
Too Young to be Secure:
Analysis of UEFI Threats and Vulnerabilities

Vladimir Bashun, Anton Sergeev, Victor Minchenkov, Alexandr Yakovlev

St. Petersburg State University of Aerospace Instrumentation
St. Petersburg, Russia

{bashun, slaros, Victor, yakovlev.a}@vu.spb.ru

Abstract—Unified Extensible Firmware Interface (UEFI)
is a software interface between an operating system and
platform firmware designed to replace a traditional BIOS. In
general, UEFI has many technical advantages over BIOS (pre-
OS environment, boot and run-time services, CPU-
independent drivers etc.) including also powerful security
mechanisms (e.g. secure boot, update, etc.). They are aimed to
provide platform integrity, be root of trust of security
architecture, control all stages of boot process until it pass
control to authenticated OS kernel. From the other side UEFI
technology is the focus of many new potential threats and
exploits and presents new vulnerabilities that must be
managed. The main goal of this research is to provide analysis
of the UEFI security issues, find the point and source of the
security problems and classify them. The paper describes the
architectural and implementation troubles of UEFI which lead
to threats, vulnerabilities and attacks. It also includes
extensive review of the previous research activities in this area
and the results of our own experiments. As the result of the
work some recommendation about how to make this young
technology more safe and secure are provided.

Keywords–UEFI Secure Boot, Boot firmware, Bootkit,
Rootkit.

I. INTRODUCTION
Secure Boot mechanism aimed to provide platform

integrity, be root of trust of security architecture, control
all stages of boot process until it pass control to
authenticated OS kernel.

The task of hardware initialization process and
transition control to the operating system and system power
on is accomplished by specialized system firmware, usually
referred to as Basic Input-Output system (BIOS). The
executable code (usually called boot firmware) is stored in
non-volatile memory of computer.

BIOS place in architecture and in procedure of system
start up is very important, because it is a root of trust for
platform. BIOS accomplish full control of platform from
computer power on until it passes control to operating
system kernel. This special role of boot firmware makes it
potentially attractive target for attack. Unauthorized BIOS
firmware update, injection of malicious code to BIOS can
be used to compromise and take control over components

loaded later in the boot process, like operating system or
hypervisor. And such infection shall be persistent, since
malware written into boot firmware can be used to re-infect
operating system even if it was re-installed. Since boot
firmware works before operating system kernel even loaded
to memory or takes control, special security software like
antivirus can’t detect the invasion.

Two factors raise attention to boot firmware:

1) Change of technologies in boot firmware. An
evolutionary change of boot firmware technologies occurs
right now. A new Unified Extensible Firmware Interface
(UEFI) takes place of old legacy BIOS that prevailed
without significant changes for over 30 years.

2) In increased number of bootkit and rootkit attacks.
Many companies that develop antivirus software expect
that such attacks shall be main trend in nearest future.

New standard brings both new possibilities and new
threats. With deployment of new unified interface based on
well-documented specification and common API and
protocols gives malware developers an opportunity to infect
a wide range of new systems. Rich possibilities of new
interface give them additional ways to attack the platform.
At the same time, these possibilities may be used by UEFI
developers to protect system from malware.

The rest of the paper organized as follows. In section II
a brief review of UEFI interface, its architecture and key
components, is presented. In section III, security issues of
UEFI technologies are analyzed, potential threat, attacks on
UEFI and recommendations for protection of UEFI BIOS.

II. UEFI TECHNOLOGY
A. Unified Extensible Firmware Interface

UEFI – unified extensible firmware interface – is an
interface between the operating system and firmware that
control hardware. Its main role in the boot process is the
following [1]:

1) Execute core root of trust (small core block of
firmware that executes first and is capable of verifying the
integrity of other firmware components).

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201345023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2) Initialize and test low-level hardware.
3) Load and Execute Additional Firmware Modules.
4) Select boot device, call Boot Loader and pass control

to operating system kernel.
In addition, UEFI gives possibility to develop

extensions (drivers and applications).

UEFI is developed by the UEFI Forum [2]. The forum
developed several specifications, the most interesting for
current research are the UEFI Specification [3] (the
specification of standard itself, defines basic interfaces,
prtocols, data structures, etc.) and PI Specification [4]
(defines the boot process, UEFI boot stages and interfaces
between them). The main stages of UEFI boot process and
key components are discussed in the next chapter.

B. Platform Initialization

The UEFI boot process pass through several stages,
each stage has its own role and potentially may pose certain
security risks:

� SEC. When an EFI system is powered on, the SEC
(Security) phase of EFI is the first code that is
executed within EFI. This phase serves as a root of
trust for the system and handles platform reset
events, among other things.

� PEI. The PEI (Pre-EFI Initialization) phase
(platform-specific), which is responsible for
initializing the CPU and main memory. It prepares
platform for next stages, which are written on C
language. It locates and executes PEIM modules.

� DXE. The DXE (Driver eXecution Environment)
phase is where the majority of the system
initialisation takes place. First, the DXE core
produces a set of Boot and Runtime Services. Boot
Services provide drivers, applications and Boot
Loaders that run within the EFI environment with a
number of services such as allocating memory and
loading executable images. Boot services are
destroyed before pass control to OS kernel.
Runtime Services provide specific services to code
running within the EFI environment or within the
OS kernel once it has taken control of the system.
Once these services have been established, the
DXE dispatcher discovers and executes DXE
drivers from the firmware volume, expansion
ROMs on devices connected to the PCIe bus, and
connected disks.

� BDS. The Boot Device Selection phase is
responsible for discovering the possible boot
devices, selecting one to boot from, loading the
Boot Loader and executing it.

C. UEFI Security Mechanisms

The boot firmware is potentially attractive target for
attack and should face many threats. In the UEFI

specification (version 2.3.1) special attention is given to the
security issues. The main component of UEFI security is
Secure Boot module (chapter 27 of specification).

The key components of UEFI Secure boot are:

1) UEFI Image Signing. The main aspect of UEFI
Secure Boot – ability to use cryptography (digital
signatures and hashes) for local authentication and
verification of UEFI images (drivers, applications).
Specification describes platform public key infrastructure
based on PKI. UEFI keys are stored in Secure Boot. The
following keys are define by specification (Fig. 1):

� Platform Key (PK). This is a root key, created for
this exact platform. PK Key Owner (usually
hardware manufacturer) can modify all other keys.

� Key Exchange Key (KEK) – the owner of this key
(usually OS vendor) can update db/dbx keys.

� db – all allowed certificates and hashes are stored
here (white list).

� dbx – all forbidden certificates and hashes are
stored here (black list).

Platform Key (PK)
Public half of the key in firmware the

establishes a trust relationship between the
platform owner and platform firmware

Key Exchange Key (KEK)
Public part of the key is enrolled into the

platform firmware establishing a trust
relationship between the firmware and the

OS. It determines who is authorized to
update the DB and DBX

Authorized Signature Database
(DB)

DB of authorized signing certificates and
digital signatures

Signature

Signature

Signature

Certificate in PK can be
self-signed

Microsoft stores its keys in (a)
DB because it allows to run MS-
signed efi-applications and also
(b) in KEK because it provides a
way to add new keys to DB Chain of Trust

OS Kernel

UEFI
OS Loader

Run!

Signature

Fig. 1. Hierarchy of UEFI Trusted Key Databases and “ideal” Chain of
Trust (a sequence of verification of certificates and signatures) for a secure
OS boot.

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 17 --

2) UEFI Authenticated Variable. Time-Based
Authenticated Write Access used to update Authenticated
variables like keys db. Updated variables must be signed.
PK cert verifies PK/KEK update. KEK verifies db/dbx
update. Certdb verifies general authenticated EFI variable
updates.

3) UEFI Secure Update. This component is used to
authenticate firmware update images using digital signature
verification. In order to enable the Secure Boot mode on a
platform one should do the following:

� Enroll Platform Key (PK) and other keys, if
needed.

� Set value of SetupMode variable to USER_MODE
(stored in NVRAM).

� Adjust SecureBootEnable variable (stored in
NVRAM).

UEFI variable can be updated using the UEFI runtime
service SetVariable. UEFI provides write-protected service
for Authenticated variables, based on asymmetric key
technology. In order to update variable value, it should be
signed with appropriate key. Disabling of Secure Boot, as
well as deploying new PK should be done only in users
Physical Presence.

Verifying UEFI image signature (or hash) is a task of a
library called DxeImageVerificationLib. The same library
defines image verification policies applied to different
types of images (like IMAGE_FROM_FV
(ALWAYS_EXECUTE),
IMAGE_FROM_FIXED_MEDIA,
IMAGE_FROM_REMOVABLE_MEDIA,
IMAGE_FROM_OPTION_ROM).

If UEFI image is not signed by a trusted key, and it’s
hash is not found in db, the image shall not be loaded. If
Boot Loader signature verification fails, the operating
system shall not load.

What elements are verified depends on verification
policies in specific UEFI implementation on a platform. By
default, signature of drivers and components stored in
firmware is not verified (policy ALWAYS_EXECUTE for
IMAGE_FROM_FV). There is no signature verification on
first boot stages (SEC + PEI). Thus, such modules must be
stored in write-protected non-volatile memory.

In general, Secure Boot mechanism aimed to provide
platform integrity, be root of trust of security architecture,
control all stages of boot process until it pass control to
authenticated OS kernel.

III. UEFI SECURITY
A. Common Notes

Analyzing the UEFI Platform Initialization stages (PI),
we observe that the following blocks may be a subject of
attack and may theoretically pose a threat:

� Malware PEIM modules.
� Malware DXE and UEFI drivers and UEFI

applications (on DXE stage).
� Malware Boot Loader (on BDS stage).

B. Attack Goals

The primary attack goals are:

1) Modification of UEFI firmware/injection of malware
DXE drive. Malicious adding or replacing DXE driver is
needed for:

� First step leading to further injection of exploit to
Boot Loader or kernel.

� Malware DXE driver may be used itself, for
example, for gathering information (like password
interception, etc.), sending it over network.

2) Substitution of Boot loader/OS loader, patching OS
kernel on pre-boot. It is a classical boot kit attack. It can be
used for:

� Start infected operation system with exploits (e.g.,
disabling OS security modules, privileges
escalation, bypass authentication, etc.). It is
possible since Boot Loader hold control before it
gives control to OS kernel (see [5]);

� Injection of hidden malware hypervisor (Virtual
Machine based rootkits, VMBRs, see [6])

The attack technique may be the following:

� Exploiting vulnerabilities in Operating System for
attack on UEFI. One can use UEFI runtime
services or firmware update mechanisms (e.g., for
unauthorized firmware update, injection of security
keys, modifying boot order, etc.). Another way is
substitution of files in EFI GPT System Partition
(ESP) (e.g., substitution of Boot Loader file).

� An “evil maid” attack. An attack during a short-
time physical access to hardware during platform
power-on

C. Where an attack can come from

In order to persist in a system, malware (like DXE
driver or Boot Loader) should be stored somewhere. UEFI-
based malware can be stored in a number of locations:

1) Hard disks (or SSD). Malware can be stored
anywhere on system disk. In particular, it can be EFI
System Partition (ESP), where UEFI Boot Loaders are
usually stored.

2) SPI-flash with EFI firmware.

3) Option ROM. Storing malware DXE drivers in option
ROMs of expansion cards (like video or network adapters).

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 18 --

D. Secure Boot Modes

As mentioned earlier, UEFI specification has special
part called Secure Boot designed to protect system
integrity. That’s why all attacks on UEFI can be separated
on two classes:

� Attacks on UEFI with Secure Boot OFF
� Attacking UEFI Secure Boot

Each class of attacks shall be examined separately. At
first, let’s investigate basic attack vectors on UEFI with
disabled Secure Boot.

IV. UEFI SECURITY ANALYSIS. SECURE BOOT OFF
Utilization of UEFI platforms with disabled Secure

Boot mode provides attacker with a variety of possibilities.
This is a fee for extendibility, well documented modular
structure, detailed specification and availability of a full-
featured development kit. Lack of authentication of loaded
DXE drivers and UEFI applications before execution gives
possibility to take control over system by simply
substitution of standard DXE driver or Boot Loader file.
The fact that standard OS loaders are stored in known
directories on disk in pre-defined paths makes this task
even easier.

Several successful attacks on UEFI with disabled
Secure Boot were reported. For example, in [5] described
an attack on Windows 8 that injected boot kit by replacing
standard Windows Boot Loader by a malware Boot Loader
by copying it to EFI\Microsoft\Boot directory.

The primary attack vectors on UEFI with disabled
secure boot:

1) Modification of UEFI firmware by unauthorized
firmware update. This can be done easily, since UEFI in
this case does not ensure the authenticity of the firmware
update image. One can use UEFI runtime service to
schedule firmware update from Operating System.

2) Add malware DXE driver (or patch existing DXE
driver)

� DXE driver can be stored on fixed drive or USB
(no need to re-flash firmware).

� Modification of driver load order can results in
load of malware driver on early boot stage.

3) Injection of malware Boot Loader file (usually stored in
a known directory in FAT32 EFI System partition).

� One can substitute OS Boot Loader (e.g.,
bootmgrfw.efi for Microsoft Windows, see [5]).
Since Boot Loader is stored in protected EFI
System partition, in order to substitute
bootmgrfw.efi loader for Microsoft Windows one
need to start “file copy” with administrative
privileges.

� Or substitute fallback Boot Loader (\EFI\BOOT\
bootx64.efi) (see [7]). bootx64.efi serves as the
fallback boot loader if none is specified in the
firmware's flash storage.

� Add your own Boot Loader (.efi application) and
modify boot order using UEFI runtime services.

4) Patch ROMs in expansion cards (Option ROMs):
network cards, video cards, storages, etc.

� Such attacks were described in [8].
� In [9] an attack on Mac UEFI platform using re-

flashing Option ROM was demonstrated.
� Also there also is such an exotic variant of attack,

as re-sellingof malware-flashed hardware.

5) Modify GUID Partition Table (GPT).

When analyzing UEFI work and OS load with the secure
boot turned off the following facts should be taken to
consideration (in other words why users and administrators
turn off the Secure Boot so often?):

1) Not all operating systems and hypervisors support
UEFI Secure Boot yet (although this tends to improve).

2) Various problems arise with UEFI Secure Boot and
dual-boot systems. The problems arise from the fact that
user in most cases does not have access to PK flashed on
factory, and injection of new PK/KEK is not trivial task yet
for ordinary user.

3) Secure Boot is optional and can be easily turned off
by a user in UEFI BIOS settings. A possibility to turn
secure boot off is part of specification (as well as possibility
to enroll new PK). Specifically, this is a requirement for all
certified platforms with Windows 8. Abhorrence that some
members of Linux community hold to Secure Boot mode,
reckoning it a Microsoft-driven technology, and existing
limitations for dual-boot systems, raise a possibility of
turning Secure Boot off.

4) Guest operating systems (in virtualized environments)
do not directly interact with Secure Boot of host platform.
This means that host platform Secure Boot does not impact
boot process of guest operating systems.

As a result of this section we can conclude that UEFI
with a disabled Secure Boot is exposed to various attacks.
Since UEFI provides rich possibilities for developers, UEFI
platform with disabled security module is even more
vulnerable than legacy BIOS.

V. UEFI SECURITY ANALYSIS.
ATTACKING SECURE BOOT.

With Secure Boot enabled, all UEFI images are
authenticated and their digital signatures are verified before
execution. Thus, enabling of Secure Boot should ensure

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 19 --

that no malware DXE driver or application shall be loaded.
The straight attack with substitution of Boot Loader file
with a malware one shall fail, since its digital signature
shall be invalid.

The main goal of attack on secure boot is to avoid
verification somehow and execute unsigned code. If this
goal is achieved, all attacks on secure boot from the
previous section can be performed. There is a number of
ways to achieve this goal:

1) Disable Secure Boot (Illegally turn it off)

� Delete or corrupt PK EFI variable in NVRAM (см.
[10]).

� Change state of SetupMode and SecureBootEnable
variables, stored in NVRAM.

2) Violate the integrity of Secure Boot

� For example, patch DxeImageVerificationLib
library to change the verification policies.

3) Execute code, signed by invalid keys

� Add invalid certificate or hash to a db variable,
stored in NVRAM.

� Now all images signed by that key shall pass
verification.

4) Execute code without signature verification

� Inject malware code to platform firmware or
Option ROM, or

� Execute malware code in compatibility with
Legacy BIOS mode.

Potential vulnerabilities, possible threats and attack
vectors on systems with the enabled UEFI Secure Boot
shall be examined further in this section (Fig. 2).
Vulnerabilities may be both in UEFI architecture, and in the
UEFI BIOS implementation on specific platforms.

A. Threats from Compatibility Support Module

Compatibility Support Module (CSM) is a module
allowing legacy operating systems and some option ROMs
that do not support UEFI to still be used. It emulates BIOS
environment for such systems. And this module can be
used to avoud UEFI Secure Boot verification mechanisms.
When Secure Boot mode is enabled, the Compatibility
Support Module must be unavailable. This is, by the way,
part of the Windows Hardware Certification Requirements
(section System.Fundamentals.Firmware.UEFISecureBoot
in [11]): “Mandatory. When Secure Boot is Enabled,
Compatibility Support Modules (CSM) must NOT be
loaded.”

A proper implementation of this requirement is up to
UEFI platform manufacturers.

B. Threats in UEFI Firmware Update Mechanism

This is one of the most dangerous attack vectors. Since
there is a necessity to update UEFI firmware, such
mechanism is provided. Once malware is stored in
firmware, it may infect operating system, block further
firmware updated, and it is not verified by UEFI Secure
Boot.

An increasing number of attacks on BIOS (including
UEFI) encouraged National institution of Standards and
Technology (NIST) to issue a document NIST 800-147
BIOS Protection Guidelines [1]. This document contain
general recommendations for protection of BIOS (including
UEFI BIOS), focusing on secure firmware update process.

The primary sources of threats (according to [1]):

� User-initiated installation of a malicious firmware
update

� Leveraging weak BIOS security controls or
exploiting vulnerabilities in the system BIOS itself
to reflash or modify the system BIOS.

� Launching an organization-wide attack through
network-based system management tools. For
example: infection of organization-maintained
update server to push a malicious system BIOS to
computer systems across the organization.

� Leveraging “reset to factory settings” mechanism
to rollback to an authentic but vulnerable system
BIOS.

NIST 800-147 document provides guidelines for
preventing the unauthorized modification of BIOS
firmware. These recommendations are quite general, but
following them allows reducing a risk of platform infection
as a result of threats discussed above. Section 3.1
concentrates on recommendations for secure BIOS update
process, including:

� The authenticated BIOS update mechanism,
providing authentication and integrity of BIOS
update images;

� Non-bypassability features, to ensure that there are
no mechanisms that allow the system processor or
any other system component to bypass the
authenticated update mechanism.

Specifically, a secure BIOS update process must
provide:

� Employment of digital signatures to ensure the
authenticity of the BIOS update image

� Protection of relevant regions of the system flash
memory containing the system BIOS prior to
executing firmware or software that can be
modified without using an authenticated update
mechanism. Protections should be enforced by
hardware.

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 20 --

UEFI provides a number of protocols and mechanisms
to follow these recommendations (signed update images,
protection from “replay BIOS update” or “reset to old
firmware” attacks, etc.). UEFI protects firmware from write
on early stages of boot, and verifies digital signature of
update image before it is applied. According to UEFI
specification, in Secure Boot mode only signed updates are
allowed (Signed UEFI Capsule based update). In Windows
Hardware Certification Requirements (see. [11] section
System.Fundamentals.Firmware.UEFISecureBoot,
paragraph 8) all those mechanisms, as well as flash write-
lock on early stage of boot, are stated mandatory. It also
recommends platform manufacturers writing BIOS code
adhere to the NIST Guidelines.

Yet it’s up to platform manufacturer to correctly
implement these recommendations and specifications. And
bugs in implementation may be the chief reasons of
vulnerabilities.

In [12] described a proof-of-concept attack on one UEFI
implementation that use buffer overflow bug to bypass
secure update process. The unsigned firmware update was
accomplished before the write-lock was enabled. In [10]
described an attack on platform with UEFI firmware that
was directly writeable in SPI flash (write protection was
enabled but not locked).

Thus, in spite of well-considered security mechanisms,
the following threat to firmware update process remains:

� Bugs in secure firmware update implementation
� Attacks utilizing direct write to SPI-flash before it

is locked (it is enough, for example, to patch
DxeImageVerificationLib in NVRAM, and defense
system is broken)

� Bugs in image signature verification procedures

C. Threats in Trusted Certificate Base Update Process

Trusted certificates stored on platform need to be
updated. This process should be secure; otherwise violator
shall be able to deploy his own certificates. The Secure
Boot signature databases (PK, KEK, db, dbx) are stored in
NVRAM. Two ways of updating those databases are
provided:

� In UEFI Custom Mode, mechanisms for a
physically present user to modify the contents of
the Secure Boot signature databases and the PK.

� Using UEFI-runtime service (Set Variable), update
Authenticated Variable. New keys must be signed
by one of legal KEK keys.

The following potential threats to Secure Boot signature
databases management should be considered:

� Bugs in implementation of Authenticated Write
Access procedure, which may lead to unauthorized

Authenticated variable update (attack on
SetVariable runtime service), and thus inject illegal
certificate.

� Attacks utilizing direct write to SPI-flash before it
is locked. Malware can write necessary keys
directly to NVRAM, or it may corrupt PK to
disable Secure Boot. Such attacks are presented in
[10].

� Bugs in implementation of Physical Presence
Interface.

Such errors may result in vulnerability that shall allow
violator to save his certificate or hash in Secure Boot
signature databases.

D. Hash Injection into the Secure Boot Signature
Database

In this case all is similar to the previous one (section C).
Besides there are several EFI-administration utilities
dedicated especially to get the full control over the
platform. They very useful for Linux administrators and
developers who need to rebuild the Linux kernel. The hash
of the new kernel differs to the hash of the standard Linux
kernel. So there is a real need in tools which can add a new
trusted hash to the Secure Boot Signature Database.
Therefore a chain of trust (chain of verification) between
the start point and kernel verification will be broken. Chain
of trust here is a list of digital certificates or hashes that are
related to each other: every object (efi-application in boot
process) is sighed/verified by the predecessor and
signs/verifies the subsequent object in the list. Obviously
all these utilities could be used for attack purposes.

The main idea of the “hash injection” attack is to embed
hash of the unsigned efi-applications (infected kernel, efi-
malware etc.) into Secure Boot Signature Database and get
an opportunity to run the unsigned applications it in a
Secure Boot.

For instance, the Linux Foundation loader (so-called
pre-EFI Loader) allows adding hashes into Secure Boot
Signature Database (after user’s confirmation). In this case
the chain of trust is broken off at the last element (unsigned
loader). It’s clear that an unsigned loader can run any
application and UEFI secure mechanisms will not stop this.
If the Linux Foundation Loader is signed by Microsoft CA
UEFI Key (this was announced by its developers) then the
operation system boot process is the following.

� UEFI Secure Boot verifies a key of the Linux
Foundation loader (success)

� Linux Foundation loader can start ANY efi-
application after user confirmation (success, a gap
in the chain of trust). Practically it could be OS
loader, e.g. gummiboot.efi. User sees a request
whether he trusts to an efi-application or no. If he
says YES and confirms an operation then hash of

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 21 --

this application (gummiboot.efi in our example) is
saved as a trusted one in the UEFI Secure Boot
DB. And at the next system boot user will not be
asked about this. Gummiboot after that can run any
other software, even malicious one.

Hence there is a considerable vulnerability is the Secure
Boot: usage of Linux Foundation Loader means broken
chain of trust. If a user uses Linux Foundation Loader to
adds hash of an unsigned loader (e.g. gummiboot.efi) to the
Secure Boot Signature Database (even only once!) then an
unsigned loader can start any application without any
verification. Practically this is equivalent to turning Secure
Boot Off (in the UEFI BIOS settings). Result is the same:
no boot security at all.

Linux Foundation loader as well as shim are one of the
alternative Linux loaders, developed to support Secure
Boot. Currently is not included (end of 2013) to the main
Linux distributions. The main difference to the shim loader
is in the loader verification method. Linux Foundation
loader checks loader’s hash in the trusted DB, while shim
verifies the signature.

E. Threats to Machine Owner Key Technology

For some systems (e.g. Fedora) it is supposed to to use
Machine Owner Key (MOK) Technology. A Machine
Owner Key (MOK) is a type of key that a user generates
himself (using e.g. OpenSSL) and uses to sign an EFI
binary. The key idea of a MOK is to give users the ability
to run locally-compiled kernels, boot loaders not delivered
by the distribution maintainer, and so on. Of course, the
ability to use MOKs creates risk. A Linux expert says “if
you're tricked into enrolling a MOK that was provided to
you by a malware author, your computer will become
vulnerable to attacks launched by that malware author”
[14]. From the other side if the MOK key is stolen by an
attacker then it could be used to sign and boot any efi-
application. The problem is even worse because MOK–key
can be added to the MOK DB from the level of operation
system (e.g. etc/secureboot in Ubuntu) and UEFI Runtime-
services.

Possible Vulnerabilities:

� Running a third-party unauthorized (incl.
malicious) efi-software, signed by legal and trusted
Machine Owner Key (hacker have to steel/copy
this MOK-key beforehand and use it to sign a
third-party SW).

� Hidden embedding of a third-party unauthorized
Machine Owner Key into the system for
subsequent running of any unauthorized efi-
software on this infected platform.

F. Injection of Malware into Option ROM

As it was already mentioned that the
modifying/updating the efi-firmware of expansion cards
(network cards, storages etc.) could be used for attack to
UEFI. The specification allows not to verify signatures for
drivers located at Option ROM. Therefore installing the
hardware cards with infected efi-drivers or malicious
modifying of the efi-firmware is base for attack even on the
secure boot mode.

Security Threats:

� Weak control over the efi-firmware
modification/update process and changing
expansion cards.

� Turning off the mandatory verifying of the located
at Option ROM efi-drivers’ signatures (depends on
default security policy of the platform developer)
could also strongly affect the whole UEFI-based
platform security.

G. Hidden Virtualization

Since there are several described above possibilities to
run Linux-based OS using a Microsoft-signed loader, the
same methods could be used to run hidden hypervisor and
virtualize (transform to the guest state) the active system.

H. SMM Threats

System Management Mode is special operating mode of
CPU which is not controlled by OS while special separate
software (firmware or a hardware-assisted debugger) could
be executed in high-privilege mode. This operating mode is
supported by UEFI specification (Platform Initialization,
vol 4 Secure Management Mode). Since some attacks to
SMM mode using BIOS were demonstrated in the past [13]
there is still some non-zero possibility of the similar attacks
using the means of UEFI technology.

VI. CONCLUSION

As can be seen, in UEFI a much greater attention is
given to security issues. Special security mechanisms like
UEFI Secure Boot are provided. At the same time, several
moments need to be taken to account:

� UEFI with disabled Secure Boot mode is totally
insecure. Reasoning of this thesis is provided
above. Various successful attacks on UEFI, met in
the literature during last year, are a strong evidence
of this fact.

� Even if Secure Boot is enabled, it does not
guarantee the platform safety and integrity. A
variety of platform manufacturers and drivers
developers, each of them implementing the
specifications requirements on their own, may
result in vulnerabilities in particular UEFI
implementations.

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 22 --

Proceeding from the analysis of threats, we should note
that to minimize the risk of malware injection, the one
should respect following recommendations:

� Secure Boot mode is mandatory!
� A secure firmware update mechanism must be

provided, in particular, UEFI BIOS update must
follow all the recommendations from NIST 800-
147 BIOS Protection Guidelines.

� Only implementations of UEFI that strictly follow
the specifications must be used.

Specifically, system should:

� Allow only signed UEFI BIOS updates;
� Update the boot block (SEC/PEI code) securely;
� Disable Compatibility Support Modules and MBR

boot loaders;
� Correctly implement UEFI modules;
� Verify signature of third-party Option ROMs;

� Correctly implement image verification policies;
� Protect PK/KEK/db/dbx storage in NVRAM from

unauthorized modification;
� Protect Authenticated Variables, correctly

implement Authenticated Write Access;
o Protect UEFI firmware in SPI Flash from

direct modification, lock the SPI controller
configuration ;

o Locking must not be controlled by any un-
trusted programmable entities;

o Once locked within CRTM code, it must not
be un-lockable without going through a
system reset;

� Correctly program and protect SPI Flash
descriptor;

� Do not allow bypass of Secure Boot checks, user
should not be able to bypass Secure Boot failures
and boot anyway;

� Correctly implement physical presence checks;

HYPERVIZOR

!

!

!

DB OF HASHES
CERTIFICATES

!

!

Threats from malware boot loaders. If malware boot loader hash is
injected to trusted database (db). E.g. Linux Foundation loader allows
adding hashes to trusted db and thus load unsigned kernels

Threats from running malware boot loader, signed by legal MOK-key, if
this key was stolen

Attacks on TPM module (cold boot attack)

Threats from hash collisions. E.g. findinf collisions for hashes in white list.

Threat from attacks on SMM Mode of processor

Threats from injection of illegal certificate or hash to db
Once illegal hash or certificate is placed to db, it is possible to execute
malware driver or Boot Loader

Threats in UEFI firmware update mechanisms: Bugs in secure firmware
update implementation may result in unathorized UEFI BIOS update

!

Execution of malware DXE driver, If it’s signature is verified after injection
of illegal key to SecureBoot database, or if platform driver verification
policy is ALWAYS_EXECUTE for this driver

Threats of bloken chain of trust. It is not known it chain of signature
verification ends up with verification of OS kernel. Boot loader call eash
other in order at system start up (Shim, Grub2), But it can’t be guaranteed
that digital signature of kernel itself is also verified.

Attacks on Runtime serivces. Bugs in implementation of Authenticated
Write Accesds may be used to unauthorized keys update. UpdateCapsule()
can be used for attack on firmware update.

Threats from malware hypervisor created on top of legal signed version of
Linux, Or injected using malware boot loader

!

! Threats from direct write to SPI flash: If SPI flash configuration is not
locked, malware can be written directly to SPI flash

!
!

!

!

Treats danger level: !

!

!
High

Low danger Moderaty!
Fig. 2. UEFI threats

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 23 --

� Correctly implement all cryptography (signature
verification, etc.).

UEFI gives a variety of mechanisms for providing
information security and platform integrity. It's up to
platform manufacturers to use them as well as protections
offered by hardware. Bugs in implementation and incorrect
usage of those mechanisms may ruin the entire defense.

We hope this article will help developers, system
administrators and security specialists to understand the
main security problems and key points of UEFI technology.

ACKNOWLEDGMENT
We would like to thank a leading security solutions

manufacturer Infotecs Corp. and it’s academic program for
the support of this work.

REFERENCES
[1] NIST 800-147 BIOS Protection Guidelines. Recommendations of

the National institution of Standards and Technology
[2] UEFI Forum, official site of UEFI developers consortium, Web:

http://www.uefi.org
[3] UEFI Specification (v2.3.1C June 2012)
[4] PI Specification (Platform Initialization) (v1.2.1 May 2012)

[5] UEFI Technology: say hello to the windows 8 bootkit, Web:
http://www.saferbytes.it/2012/09/18/uefi-technology-say-hello-to-
the-windows-8-bootkit/

[6] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski,
Helen J. Wang, Jacob R. Lorch. SubVirt: Implementing malware
with virtual machines. 2006, Web:
http://research.microsoft.com/pubs/67911/subvirt.pdf

[7] UEFI and Dreamboot by Sébastien Kaczmarek, QUARKSLAB,
Web:http://www.quarkslab.com/dl/13-04-hitb-uefi-dreamboot.pdf

[8] Implementing and Detecting a PCI Rootkit – John Heasman, 2007,
Web: http://www.blackhat.com/presentations/bh-dc-
07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf

[9] Loukas K. (snare), DE MYSTERIIS DOM JOBSIVS Mac EFI
Rootkits, Black Hat USA 2012, Web:
http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf

[10] Yuriy Bulygin, Andrew Furtak, Oleksandr Bazhaniuk, A Tale of
One Software Bypass of Windows 8 Secure Boot, Black Hat USA
2013

[11] Microsoft Corporation, Windows Hardware Certification
Requirements, updated: September 18, 2012, Web:
http://msdn.microsoft.com/library/windows/hardware/dn423132.asp
x

[12] R. Wojtczuk and A. Tereshkin. “Attacking Intel BIOS”, Black Hat
USA. Las Vegas, NV, 30 July 2009.

[13] Sherri Sparks and Shawn Embleton. “SMM Rootkits: A New Breed
of OS Independent Malware”, Black Hat USA, Las Vegas, NV,
USA, 2008.

[14] Rod Smith, “Managing EFI Boot Loaders for Linux:Dealing with
Secure Boot”, Web: http://www.rodsbooks.com/efi-
bootloaders/secureboot.html

___PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION

-- 24 --

