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CLASSIFICATION OF LIE SUBALGEBRAS UP TO AN
INNER AUTOMORPHISM

S. R. HEJAZI

Abstract. In this paper, a useful classification of all Lie sub-
algebras of a given Lie algebra up to an inner automorphism is
presented. This method can be regarded as an important con-
nection between differential geometry and algebra and has many
applications in different fields of mathematics. After main results,
we have applied this procedure for classifying the Lie subalgebras
of some examples of Lie algebras.

1. Introduction

Lie algebras are one of the most applicable algebraic structures in
mathematics, bacause of correspondency to Lie groups which plays a
vast role in differential geometry, differential equations, physisc and
etc. In this article we introduce a method based on the basic results
in algebra for classifying subalgebras of a Lie algebra. This method
could be applied to all finite-dimensional Lie algebras, by constructing
an inner automorphism of a given Lie algebra, then, by an algorith-
mic method all subalgebras will be classified. This subalgebras which
are called optimal system, are list of conjugacy inequivalent subalge-
bras with the property that any other subalgebras is conjugate to the
precisely one subalgebra in the list.
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2. Lie Algebras

The vector space G over the field R is called a Lie algebra if it is
equipted with a bilinear operation of commutator (u, v) 7→ [u, v], cor-
responding to the vectors u, v ∈ G, whose bracket [u, v] satisfies the
axioms:

1) bilinearity: for any u, v, w ∈ G and a, b ∈ R

[au+ bv, w] = a[u,w] + b[v, w], [u, av + bw] = a[u, v] + b[u,w],(2.1)

2) antisymmetry: for any u, v ∈ G

[u, v] = −[v, u], (2.2)

3) The Jocobi identity: for any u, v, w ∈ G

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0. (2.3)

If the space G is infinite-dimensional, but is a Banach space with the
norm |u| of the vector u ∈ G, then the Lie algebra G is called a Banach
algebra of Lie if one more axiom is satisfied:

4) continuity: The is a number δ > 0 such that for any u, v ∈ G

|[u, v]| ≤ δ|u||u|. (2.4)

Some examples of Lie algebras are the set of vectors of the three di-
mensional Euclidean space R3 where the operation of the commutator
is taken as vector multiplication [u, v] = u × v, and the set L(X) of
linear mapping A : X → X of some Banach space X into itself with
the operation of commutator [A,B] = A ◦B −B ◦ A.

The dimensionality of the Lie algebra G is the dimensionality of its
vector space G; if it has finite dimensionality r, then the Lie algebra
G is called finite dimensional; if it is infinite dimensional, then the Lie
algebra G is also called infinite dimensional.

2.1. Structural Constants. The finite-dimensional Lie algebra G is
usually given by indication of the vector basis {uα} in the space G.
In this case, because of the (2.1), the bracket operation in G is fully
defined by the table of commutators, that is, an r× r matrix in which
the commutator [uβ, uγ] is placed at the intersection of the β−th row
and γ−th column. With this, the equation for decomposition of the
commutator of the basis vectors with respect to the basis is

[uβ, uγ] =
r∑

α=1

Cα
βγuα, (β, γ = 1, ..., r). (2.5)
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The constants Cα
βγ contained in (2.5), are called the structural con-

stants of the Lie algebra G with respect to basis {uα}. As a result of
(2.1),(2.2),(2.3), the following properties hold:

1) (Cα
βγ) is a tensor of the third rank over the space G,

2) structural constants are antisymmetric relative to the lower in-
dices; Cα

βγ = −Cα
γβ,

3) the Jaccobi identity Cα
βσC

σ
γδ + Cα

γσC
σ
δβ + Cα

δσC
σ
βγ = 0.

2.2. Homomorphisms. Let [ , ] be the symbol of the commutator in
the Lie algebra G and [ , ]′ the symbol of the commutator in the Lie
algebra G ′. The linear map T : G → G ′ is called a homomorphism of
the Lie algebra G into the Lie algebra G ′ if for any u, v ∈ G we have

T ([u, v]) = [T (u), T (v)]. (2.6)

This homomorphism is called isomorphism if the map T : G →
T (G) ⊂ G ′ is invertible. One should distinguish the isomorphism
into, when T (G) is a subspace of G ′, and the isomorphism onto, when
T (G) = G ′. These two Lie algebras are isomorphic if there is an onto
isomorphism. If G = G ′, an onto isomorphism is called automorphism.
If A1 and A2 are automorphisms of the Lie algebra G, then their com-
position A1 ◦ A2 is also an automorphism because

(A1 ◦ A2)([u, v]) = A1([A2(u), A2(v)]) = [(A1 ◦ A2)(u), (A1 ◦ A2)(v)].

Thus the set of all autopmorphisms of the given Lie algebra is a
group, called the group of linear homomorphisms of the space G. The
group of all automorphisms of the Lie algebra G is called the holomorph
of the Lie algebra and will be denoted by Aut(L).

In the finite-dimensional case, isomorphic Lie algebras have the same
dimensionality. The criterion of isomorphism for finite-dimensional
Lie algebras is stated in terms of structural constants in the follow-
ing lemma, [6].

Lemma 2.1. If the structural constants of the Lie algebra G are equal
to the corresponding structural constants of the same dimensional Lie
algebra G ′, then these Lie algebras are isomorphic. Conversely, if these
two Lie algebras are isomorphic, then there are basis in them with cor-
responding equal structural constants.

2.3. Subalgebras. The vector space H ⊂ G is called subalgebra of the
Lie algebra G, if it is closed under the commutator bracket of G. In the
case of an infinite-dimensional Banach algebra of Lie one distinguishes
the closed subalgebra H, where it is a closed subspace of the banach
space G.
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The subalgebra I ⊂ G is called an ideal of the Lie algebra G if
[I,G] ⊂ G, i.e.; for any u ∈ G, v ∈ I we have [u, v] ∈ I.

In any Lie algebra G one distinguishes two subalgebras (they are also
ideals in G): the null subalgebra, consisting of one null element of the
space G; and the Lie algebra G itself. All remaning subalgebras of G
are called proper subalgebras and ideals.

Under the homomorphism of the Lie algebra T : G → G ′ its kernel is
an ideal in G. Since T (v) = 0 for v ∈kerT , it follows that for any u ∈ G
we have T ([u, v]) = [T (u), 0] = 0, which means that [u, v] ∈kerT .

The element z ∈ G is called central if [z, u] = 0 for any u ∈ G. The
union Z of all central elements is called the center of the Lie algebra
G. The center is an ideal in G. We can construct an ideal in G called
derived algebra of the Lie algebra G.

Define

G(1) := [G,G] = {[u, v] : u, v ∈ G}, (2.7)

which is called first derived algebra and clearly is an ideal of G. The
derived algebra of G(1), G(2) := [G(1),G(1)] is called the second derived
algebra of G. By induction one determines the (k+1)−th derived as a
derived of the k−th derived: G(k+1) := [G(k),G(k)]. In this way a series
of commutants of the Lie algebra G, appears:

· · · ⊂ G(n) ⊂ · · · ⊂ G(2) ⊂ G(1) ⊂ G. (2.8)

For a finite dimensional Lie algebra G, its commutants series terminates
either with a null ideal G(0) = {0} or with an G(n) such that G(n−1) ̸=
G(n) = G(n+1), [1].

A Lie algebra G is called solvable if its series of commutants (2.8)
terminates with a null ideal.

3. Associated Algebra

In this section we define a kind of automorphism which we use to
classify subalgebras of a given Lie algebra.

3.1. Algebra of Differentiation. The linear map d : G → G, satisfies
the condition

d([u, v]) = [d(u), v] + [u, d(v)], (3.1)

is called a differentiation of G.
It is easy verify that if d1 and d2 are differentiation of a Lie algebra,

then for any a, b ∈ R the linear map ad1 + bd2 is also a differentiation,
[2]. Thus the set of all differentiations of a given Lie algebra generates
a vector space, which is a subspace in L(G), denoted by dG. It is
easy to check that this vector space is a subalgebra with commutator
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[d1, d2] = d1 ◦ d2 − d2 ◦ d1, of the Lie algebra of all linear maps G → G.
This Lie algebra is called Lie algebra of differentiation of the Lie algebra
G.

For every x ∈ G, define a linear map adx : G → G, by

adx(u) := [u, x], (3.2)

using (2.3), it shows that adx is a differentiation of the Lie algebra G.
This differentiation is called an inner differentiation of the Lie algebra
G. If x, y ∈ G and a, b ∈ R the equation

(aad(x) + bad(y))(u) = [u, ax+ by] = ad(ax+ by)(u), (3.3)

holds, thus D is a vector space in dG. Further, if x ∈ G and d ∈ dG,
then for any u ∈ G

(d ◦ ad(x)− ad(x) ◦ d)(u) = d([u, x])− (d(u), x) = [u, d(x)](3.4)

= ad(d(x))(u).

Hence d ◦ ad(x)− ad(x) ◦ d = ad(d(x)) ∈ D. Thus we have:

Lemma 3.1. The set of all inner differentiation of the Lie algebra G
denoted by D(G) is an ideal in dG.

The definition of the map (3.2) shows that there is a map ad : G →
D(G), defined by x 7→ adx. The following lemma, [3], fixes the algebraic
properties of this map.

Lemma 3.2. The map ad : G → D(G) is a homomorphism. The kernel
of this homomorphism is the center Z ⊂ G.

This homomorphism is called natural homomorphism of the Lie al-
gebra G on its associated Lie algebra D(G).

Suppose G be a finite Lie lagebra and its inner vector space be con-
sidered as a Banach space. The map ad : G → D(G) gives, a family E
of vector fields e : G → G according to the following rule: every vector
field e ∈ E, define by the assignment of a vector u ∈ G, is denoted by
the symbol eu, which acts by

eu(x) = adu(x) = [x, u]. (3.5)

According to the bilinearity of the bracket [ , ], (2.1), for any a, b ∈ R
and u, v ∈ G we have eau+bv = aeu + bev, thus E is a vector space, i.e.;
a subspace of all vector field on G.

From definition (3.5), every vector field eu is a linear map such as
G → G. an straight forward calculation shows that

[eu, ev] = e[u,v], (3.6)
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thus the space E is a Lie algebra of vector fields. Also from (3.5) it
follows that the map Γ : G → E, defined by Γ(u) = eu, is a homomor-
phism of the Lie algebras.

3.2. Inner Automorphism. According to differential geometry, [5],
every vector field eu on G define a flow, which is a curve in G called
one-parameter group obtained from the system of ordinary differential
equation x′

t = eu(x
′), with the initial condition x′(0) = 0. Because of

definition (3.5) this becomes the problem

x′
t = [x′, u], x′(0) = x. (3.7)

Since equation (3.7) is a linear relative to the unknown x, the solution
of problem (3.7) must be the result of operation on the vector x ∈ G
by some linear invertible map G → G. This map will denoted by the
symbol At

u, so the solution of the problem (3.7) is x′ = At
u(x). It is

useful to note that this solution can be deduced by rewriting these
equations directly from the transformation At

u as

d

dt
Au = ad(u) ◦ Au, Au(0) = I, (3.8)

using (3.5). Here the coefficient adu is a constant map (because of
independency of t), and the exact solution is found to be

At
u = exp(t ad(u)). (3.9)

From this, the exact expression for the solution of problem (3.7) fol-
lows from the generation map of one-parameter group of eu, with the
condition that eu = adu ̸= 0,

x′ = At
u(x) = exp(t adu)(x). (3.10)

Equation (3.9) shows that the resulting transformations At
u of the space

G are defined and invertible without any limitations on the values of
the group parameter t and the determining vector u ∈ G. A useful
theorem, [6], shows that these transformations are automorphism.

Theorem 3.3. The transformations (3.9) of the space G are automor-
phisms of the Lie algebra G.

This automorphism found by the foregoing method is called inner
automorphism of the Lie algebra G. The group of transformations
of the space G, generated by the transformations At

u which are one-
parameter group, called the group of inner automorphisms of the Lie
algebra G, and will be denoted by Int(G).

To aid in the construction of an isomorphisms group, it should be
noted that the Lie algebra E is isomorphic to the quotient algebra G/Z.
Let {uα} be a basis in G and G1

γ be the one-parameter group generated
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by the vector field eu′
γ
. Since euγ′

= [x, uγ′ ] = 0 because uγ′ ∈ Z for γ′ =

1, ..., s, so the group G1
γ consist of only one identity transformation.

Thus, the group G1
γ′′ will be nontrivial only for γ′′ = s+1, ..., r. Assume

x =
∑

α x
αuα and introduce the structural constants Cα

βγ of the Lie

algebra G, then, [x, uγ′′ ]α =
∑

β′′ Cα
β′′γ′′xβ′′

. Consequently, for the group

G1
γ′′ , equation (3.7) in the basis {uα} will assume the form of linear

system of scalar equations with constants coefficients

x′α
t =

∑
β′′,γ′′

Cα
β′′,γ′′x′β′′

, , x′α(0) = xα, (α = 1, ..., r). (3.11)

From the solution of the system (3.11) automorphisms At
γ′′ ∈ G1

γ′′

are given, in the same basis, by the matrix (At
ασ), which acts by the

equation

x′α =
∑
σ

At
ασx

σ, (α = 1, ..., r). (3.12)

The set of inner automorphism A ∈ Int(G) is obtained by the follow-
ing rule: For every γ′′ = s + i (i = 1, ..., r − s), the parameter of the
group G1

s+i is denoted by ti and the composition of r − s factors

A(t1, t2, ..., tr−s) = At1
s+1 ◦ At2

s+2 ◦ · · · ◦ Atr−s
r , (3.13)

is generated.

4. Optimal Subalgebraic System

The problem of enumeration of all subalgebras of a given finite-
dimensional Lie algebra G is essential specially for the group analysis
of differential equations [3, 6]. For this the group Int(G) of the inner
automorphisms can be considered as known. Since, under the action of
an automorphism, every subalgebra transforms into a subalgebra of the
same dimensionality, so the present problem can be solved correctly,
up to transformations determined by the inner automorphisms.

The subalgebra H1 and H2 of the Lie algebra G are called similar if
there is an inner autopmorphism A ∈ Int(G) such that A(H2) = H1.
By the relation of similarity, which is obviously a set theoretical in-
dicator of equivalence, all subalgebras of the given Lie algebra G are
decomposed into classes of similar algebras. The set of the representa-
tives of similar algebra classes of given dimensionality s will be called
the optimal system (of order s) and denoted by the symbol Θs. Thus,
the solution of the stated problem for the finite-dimensional Lie algebra
G must be tables of optimal system for every s = 1, 2, ..., r − 1.

The search for subalgebras of the given dimensionality s > 1 is re-
duced to an algebraic problem. Let {uα} be a basis of the Lie algebra
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G and Cα
βγ be its structural constants in this basis.It is obvious that the

vectors xi =
∑

α x
α
i uα (i = 1, ..., s < r) generate a basis of subalgebra

H of dimensionality s if and only if the rank of the matrix (xα
i ) is equal

to s and the relations [xi, xj] =
∑

k C̃
k
ijxk, or

rank(xα
i ) = s, Cα

βγx
β
i x

γ
j = C̃k

ijx
α
k (i, j = 1, ..., s;α = 1, ..., r),(4.1)

are satisfied, where C̃k
ijxk are the structural constants of the subalge-

bra H. Consequently, the problem is reduced to the solution of the
algebraic equation (4.1) with unknown coefficients xα

i and C̃k
ij.

This difficulty algebraic problem has not yet been completely solved,
in the sence of the formation of a difinite algorithm according to which
the optimal system Θs can be uniquely constructed. The determination
of optimal systems can be done, relatively easily, only for small dimen-
sionality s ≤ 3. Even in those cases the solution is accompolished by a
semiprimitive method, which requires choices from a few possibilities
at certain stages of the work, and the simplicity of the results obtained
is not clear. Thus the theory for constructing optimal system of subal-
gebras needs to be developed further. There is a general result for the
given problem that gives an important addition to the Levi theorem
say, if R is the radical of a finite-dimensional Lie algebra G, then there
is a semisimple subalgebra H ⊂ G such that G = H ⊕ R, (here H is
called the Levi factor). For the sake of simplicity it is stated in a weak
form.

Theorem 4.1. Maltsev-Herish-Chandra [3]. If G = H⊕R, then
for any semisimple subalgebra H1 ⊂ G there exist an automorphism
A ∈ Int(G) such that A(H1) = H.

During the construction of an optimal system for a given Lie algebra
G a special role is played by the center Z. The point is that every vector
z ∈ Z is invariant relative to any automorphism A ∈ Int(G). Indeed,
as [z, u] = 0 for any u ∈ G, so the unique solution of the problem (4.1)
for the elements z′ = At

u(z), having the form z′t = [z′, u], z′(0) = z, is
z′ = z. Thus the central elements generate subalgebras (ideals), which
cannot be changed by any automorphisms. They can be included as a
direct term in any subalgebra of the Lie algebra G. This means that if
the optimal systems are known for the quotient algebra G/Z, then they
can be considered as known for the entire Lie algebra G. Cosequently,
it is sufficient to describe methods for constructing optimal system only
for Lie algebras with null centeres.

Let the basis {uα} be fixed in a Lie algebra G with a null center. All
inner automorphisms of this Lie algebra depends on r−parameters and
is given by equation (3.13), in which it is necessary to assume s = 0.



CLASSIFICATION OF LIE SUBALGEBRAS 125

The construction of one-dimensional subalgebras, Θ1, begins with
the selection of non-null vector x =

∑
α x

αuα and its image x′ =
A(x), obtained by the operation of the common automorphism A =
A(t1, ..., tr). If (Aαβ) is a matrix of the automorphism A in the basis
{uα}, then the components of the vectors x′ in the basis are given by
an equation of the form (3.12)

x′α =
∑
σ

Aασx
σ, (α = 1, ..., r). (4.2)

The next step is the selection of values of the parameters t1, ..., tr, on
which the automorphism A depends, to achieve the maximum possible
simplification of the set (x′1, ..., x′r) of components of the vector x′. This
permits the choice of the simplest representative of each class of similar
algebras to which the element x belongs. Usually, this means choosing
the maximum possible number of null values for these components.
Appearing here are the various alternative cases that give the classes
of one-parameter subalgebras and, from them, the optimal system Θ1.

For the construction of the two-dimensional subalgebras, optimal
system Θ2, it is possible to assume, that one of the basis vectors of the
two-dimensional subalgebra H ⊂ G is taken from the system Θ1. Let
this vector be x =

∑
α x

αuα. Correspondingly, a vector y =
∑

α y
αuα

is chosen, so that the system of equations (4.1) is satisfied. Here that
the system is

Cα
βγx

βyγ = λyα + µxα, (α = 1, ..., r), (4.3)

and it contains r + 2 unknown coefficients yα, λ and µ. The set of
solution for system (4.3) gives a two-dimensional algebra which con-
tains the vector x. As the vectors x and y can be scaled by any non-
zero multipliers, instead of the two-parameter set of system (4.3), with
parameters λ and µ, it is enough to consider such systems in which
(λ, µ) = (0, 0), (1, 0), (0, 1) and (1, 1), Obviously the case (1, 1) is re-
ducible to the case (1, 0) by the change y 7→ y + x. In the case (0, 1)
there are no solutions. If µ = 0, then (4.3) has the form of an eigen-
value problem for the linear map adx, with the matrix (Cα

βγx
β), and

can be written in the form adx(y) = λy. Its solution is reduced to
finding the roots of the characteristic polynomial det(λI− adx), which
in the expand form is

det(λI− adx) = λr − τ1(x)λ
r−1 + τ2(x)λ

r−2 − · · · (4.4)

+ (−1)ℓτr−1(x)λ
ℓ,

where τr−1(x) ̸= 0 and 0 ≤ ℓ. As adx(x) = 0 and x = 0, it follows that
ℓ > 0.
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Corresponding to every real non-zero root of polynomial (4.4) is one
or more linearly independent solution of equation (4.3). (This is when
µ = 0. In the case ℓ > 1 there are also one or more solutions corre-
sponding to the root λ = 0. If ℓ = 1, and there are no non-zero real
roots, then the element x does not belong to any two-dimensional alge-
bra of this kind with µ = 0 in (4.3).) Consequently, it follows that such
vectors x ∈ H can exist that do not belong to any two-dimensional Lie
algebra H.

The polynomial (4.4), considered for the variable x ∈ G, is called
Killing’s polynomial (or the characteristic polynomial) of the Lie al-
gebra G. The maximal value of the number ℓ in the expression of
killling’s polynomial (4.4), obtained when the vector x ranges over the
whole sapace G, is called the rank of the Lie algebra G. The elemernt
x ∈ G for which the value ℓ in (4.4) is equal to the rank is called a
regular element of G.

After the construction of all two-dimensional subalgebras, for every
x ∈ Θ1, they need to be simplified by the action of automorphisms in
a manner analogous to the way it was done for the one-dimensional
algebra. As the result, the optimal system Θ2 is obtained.

The system Θ3 can be developed by the method of expansion of two-
dimensional subalgebras. For this take any two-dimensional sualgebra
from Θ2, with the basis {x1, x2}, and find a vector y =

∑
α y

αuα such
that the triple {x1, x2, y} generates a basis of three-dimensional algebra.
For that it is necessary and sufficient that the vector y satisfies the
equations, following from the system (4.1),

Cα
βγx

β
1y

γ = λ1y
α + µ1x

α
1 + ν1x

α
2 , (4.5)

Cα
βγx

β
2y

γ = λ2y
α + µ2x

α
1 + ν2x

α
2 , (α = 1, ..., r),

with r + 6 unknown coefficients yα, λi, µi, νi. Every solution of system
(4.5) is linearly independent of {x1, x2} and gives a three-dimensional
subalgebra of G.

A question says, are all three-dimensional subalgebras obtained by
this porocess Obviously, this question is equivalent to: Do all three-
dimensional subalgebras contain a two-dimensional sublagebra? More
generally, the problem can be reduced to the question, are there three-
dimensional real Lie algebras that do not contain two-dimensional sub-
algebras. The answer to the last question is affirmative, and the simple
Lie algebra SO(3) of the simple Lie group SO(3), the rotation group
in R3 is the example. Because if {u1, u2, u3} be a basis for SO(3) then
, we have

[u1, u2] = u3, [u2, u3] = u1, [u3, u1] = u2. (4.6)
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Lemma 4.2. Any three-dimensional real Lie algebra not containing
two-dimensional subalgebras is isomorphic to the Lie algebra of the ro-
tations (4.6), [7].

In the next section we will classify subalgebras of given some Lie
algebras up to inner automorphism A.

5. Examples

In the first example we give a comprehensive illustration to classify
subalgebras.

5.1. Lie algebra of Special Euclidean Transformations in R3.
Consider the Lie group SE(3) = SO(3)×R3 of Special Euclidean trans-
formations in R3 containing three-dimensional rotations and transla-
tions. Its Lie algebra is a six-dimensional vector space spanned by
{u1, ..., u6} with the commuator table

[u1, u5] = −u3, [u1, u6] = u2, [u2, u4] = u3, (5.1)

[u2, u6] = −u1, [u3, u4] = −u2, [u3, u5] = u1,

[u4, u5] = −u6, [u4, u6] = u5, [u5, u6] = −u4.

The matrices of automorphisms Ati , i = 1, ..., 6 are:

At1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 t1 0 1 0
0 −t1 0 0 0 1

 , (5.2)

At2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −t2 1 0 0
0 0 0 0 1 0
t2 0 0 0 0 1

 ,

At3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 t3 0 1 0 0

−t3 0 0 0 1 0
0 0 0 0 0 1

 ,
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At4 =


1 0 0 0 0 0
0 cos t4 sin t4 0 0 0
0 sin t4 cos t4 0 0 0
0 0 0 1 0 0
0 0 0 0 cos t4 sin t4
0 0 0 0 − sin t4 cos t4

 ,

At5 =


cos t5 0 − sin t5 0 0 0
0 1 0 0 0 0

sin t5 0 cos t5 0 0 0
0 0 0 cos t5 0 − sin t5
0 0 0 0 1 0
0 0 0 sin t5 0 cos t5

 ,

At6 =


cos t6 sin t6 0 0 0 0
− sin t6 cos t6 0 0 0 0

0 0 1 0 0 0
0 0 0 cos t6 sin t6 0
0 0 0 − sin t6 cos t6 0
0 0 0 0 0 1

 .

Let us apply the action of these matrices to the basis {u1, ..., u6} of
SE(3). Suppose x =

∑6
α=1 x

αuα is an arbitrary element in SE(3) then,

A(t6, ..., t1)(x) 7→ (5.3)

(cos t5 cos t6x
1 + cos t5 sin t6x

2 − sin t5x
3)u1 + · · ·

Now,we can simply x as follows:
If x1, x2 and x3 = 0,then we can make the coefficients of u1, ..., u5

vanish, by t4 = − arctan(x5/x6) and t5 = arctan(x4/x6). Scaling x if
necessary, we can assume that x6 = 1. And u is reduced to the Case
of A1

1.
If x2 and x3 = 0 but x1 ̸= 0,then we can make the coefficients of

u2, u3, u5 and u6 vanish, by t2 = −x6/x1 and t3 = x5/x1. Scaling u if
necessary, we can assume that x1 = 1. And u is reduced to the Case
of A2

1.
If x1 and x3 = 0 but x2 ̸= 0,then we can make the coefficients of u1,

u2, u3, and u6 vanish, by t1 = x6/x2 and t3 = −x4/x2. Scaling u if
necessary, we can assume that x2 = 1. And u is reduced to the Case
of A3

1.
If x1 and x2 = 0 but x3 ̸= 0,then we can make the coefficients of

u1, u2, u4 and u5 vanish, by t1 = −x5/x3 and t2 = x4/x3. Scaling u if
necessary, we can assume that x3 = 1. And u is reduced to the Case
of A4

1.
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If x1 and x2 ̸= 0,then we can make the coefficients of u3, u4 and u5

vanish, by t1 = x6/x2, t3 = x5/x1 and t4 = − arctan(x3/x2). Scaling u
if necessary, we can assume that x1 = 1. And u is reduced to the Case
of A5

1.
If x2 = 0 but x1 and x3 ̸= 0,then we can make the coefficients of u2, u5

and u6 vanish, by t1 = −x5/x3, t2 = −x6/x1 and t4 = − arctan(x3/x2).
Scaling u if necessary, we can assume that x1 = 1. And u is reduced
to the Case of A6

1.
If x1 = 0 but x2 and x3 ̸= 0,then we can make the coefficients of u3,

u4 and u5 vanish, by t1 = x6/x2, and t2 = x4/x3. Scaling u if necessary,
we can assume that t2 = 1. And u is reduced to the Case of A7

1. See
[4] for another comprehensive example.

Thus the one-dimensional optimal system Θ1 of SE(3) is given by

A1
1 : ⟨u6⟩, A2

1 : ⟨u1 + bu4⟩,
A3

1 : ⟨u2 + bu5⟩, A4
1 : ⟨u3 + bu6⟩,

A5
1 : ⟨u1 + au2 + bu6⟩, A6

1 : ⟨u1 + au3 + bu4⟩,
A7

1 : ⟨u2 + au3 + bu5⟩.

(5.4)

For finding Θ2, let us assume that, G = ⟨x1, x2⟩ is a two-dimensional
Lie subalgebra of SE(3).

Let x1 = u6 be as the Case of A1
1, x2 =

∑6
i=1 biui, and [x1, x2] =

λx1 + µx2. Then, we have x2 = b3u3 + b6u6 and λ = µ = 0. By a
suitable change of base of G,we can assume that x2 = u3. Now G is
reduced to the Case of A2

2. We can not be used to further simplify this
subalgebra,by Ati , i = 1, ..., 6 defined as (5.2).

Let x1 = u1 + a4u4 be as the Case of A2
1, x2 =

∑6
i=1 biui, and

[x1, x2] = λx1+µx2. Then,we have x2 = b3u3+ b1u and λ = µ = 0. By
a suitable change of base of G, we can assume that x2 = u3. Now G is
reduced to the Case of A6

2. We can not be used to further simplify this
subalgebra,by Ati , i = 1, ..., 6.

Let x1 = u2 + a5u5 be as the Case of A3
1, x2 =

∑6
i=1 biui, and

[x1, x2] = λx1 + µx2. Then,we have x2 = b2u2 + b5u5 and λ = µ = 0.
By a suitable change of base of G, we can assume that x1 = u2 and
x2 = u5. Now, G is reduced to the Case of A1

2. We can not be used to
further simplify this subalgebra,by Ati , i = 1, ..., 6.

Let x1 = u3 + a6u6 be as the Case of A4
1, x2 =

∑6
i=1 biui, and

[x1, x2] = λx1 + µx2. Then,we have x2 = b3u3 + b6u6 and λ = µ = 0.
By a suitable change of base of G, we can assume that x1 = u6 and
x2 = u3. Now, G is reduced to the Case of A2

2.
Let x1 = u1 + a2u2 + a4u4 be as the Case of A5

1, x2 =
∑6

i=1 biui,
and [x1, x2] = λx1 + µx2. Then,we have x2 = b1u1 + (b2/a2)x1 and
λ = µ = 0. By a suitable change of base of G, we can assume that
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x1 = u1 and x2 = u2 + au4. Now, G is reduced to the Case of A3
2. We

can not be used to further simplify this subalgebra,by Ati , i = 1, ..., 6.
Let x1 = u2 + a3u3 + a4u4 be as the Case of A6

1, x2 =
∑6

i=1 biui,
and [x1, x2] = λx1 + µx2. Then,we have x2 = b1u1 + (b3/a3)x1 and
λ = µ = 0. By a suitable change of base of G,we can assume that
x1 = u1 and x2 = u3 + au4. Now, G is reduced to the Case of A4

2. We
can not be used to further simplify this subalgebra,by Ati , i = 1, ..., 6.
Let x1 = u2 + a3u3 + a5u5 be as the Case of A7

1, x2 =
∑6

i=1 biui,
and [x1, x2] = λx1 + µx2. Then,we have x2 = b2u2 + (b3/a3)x1 and
λ = µ = 0. By a suitable change of base of G,we can assume that
x1 = u2 and x2 = u3 + au5. Now, G is reduced to the Case of A5

2. We
can not be used to further simplify this subalgebra,by Ati , i = 1, ..., 6.
Thus, a two-dimensional optimal system of SE(3) is given by

A1
2 : ⟨u2, u5⟩, A2

2 : ⟨u3, u6⟩, A3
2 : ⟨u1, u2 + au4⟩,

A4
2 : ⟨u1, u3 + au4, ⟩ A5

2 : ⟨u2, u3 + au5, ⟩ A6
2 : ⟨u3, u1 + au4⟩.

(5.5)

For finding Θ3, let us assume that, G = ⟨x1, x2, x3⟩ is a 3-dimensional
Lie subalgebra of SE(3). Let x1 = u2 and x2 = u5 are as the Case
of A1

2, x3 =
∑6

i=1 biui, [x1, x3] = λ1x1 + µ1x2 + ν1x3 and [x2, x3] =
λ2x1 + µ2x2 + ν2x3. Then, we have x3 = b2x1 + b5x2. By a suitable
change of base of G,we can assume that x3 = 0, and G is not a three-
dimensional subalgebra. Thus, in this case we have not any three-
dimensional subalgebra.

The Cases Ai
2, i = 2, 3, 4, 5 are similar. Thus, in these cases we have

not any three-dimensional subalgebra.
Let x1 = u3 and x2 = u1+au4 are as the Case of A

6
2, x3 =

∑6
i=1 biui,

[x1, x3] = λ1x1+µ1x2+ν1x3 and [x2, x3] = λ2x1+µ2x2+ν2x3. Then,we
have x3 = (b1/ν1).

(
− ν1x1 + ν2x2 − au2

)
. By a suitable change of base

of G, we can assume that x1 = u1 + au4, x2 = u2 and x3 = u3. Now,
G is reduced to the Case of A1

3 and A2
3. We can not be used to further

simplify this subalgebra, by Ati , i = 1, ..., 6 defined as (5.2). Thus, a
three-dimensional optimal system of SE(3) is given by

A1
3 : ⟨u1 + au4, u2, u3⟩, A2

3 : ⟨u4, u5, u6⟩. (5.6)

For finding Θ4, let us assume that, G = ⟨u1 + au4, u2, u3, x1⟩ be a
Lie subalgebra of SE(3), where x =

∑6
i=1 bi xi. Then,we have x1 =∑4

i=1 biui. By a suitable change of base of G, we can assume that
x1 = u4. Now, G is reduced to the Case of A4. We can not be used
to further simplify this subalgebra, by Ati , i = 1, ..., 6 defined as (5.2).
Thus, a four-dimensional optimal system of SE(3) is given by

A4 : ⟨u1, u2, u3, u4⟩. (5.7)
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SE(3) has not any five-dimensional Lie subalgebra. Because if
G = ⟨u1, u2, u3, u4, x1⟩ be a Lie subalgebra of SE(3), where x1 =∑6

i=1 biui. Then, we have x1 =
∑4

i=1 biui, and G = ⟨u1, u2, u3, u4⟩
is not a five-dimensional subalgebra.

5.2. Subalgebra Classification of All Two-dimensional Lie Al-
gebras. As mentioned in [5] there are two inequivalent two-dimensional
Lie algebras.

i) G2,1 : [u1, u2] = 0; this algebra is isomorphic to R2 and it is an
Abelian Lie algebra.

ii) G2,2 : [u1, u2] = u2; this algebra is isomorphic to the Lie algebra
of Affine transformations of order one and it is a non-Abelian
Lie algebra.

According to this, Θi, i = 1, 2 are easily determined and do not need
any illustraion.

5.3. Subalgebra Classification of All Three-dimensional Solv-
able Lie Algebras. The classification of set of three-dimensional solv-
able Lie algebras was done by Bassarab and et. al in [7]. In this section
we classify all subalgebras by using described method. But the classifi-
cation is just given in some tables without using the expanded method
such as the last example.

1) G3,1 : [u1, u2] = u1, [u1, u3] = u2, [u2, u3] = u3,

Θ1 : ⟨u1⟩, ⟨u2⟩, ⟨u3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.

2) G3,2 : [u1, u2] = u2,

Θ1 : ⟨u1⟩, ⟨u2⟩, ⟨u3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.

3) G3,3 : [u2, u3] = u1,

Θ1 : ⟨u1⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, au2 + bu3⟩.

4) G3,4 : [u1, u3] = u1, [u2, u3] = u1 + u2,

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.

5) G3,5 : [u1, u3] = u1, [u2, u3] = u2,

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.
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6) G3,6 : [u1, u3] = u1, [u2, u3] = −u2,

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.

7) G3,7 : [u1, u3] = u1, [u2, u3] = qu2 (0 < |q| < 1),

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, au2 + bu3⟩, ⟨u2, u3⟩.

8) G3,8 : [u1, u3] = −u2, [u2, u3] = u1,

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, u2⟩, ⟨u2, u3⟩.

9) G3,9 : [u1, u3] = qu1 − u2, [u2, u3] = u1 + qu2,

Θ1 : ⟨u3⟩, ⟨au2 + bu3⟩,
Θ2 : ⟨u1, u2⟩.

5.4. Subalgebra Classification of Some Four-dimensional Solv-
able Lie Algebras. Among the four-dimensional Lie algebras there
are ten decomposible and ten non-decomposible solvable Lie algebra,
[7]. In this section the classification subalgebras of some of them is
given.

1) G4,1 : [u2, u4] = u1, [u3, u4] = u2,

Θ1 : ⟨au1 + bu2⟩, ⟨au1 + bu3⟩, ⟨u4⟩,
Θ2 : ⟨u1, au2 + bu3 + cu4⟩, ⟨u2, u3⟩,
Θ3 : ⟨u1, u2, au3 + bu4⟩.

2) G4,2 : [u1, u4] = qu1, [u3, u4] = u2 + u3 (q ̸= 0),

Θ1 : ⟨au1 + bu2 + cu3⟩, ⟨u2⟩, ⟨u4⟩,
Θ2 : ⟨au1 + bu2, cu3 + du4⟩,
Θ3 : ⟨u1, u2, u3⟩, ⟨u2, u3, u4⟩.

3) G4,3 : [u1, u4] = u1, [u3, u4] = u2,

Θ1 : ⟨au1 + bu2 + cu3⟩, ⟨u2⟩, ⟨u4⟩,
Θ2 : ⟨u1, au2 + bu3 + cu4⟩, ⟨u2, au3 + bu4⟩,
Θ3 : ⟨u1, u2, au3 + bu4⟩.
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6. Conclusion

In this paper we give a method for classifying Lie subalgebras of
a given Lie algebra. By increasing the dimension of the Lie algebra,
claculations increases. In this situation we can use some calculation
softwares such as Maple and Mathematica through an applicable
programming with some packages.
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