stage of boot, are stated mandatory. It also 
recommends platform manufacturers writing BIOS code 
adhere to the NIST Guidelines. 

Yet it’s up to platform manufacturer to correctly 
implement these recommendations and specifications. And 
bugs in implementation may be the chief reasons of 
vulnerabilities. 

In [12] described a proof-of-concept attack on one UEFI 
implementation that use buffer overflow bug to bypass 
secure update process. The unsigned firmware update was 
accomplished before the write-lock was enabled. In [10] 
described an attack on platform with UEFI firmware that 
was directly writeable in SPI flash (write protection was 
enabled but not locked).  

Thus, in spite of well-considered security mechanisms, 
the following threat to firmware update process remains: 

� Bugs in secure firmware update implementation 
� Attacks utilizing direct write to SPI-flash before it 

is locked (it is enough, for example, to patch 
DxeImageVerificationLib in NVRAM, and defense 
system is broken) 

� Bugs in image signature verification procedures 

C. Threats in Trusted Certificate Base Update Process 

Trusted certificates stored on platform need to be 
updated. This process should be secure; otherwise violator 
shall be able to deploy his own certificates. The Secure 
Boot signature databases (PK, KEK, db, dbx) are stored in 
NVRAM. Two ways of updating those databases are 
provided: 

� In UEFI Custom Mode, mechanisms for a 
physically present user to modify the contents of 
the Secure Boot signature databases and the PK. 

� Using UEFI-runtime service (Set Variable), update 
Authenticated Variable. New keys must be signed 
by one of legal KEK keys. 

The following potential threats to Secure Boot signature 
databases management should be considered:  

� Bugs in implementation of Authenticated Write 
Access procedure, which may lead to unauthorized 

Authenticated variable update (attack on 
SetVariable runtime service), and thus inject illegal 
certificate.  

� Attacks utilizing direct write to SPI-flash before it 
is locked. Malware can write necessary keys 
directly to NVRAM, or it may corrupt PK to 
disable Secure Boot. Such attacks are presented in 
[10]. 

� Bugs in implementation of Physical Presence 
Interface. 

Such errors may result in vulnerability that shall allow 
violator to save his certificate or hash in Secure Boot 
signature databases. 

D. Hash Injection into the Secure Boot Signature 
Database 

In this case all is similar to the previous one (section C). 
Besides there are several EFI-administration utilities 
dedicated especially to get the full control over the 
platform. They very useful for Linux administrators and 
developers who need to rebuild the Linux kernel. The hash 
of the new kernel differs to the hash of the standard Linux 
kernel. So there is a real need in tools which can add a new 
trusted hash to the Secure Boot Signature Database. 
Therefore a chain of trust (chain of verification) between 
the start point and kernel verification will be broken. Chain 
of trust here is a list of digital certificates or hashes that are 
related to each other: every object (efi-application in boot 
process) is sighed/verified by the predecessor and 
signs/verifies the subsequent object in the list. Obviously 
all these utilities could be used for attack purposes.  

The main idea of the “hash injection” attack is to embed 
hash of the unsigned efi-applications (infected kernel, efi-
malware etc.) into Secure Boot Signature Database and get 
an opportunity to run the unsigned applications it in a 
Secure Boot. 

For instance, the Linux Foundation loader (so-called 
pre-EFI Loader) allows adding hashes into Secure Boot 
Signature Database (after user’s confirmation). In this case 
the chain of trust is broken off at the last element (unsigned 
loader). It’s clear that an unsigned loader can run any 
application and UEFI secure mechanisms will not stop this. 
If the Linux Foundation Loader is signed by Microsoft CA 
UEFI Key (this was announced by its developers) then the 
operation system boot process is the following.  

� UEFI Secure Boot verifies a key of the Linux 
Foundation loader (success) 

� Linux Foundation loader can start ANY efi-
application after user confirmation (success, a gap 
in the chain of trust). Practically it could be OS 
loader, e.g. gummiboot.efi. User sees a request 
whether he trusts to an efi-application or no. If he 
says YES and confirms an operation then hash of 
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this application (gummiboot.efi in our example) is 
saved as a trusted one in the UEFI Secure Boot 
DB. And at the next system boot user will not be 
asked about this. Gummiboot after that can run any 
other software, even malicious one.  

Hence there is a considerable vulnerability is the Secure 
Boot: usage of Linux Foundation Loader means broken 
chain of trust. If a user uses Linux Foundation Loader to 
adds hash of an unsigned loader (e.g. gummiboot.efi) to the 
Secure Boot Signature Database (even only once!) then an 
unsigned loader can start any application without any 
verification. Practically this is equivalent to turning Secure 
Boot Off (in the UEFI BIOS settings). Result is the same: 
no boot security at all.  

Linux Foundation loader as well as shim are one of the 
alternative Linux loaders, developed to support Secure 
Boot. Currently is not included (end of 2013) to the main 
Linux distributions. The main difference to the shim loader 
is in the loader verification method. Linux Foundation 
loader checks loader’s hash in the trusted DB, while shim 
verifies the signature. 

E. Threats to Machine Owner Key Technology 

For some systems (e.g.  Fedora) it is supposed to to use 
Machine Owner Key (MOK) Technology. A Machine 
Owner Key (MOK) is a type of key that a user generates 
himself (using e.g. OpenSSL) and uses to sign an EFI 
binary. The key idea of a MOK is to give users the ability 
to run locally-compiled kernels, boot loaders not delivered 
by the distribution maintainer, and so on. Of course, the 
ability to use MOKs creates risk. A Linux expert says “if 
you're tricked into enrolling a MOK that was provided to 
you by a malware author, your computer will become 
vulnerable to attacks launched by that malware author” 
[14]. From the other side if the MOK key is stolen by an 
attacker then it could be used to sign and boot any efi-
application. The problem is even worse because MOK–key 
can be added to the MOK DB from the level of operation 
system (e.g. etc/secureboot in Ubuntu) and UEFI Runtime-
services. 

Possible Vulnerabilities: 

� Running a third-party unauthorized (incl. 
malicious) efi-software, signed by legal and trusted 
Machine Owner Key (hacker have to steel/copy 
this MOK-key beforehand and use it to sign a 
third-party SW). 

� Hidden embedding of a third-party unauthorized 
Machine Owner Key into the system  for 
subsequent running of any  unauthorized efi-
software on this infected platform. 

F. Injection of Malware into Option ROM 

As it was already mentioned that the  
modifying/updating the efi-firmware of expansion cards 
(network cards, storages etc.) could be used for attack to 
UEFI. The specification allows not to verify signatures for 
drivers located at Option ROM. Therefore installing the 
hardware cards with infected efi-drivers or malicious 
modifying of the efi-firmware is base for attack even on the 
secure boot mode.  

Security Threats: 

� Weak control over the efi-firmware 
modification/update process and changing 
expansion cards. 

� Turning off the mandatory verifying of the located 
at Option ROM efi-drivers’ signatures (depends on 
default security policy of the platform developer) 
could also strongly affect the whole UEFI-based 
platform security. 

G. Hidden Virtualization  

Since there are several described above possibilities to 
run Linux-based OS using a Microsoft-signed loader, the 
same methods could be used to run hidden hypervisor and 
virtualize (transform to the guest state) the active system. 

H. SMM Threats 

System Management Mode is special operating mode of 
CPU which is not controlled by OS while special separate 
software (firmware or a hardware-assisted debugger) could 
be executed in high-privilege mode. This operating mode is 
supported by UEFI specification (Platform Initialization, 
vol 4 Secure Management Mode). Since some attacks to 
SMM mode using BIOS were demonstrated in the past [13] 
there is still some non-zero possibility of the similar attacks 
using the means of UEFI technology. 

VI. CONCLUSION 

As can be seen, in UEFI a much greater attention is 
given to security issues. Special security mechanisms like 
UEFI Secure Boot are provided. At the same time, several 
moments need to be taken to account: 

� UEFI with disabled Secure Boot mode is totally 
insecure. Reasoning of this thesis is provided 
above. Various successful attacks on UEFI, met in 
the literature during last year, are a strong evidence 
of this fact. 

� Even if Secure Boot is enabled, it does not 
guarantee the platform safety and integrity. A 
variety of platform manufacturers and drivers 
developers, each of them implementing the 
specifications requirements on their own, may 
result in vulnerabilities in particular UEFI 
implementations. 
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Proceeding from the analysis of threats, we should note 
that to minimize the risk of malware injection, the one 
should respect following recommendations: 

� Secure Boot mode is mandatory!  
� A secure firmware update mechanism must be 

provided, in particular, UEFI BIOS update must 
follow all the recommendations from NIST 800-
147 BIOS Protection Guidelines. 

� Only implementations of UEFI that strictly follow 
the specifications must be used. 

Specifically, system should: 

� Allow only signed UEFI BIOS updates; 
� Update the boot block (SEC/PEI code) securely; 
� Disable Compatibility Support Modules and MBR 

boot loaders; 
� Correctly implement UEFI modules; 
� Verify signature of third-party Option ROMs; 

� Correctly implement image verification policies; 
� Protect PK/KEK/db/dbx storage in NVRAM from 

unauthorized modification; 
� Protect Authenticated Variables, correctly 

implement Authenticated Write Access; 
o Protect UEFI firmware in SPI Flash from 

direct modification, lock the SPI controller 
configuration ; 

o Locking must not be controlled by any un-
trusted programmable entities; 

o Once locked within CRTM code, it must not 
be un-lockable without going through a 
system reset; 

� Correctly program and protect SPI Flash 
descriptor; 

� Do not allow bypass of Secure Boot checks, user 
should not be able to bypass Secure Boot failures 
and boot anyway; 

� Correctly implement physical presence checks; 

HYPERVIZOR

!

!

!

DB OF HASHES
CERTIFICATES

!

!

Threats from malware boot loaders. If malware boot loader hash is 
injected to trusted database (db). E.g.  Linux Foundation loader allows 
adding hashes to trusted db and thus load unsigned kernels

Threats from running malware boot loader, signed by legal MOK-key, if 
this key was stolen

Attacks on TPM module (cold boot attack)

Threats from hash collisions. E.g. findinf collisions for hashes in white list.

Threat from attacks on SMM Mode of processor

Threats from injection of illegal certificate or hash to db
Once illegal hash or certificate is placed to db, it is possible to execute 
malware driver or Boot Loader

Threats in UEFI firmware update mechanisms: Bugs in secure firmware 
update implementation may result in unathorized UEFI BIOS update

!

Execution of malware DXE driver, If it’s signature is verified after injection 
of illegal key to SecureBoot database, or if platform driver verification 
policy is ALWAYS_EXECUTE for this driver

Threats of bloken chain of trust. It is not known it chain of signature 
verification ends up with verification of OS kernel. Boot loader call eash 
other in order at system start up (Shim, Grub2), But it can’t be guaranteed 
that digital signature of kernel itself is also verified.

Attacks on Runtime serivces.  Bugs in implementation of Authenticated 
Write Accesds may be used to unauthorized keys update. UpdateCapsule() 
can be used for attack on firmware update.

Threats from malware hypervisor created on top of legal signed version of  
Linux, Or injected using malware boot loader 

!

! Threats from direct write to SPI flash: If SPI flash configuration is not 
locked, malware can be written directly to SPI flash

!
!

!

!

Treats danger level: !

!

!
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Low danger Moderaty!
Fig. 2. UEFI threats 
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� Correctly implement all cryptography (signature 
verification, etc.). 

UEFI gives a variety of mechanisms for providing 
information security and platform integrity. It's up to 
platform manufacturers to use them as well as protections 
offered by hardware. Bugs in implementation and incorrect 
usage of those mechanisms may ruin the entire defense. 

We hope this article will help developers, system 
administrators and security specialists to understand the 
main security problems and key points of UEFI technology. 
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