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•	 Inference	 about	 the	 splat	 particle	
splashing	data	which	sprayed	with	
a	normal	angle.

•	 Perform	 the	 number	 of	 model	
selection	 tests	 to	 determine	 the	
appropriate	probability	model	under	
complete	 and	 progressive	 censored	
sample.

•	 Study	 of	 different	 methods	 for	
predicting	the	missing	splat	particle	
splashing	data.
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Splashing	 of	 splat	 particles	 is	 one	 of	 the	 most	 important	 phenomena	 in	 industrial	
processes	such	as	 thermal	spray	coating.	The	data	 relative	 to	 the	degree	of	splashing	
of	 splats	 sprayed	 with	 a	 normal	 angle	 are	 commonly	 characterized	 by	 the	Weibull	
distribution	 function.	 In	 this	present	 study,	 an	effort	has	been	made	 to	 show	 that	 the	
Burr	distribution	is	better	 than	the	Weibull	distribution	for	presenting	the	distribution	
of	the	degree	of	splashing.	For	this	purpose,	the	Burr	Type	XII	distribution	and	Weibull	
distribution	 are	 compared	 using	 different	 criteria.	 Furthermore,	 because	 of	 the	 great	
importance	of	statistical	prediction	of	censored	data	 in	 reducing	costs	and	 improving	
quality	of	 the	coating	process,	we	consider	different	predictors	of	 this	data	based	on	
a	progressively	 censored	 sample.	For	 computing	 the	prediction	values	we	obtain	 the	
maximum	 likelihood	 estimates	 using	 the	Expectation-Maximization	 (EM)	 algorithm.	
An	important	implication	of	the	present	study	is	that	the	Burr	Type	XII	distribution	more	
appropriately	described	the	degree	of	splashing	data.	Therefore,	the	Burr	Type	XII	can	
be	used	as	an	alternative	distribution	that	adequately	describes	the	splashing	data	and	
thereby	predicts	the	censored	data.
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1. Introduction

Thermal	sprayed	coatings	are	widely	used	to	protect	
components	 exposed	 to	 corrosion,	 wear	 or	 heat.	 The	
mechanical	properties	of	coatings	are	known	to	depend	
strongly	 on	 the	 shape	 of	 splat	 particles	 formed	 by	
individual	 particles	 as	 they	 impact	 and	 freeze.	 As	 a	
good	coated	surface	is	extremely	important	in	industry,	
one	of	the	most	important	phenomena,	due	to	its	impact	
on	 the	 deterioration	 of	 the	 coated	 surface,	 is	 particle	
splashing.	 Splashing	 occurs	 when	 a	 single	 particle	
breaks	up	on	impact	producing	secondary,	or	satellite,	
particles.	Figure	1	illustrates	splashing	via	a	sequence	of	
photographs	of	the	impact	of	molten	tin	particles	onto	a	
hot	surface	[1].	Splashing	degrade	coating	quality	since	
they	leave	voids	in	the	deposit,	 increasing	its	porosity	
and	 reducing	 its	 strength.	 The	 physical	 mechanisms	
of	 splashing	 are	 still	 not	 completely	 understood	 and	
splash	study	 is	an	extremely	 interesting	and	attractive	
phenomenon.	Moreover,	prediction	of	particle	splashing	
can	potentially	 reduce	 the	 cost	of	 the	development	of	
new	coating	considerably.	

Fig. 1.	Splashing	of	molten	tin	droplet	on	a	stainless	steel	surface	[1].

The	first	study	of	particle	fingering	and	splashing	 is	
the	 remarkable	 work	 of	Worthington	 [2,3]	 published	
more	than	a	century	ago.	He	drew	interesting	pictures	
from	 direct	 visual	 observations	 of	 the	 impact	 of	 a	
mercury	drop	on	a	glass	plate.	More	than	a	half	century	
after	Worthington,	Engel	[4]	studied	the	impact	of	water	
droplets	onto	various	surfaces,	with	application	 to	 the	
erosion	of	aircraft	components	due	to	rain	drop	impact.	
A	small	solid	surface	roughness	has	been	found	to	have	
an	important	influence	on	the	limiting	conditions	of	the	
onset	of	splashing	[5].	Montavon	et	al. [6]	studied	the	
effects	of	spray	angle	on	the	morphology	of	thermally	
sprayed	 particles	 impinging	 on	 polished	 substrates.	
They	 evaluated	 the	 degree	of	 splashing	of	 splats	 as	 a	
function	 of	 their	 equivalent	 diameter	 for	 90o	 and	 30o	

spray	angles.	Thoroddsen	and	Sakakibara	[7]	considered	
the	 evolution	 of	 the	 fingering	 pattern	 at	 the	 edge	
of	 drop	 during	 the	 impact	 of	 a	water	 drop	 on	 a	 glass	
plate.	They	observed	that	systematic	changes	in	frontal	
shapes	 take	 place	 during	 the	 expansion.	 Hardalupas	
et	al.	[8]	examined	the	impact	of	a	stream	of	particles	
onto	stainless	steel,	to	examine	the	influence	of	surface	
curvature.	 Aziz	 and	 Chandra	 [1]	 studied	 the	 impact	
and	solidification	of	molten	tin	particles	on	a	stainless	
steel	 surface.	 They	 photographed	 particle	 impact	 and	
measured	splat	diameter	and	liquid-solid	contact	angle	
from	 these	 photographs	 and	 used	 a	 simple	 energy	
conservation	model	to	predict	the	maximum	spread	of	
particles	during	impact.	
Asadi	et	al.	[9]	extended	the	numerical	and	analytical	

model	of	the	inclined	impact	of	a	plasma	particle	on	a	
solid	 surface	 in	 a	 thermal	 spray	 coating	 process.	The	
effects	of	particle	velocity,	 impact	angle,	and	ambient	
gas	pressure	(or	density)	on	the	threshold	of	splashing	
and	 the	 motion	 of	 the	 ambient	 gas	 surrounding	 the	
particle	were	 examined	 by	Liu	 et	 al.	 [10].	Asadi	 [11]	
applied	 a	modified	 computational	 fluid	 dynamics	 and	
molecular	kinetic	 theory	(CFD-MK)	method	to	model	
the	spread	and	splash	of	nanoparticle	 impact	on	a	flat	
surface.	Li	 et	 al.	 [12]	 estimated	 impact	 energy	 stored	
in	 the	 splash	 structures	 via	 a	 theoretical	 model	 and	
several	 morphological	 parameters.	 They	 found	 that	
the	 particle	 size	 and	 the	 impact	 velocity	 displayed	
similar	proportional	trends	with	respect	to	the	splashing	
height,	 but	 did	 not	 accompany	 the	 secondary	 particle	
separation;	 also	 the	 increase	 of	 pool	 temperature	
dramatically	 intensified	 the	 splashing	 effect,	 with	 the	
fusiform	 secondary	 particle	 detached	 from	 a	 central	
jet.	Liang	et	al.	[13]	examined	spreading	and	splashing	
processes	during	a	 single	 liquid	particle	 impact	on	an	
inclined	wetted	 surface	 by	 using	 a	 high-speed	 digital	
camera.	 They	 observed	 that	 both	 surface	 tension	 and	
viscosity	can	greatly	affect	the	spreading	and	splashing	
behaviors.	 Liang	 et	 al.	 [14]	 studied	 rebound	 and	
spreading	behaviors	during	a	single	particle	impact	on	
wetted	cylindrical	 surfaces	and	discussed	deformation	
factor	 with	 the	 critical	Weber	 numbers.	While	 much	
research	 has	 been	 done	 on	 the	 study	 of	 particles	
splashing,	less	attention	has	been	paid	to	the	distribution	
modeling	and	statistical	prediction	of	this	phenomenon.
In	the	present	work,	we	consider	the	model	selection	

and	prediction	of	splat	particle	splashing	data	obtained	
by	Montavon	et	al.	[6]	.	We	observed	that	the	Weibull	

 

42



H. Panahi et al. / Journal of Particle Science and Technology 3 (2017) 41-50

distribution	has	been	used	as	 the	 statistical	distribution	
for	modeling	 the	 engineering	data.	We	want	 to	 answer	
this	 question,	 “Is	 there	 a	 more	 appropriate	 statistical	
distribution?”.	Thus,	we	use	different	methods,	such	as	
Kolmogorov-Smirnov	(K-S)	distance,	Akaike	information	
criterion	 [15],	 Baysian	 information	 criterion	 [16],	 and	
the	 total	 time	 on	 test	 (TTT)	 transform	 and	 maximum	
likelihood	criterion,	 to	 show	 the	appropriateness	of	 the	
Burr	 distribution	 in	 the	 particle	 splashing	 data.	 Since	
the	 experimenter	 may	 not	 always	 obtain	 complete	
information	 on	 the	 data	 in	many	 experimental	 studies,	
data	obtained	from	such	experiments	are	called	censored	
data.	Type	I	and	Type	II	censoring	schemes	are	the	two	
most	common	and	popular	censoring	schemes,	but	these	
censoring	schemes	do	not	have	the	flexibility	of	allowing	
the	removal	of	units	at	points	other	than	the	terminal	point	
of	the	experiment.	For	this	reason,	in	the	last	few	years	the	
progressive	censoring	scheme	has	received	considerable	
attention	 in	 applied	 science.	 This	 scheme	 allows	 one	
to	 remove	 experimental	 units	 at	 points	 other	 than	 the	
terminal	point	 of	 the	 experiment.	Several	 authors	have	
considered	different	aspects	of	this	censoring	scheme;	see	
for	example	[17-20].	Prediction	of	censored	observation	
based	on	the	current	available	data	is	one	of	the	important	
problems	 in	engineering	experiments.	We	know	that	 in	
experiments	 some	 of	 the	 splashing	 data	 are	 missing.	
Thus,	 the	 second	 purpose	 of	 this	 paper	 is	 to	 predict	
future	 splashing	 data	 under	 the	 progressive	 censoring	
scheme.	 We	 obtain	 the	 conditional	 median	 predictor	
and	 prediction	 interval	 based	 on	 the	 pivotal	 method.	
For	 obtaining	 the	 prediction	method,	we	 substitute	 the	
unknown	 parameters	 with	 their	 maximum	 likelihood	
estimates	under	 the	progressive	censoring	scheme.	It	 is	
observed	 the	 maximum	 likelihood	 estimators	 (MLE’s)	
cannot	be	obtained	in	closed	form.	So,	we	propose	to	use	
the	EM	algorithm	to	compute	 the	maximum	likelihood	
estimators.	 The	 EM	 algorithm	 is	 a	 very	 powerful	 and	
useful	tool	for	analyzing	the	censored	data.	

2. Two rival models

In	this	section	we	briefly	describe	Burr	Type	XII	and	
Weibull	distributions	as	the	rival	models.

2.1. Burr Type XII distribution

Burr	 [21]	 introduced	 twelve	 cumulative	 distribution	
functions	with	the	primary	purpose	of	fitting	distributions	

distributions	to	real	data.	One	of	the	most	important	of	
them	is	the	Burr	Type	XII	distribution.	The	cumulative	
distribution	function	and	probability	density	function	of	
the	Burr	Type	XII	are	given	by,	respectively

	 	 	 	 	 																				(1)	

Here	 a	 and	 b	 are	 the	 two	 shape	 parameters.	 The	
shape	of	the	hazard	rate	function	of	the	Burr	Type	XII	
distribution	 depends	 only	 on	 parameter	 b.	 For	 b>0,	
the	hazard	 rate	 is	 eventually	decreasing.	For	b>0,	 the	
hazard	 rate	 is	 a	 unimodal	 function	 whereas	 for	 b≤0,	
it	 is	decreasing.	Thus	the	shape	b parameter		plays	an	
important	role	in	the	distribution.	Its	capacity	to	assume	
various	 shapes	 often	 permits	 a	 good	fit	when	 used	 to	
describe	 biological,	 clinical,	 engineering	 or	 other	
experimental	data.	It	also	approximates	the	distributional	
form	 of	 normal,	 lognormal,	 gamma,	 logistic,	 and	
several	 Pearson-Type	 distributions.	 For	 instance,	 the	
normal	density	function	may	be	approximated	as	a	Burr	
Type	XII	distribution	with	b=4.8544		and	a=6.2266	and	
the	gamma	distribution	with	shape	parameter	16	can	be	
approximated	as	a	Burr	Type	XII	distribution	with	b=3	
and	a=6,	 and	 the	 log-logistic	 distribution	 is	 a	 special	
case	of	the	Burr	Type	XII	distribution.	Extensive	work	
has	been	done	on	the	Burr	Type	XII	distribution,	see	for	
example	[22-25].

2.2. Weibull distribution

The	Weibull	distribution	 is	one	of	 the	most	popular	
distributions	 in	 analyzing	 lifetime	 data.	 The	 two	
parameter	 Weibull	 distribution	 (W)	 with	 the	 shape	
parameter	 a>0	 and	 scale	 parameter	 b>0	 has	 the	
probability	density	function	as;

	 	 	 	 	 	 							(2)

where,	 a	 and	 b	 are	 the	 shape	 and	 scale	 parameters,	
respectively.	 If	 x~Weibull(a,b),	 then	 the	 cumulative	
distribution	 function,	 reliability	 function	 and	 hazard	
function	 are

1
( , ) exp( ); 				 0, 0, 0( )

0																							otherwise.
x x xf x

b a
a b ab b a b− − ≥ > >

= 


( , ) 1 exp( ); 				 0, 0, 0( )
0																							otherwise.

x xF x
a

a b b a b − − ≥ > >
= 



( ) exp( ), 		 0, 0, 0R x x xab a b= − ≥ > >

( , ) 1 (1 ) ; 				 0, 0, 0( )
0																								otherwise
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b a

a b a b− − + ≥ > >= 


1 ( 1)
( , ) (1 ) ; 			 0, 0, 0( )

0																																otherwise
x x xf x

b b a
a b ab a b− − + + ≥ > >= 
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of	 the	 KL	 divergence	 is	 Eh(log	 f q(X))	 which	 has	 an	
estimator	as

ˆ

1

1 log ( )n

n

i
i

f x
n

θ

=
∑ 	 	 	 	 						(4)

where,																						is	the	maximum	likelihood	estimator	
(MLE)	of	θ	=	(α,β).	It	can	be	considered	as	an	estimator	
of	the	divergence	between	the	true	density	and	the	model.	
Akaike	introduced	his	criterion	to	model	selection	as

																																				 	 																																											(5)

where,	 p	 is	 the	 number	 of	 parameters	 in	 the	 model.	
Now	 choose	 the	 family	 F	 if	 AIC f  <	 AIC g 	 otherwise	
choose	 family	 G.	 For	 computing	 the	 maximum	
likelihood	 estimators	 of	 unknown	 parameters	 of	 the	
mentioned	distributions	(Burr	Distribution	and	Weibull	
distribution),	one	can	use	the	inbuilt	packages	like	nlm()	
and	optim()	of	the	R-software	[27].

3.3. Bayesian information criterion

The	Bayesian	 information	 criterion	 (BIC)	 is	 one	 of	
the	important	criteria	for	determining	the	best	model	for	
a	given	data.	One	major	difference	of	 this	criterion	 is	
the	different	penalty	term	that	it	uses.	Thus	BIC	[16]	is	
defined	as

																																																							 																															(6)

where,	 p	 and	 n	 are	 the	 number	 of	 parameters	 and	
sample	size,	respectively.	The	BIC	is	based	on	Bayesian	
probability	and	can	be	applied	to	models	estimated	by	
the	maximum	likelihood	method.	We	choose	family	F	if		
BIC f  <	BIC g ;	otherwise	we	choose	family	G.

3.4. The Total Time On Test (TTT) transform

The	total	time	on	test	(TTT)	transform	is	a	convenient	
tool	 for	 examining	 the	 nature	 of	 the	 hazard	 rate	 and	
accordingly	 checking	 for	 the	 adequacy	 of	 a	model	 to	
represent	 the	 failure	 behavior	 of	 the	 data.	 The	 TTT	
transform	of	a	probability	distribution	with	absolutely	
continuous	distribution	function	F(.)	is	given	by

	

where,	 [ ]
1( )1

0
( ) 1 ( ) ; 				0 1

F x

FH x F u du u
−

− = − ≤ ≤∫ .	 The	

and	

	
respectively.	A	detailed	discussion	of	the	W	distribution	
has	been	provided	by	[26].

3. Different Criteria for model selection

In	 this	 section	 we	 describe	 different	 available	
criteria	 for	 choosing	 the	 best	 fitted	 model	 to	 a	
given	 dataset.	 Suppose	 there	 are	 two	 families,	 say,	

{ }(.), ( )pF f R fθ θ= ∈ = 	 and	 { }(.), ( )qG g R gθ θ′ ′= ∈ = ,	
the	problem	is	to	choose	the	correct	family	for	a	given	
dataset	{ }1,..., .nx x 	The	following	criteria	can	be	used	for	
model	selection.

3.1. Kolmogorov-Smirnov (K-S) distance

The	K-S	 distance	 is	 one	 of	 the	 important	 distances	
between	two	distribution	functions,	say	F	and	G,	and	it	
can	be	described	as	follows;

							 	 	 	 	 																			(3)

To	implement	this	procedure,	a	candidate	from	each	
parametric	 family	 that	 has	 the	 smallest	 K-S	 distance	
should	 be	 found	 and	 then	 the	 different	 best	 fitted	
distributions	should	be	compared.

3.2. Akaike’s information criterion

Consider	 a	 sample	 of	 independently	 identically	
distributed	 (i.i.d.)	 random	 variables,	 X1,...,Xn	 having	
the	probability	density	function	h(.)=h.	The	Kullback-
Leibler	 (KL)	 information	 in	 favor	 of	 h	 against	 f q	 is	
defined	as
				

We	have	KL(h,f q)	≥	0	and	KL(h,f q)=0	,	which	implies	
that	 h=f q.	 The	 KL	 divergence	 is	 often	 intuitively	
interpreted	 as	 a	 distance	 between	 the	 two	 probability	
measures,	but	this	is	not	mathematically	a	distance;	in	
particular,	the	KL	divergence	is	not	symmetric.	Akaike	
[15]	introduced	the	Akaike	information	criterion	(AIC)	
to	select	the	best	model	under	parsimony.	The	goal	of	
AIC	is	 to	minimize	the	KL	divergence	of	 the	selected	
model	from	the	true	model.	Notice	that	the	relevant	part	

1( ) , 		 0, 0, 0h x x xbab a b−= ≥ > >

)()(sup),( xGxFGFD
x

−=
∞<<∞−

( ) ( )( , ) log ( ) log 	
( ) ( )h

h X h xKL h f E h x dx
f X f x

θ
θ θ

∞

−∞

 
= = 

  ∫

ˆ ˆˆ( , )n n na bθ =

ˆ

1

ˆ( ) 2 log ( ) 2n

n
f

n i
i

AIC f x pθθ
=

= − +∑

ˆ

1

ˆ( ) 2 log ( ) logn

n
f

n i
i

BIC f x p nθθ
=

= − +∑

1 1( ) ( ) / (1)F F Fx H x Hϕ − −=
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corresponding	 empirical	 version	 of	 the	 scaled	 TTT	
transform	is	defined	as
	 	 	 	 	 	 						(7)

It	 has	 been	 shown	 by	 Aarset	 [28]	 that	 the	 TTT	
transform	 is	 convex	 (concave)	 if	 the	 hazard	 rate	 is	
decreasing	 (increasing).	 In	 addition,	 for	 a	 distribution	
with	a	bathtub	 (unimodal)	 failure	 rate	 the	scaled	TTT	
transform	 is	 first	 convex	 (concave)	 and	 then	 concave	
(convex).	 In	 this	 example,	 the	 scaled	 TTT	 transform	
of	the	data	shows	that	the	empirical	hazard	function	is	
unimodal.

3.5. Maximum Likelihood Criterion (MLC)

Suppose,	 n̂θ and	 n̂θ ′ are	 the	 MLEs	 of	 θ	 and	 θ',	
respectively.	 The	 maximum	 likelihood	 criterion	 is	
defined	as
																																																												 	 	

	 	 	 	 				 																			(8)

Then	 we	 choose	 (f	 )	 or	 (g)	 as	 the	 preferred	 model	
if	 ˆ ˆ( , )n nT θ θ ′ is	 greater	 than	 zero	 or	 less	 than	 zero,	
respectively.

4. Results and discussion

In	this	section,	we	consider	the	degree	of	splat	particle	
splashing.	A	particle	splashes	when	it	hits	a	solid	body	
with	adequate	rate.	Immediately	after	a	molten	particle	
impacts	on	a	surface	a	skinny	liquid	film	jets	out	radially	
from	under	it.	The	degree	of	splat	splashing	is	defined	as	

																																																																																					(9)

where,	S	is	the	area	of	the	selected	feature	and	R	is	the	
perimeter	to	area	ratio.	The	degrees	of	particle	splashing	
data	 are	 reported	 in	 different	 spray	 angles.	 We	 use	
the	data	 of	 particle	 normal	 impact	 on	 a	 solid	 surface.	
The	 mean,	 standard	 deviation	 and	 the	 coefficient	 of	
skewness	are	calculated	as	1.2052,	0.7104	and	2.3326,	
respectively.	The	measure	of	skewness	indicates	that	the	
data	 are	positively	 skewed.	For	 comparison	purposes,	
we	have	fitted	Burr	XII	and	Weibull	distributions	to	the	
complete	 observation.	 The	 plot	 of	 the	 empirical	 and	
the	 fitted	 cumulative	 distribution	 functions	 for	 these	

distributions	 and	 the	 fitted	 probability	 distribution	
functions	 (PDFs)	 and	 the	 relative	 histogram	 for	 the	
degree	of	 splashing	 are	presented	 in	Figures	2	 and	3,	
respectively.	Theses	plots	indicate	that	the	fitted	Burr	XII	
distribution	is	better	than	the	fitted	Weibull	distribution.	
The	 estimated	 parameter	 values,	 AIC	 values,	 BIC	
values	 Kolmogorov-Smirnov	 (K-S)	 distances	 and	 the	
corresponding	p-value	are	presented	 in	Table	1.	From	
the	K-S	distances,	AIC,	BIC	values,	MLC	and	p-values	
of	Table	1,	it	is	quite	clear	that	the	Burr	XII	model	with	
estimated	parameters		 	provides	a	much	better	fit	than	
the	Weibull	distributions.	We	also	present	the	percentile-
percentile	 (P-P)	 plots	 of	 the	 Burr	 XII	 and	 Weibull	
distributions	for	the	degree	of	splashing	data	in	Figure	
4.	This	plot	shows	a	strong	relationship	supporting	the	
appropriateness	of	the	Burr	XII	distribution.		Also,	we	
consider	a	graphical	method	based	on	total	time	on	test	
(TTT)	transform.	The	plot	of	the	scaled	TTT	transform	
of	 this	 data	 set,	 Figure	 5,	 indicates	 that	 the	 empirical	
hazard	function	is	unimodal;	therefore,	it	is	reasonable	
to	use	a	BXII	distribution	to	analyze	the	data.

Fig. 2.	 Empirical	 function	 and	 the	 fitted	 functions	 for	 degree	 of		
splashing.

Fig. 3.	 The	 fitted	 PDF	 and	 relative	 histogram	 for	 the	 degree	 of	
splashing.

Fig. 4.	The	P-P	plots	for	degree	of	splashing.
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Fig. 5.	The	scaled	TTT	transform	of	degree	of	splashing.

5. Different Prediction Methods

Often	do	not	have	all	the	data	in	engineering	sciences.	
In	other	words,	some	of	the	data	are	missing	(censoring).	
Prediction	 of	 censored	 data	 based	 on	 observed	 data	
is	 a	 very	 interesting	 topic	 in	 applied	 science.	 We	
know	 that	 the	 splashing	 data	 follows	 a	 progressive	
censoring	scheme.	This	censoring	can	be	described	as	
follows.	Consider	 an	 experiment	 in	which	n	 units	 are	
placed	 on	 an	 experimental	 test	 and	 only	 m(<n)	 are	
completely	observed	until	failure.	The	censoring	occurs	
progressively	in	m	stages.	These	m	stages	offer	failure	
times	of	 the	m	observed	units.	At	 the	 time	of	 the	first	
failure	 (the	 first	 stage)	 X1:m:n,	 r1	 of	 the	 n-1	 units	 are	
randomly	 removed	 (censored)	 from	 the	 experiment.	
Similarly,	at	the	time	of	the	second	failure	(the	second	
stage)	X2:m:n,	r2	of	the	n-2-r1	units	are	randomly	removed	
(censored)	from	the	experiment.	Finally,	at	the	time	of	
the	mth	failure	(the	mth	stage)	Xm:m:n,	all	 the	remaining	
rm=n-m-(r1+r2+…+rm-1)	 units	 are	 removed	 from	 the	
experiment.	 We	 will	 refer	 to	 this	 as	 the	 progressive	
censoring	scheme	(r1, r2, …, rm).	Now,	let	X1:m:n, X2:m:n,…,	
Xm:m:n	denote	a	progressively	censored	sample	from	the	
Burr	XII	model,	with	(r1, r2,	…, rm)	being	the	progressive	
censoring	scheme.	For	simplicity,	we	replace	Xi:m:n	by	Xi	
throughout	the	paper.	Our	interest	is	to	predict	Z=Xi,(s);	
s=1, 2, …, ri;	i=1, 2, …, m	in	all	m	stages	of	censoring	
based	 on	 the	 observed	 progressively	 censored	 sample	
x=(x1, …,	 xm).	 For	 this	 purpose,	 first	we	 estimate	 the	

unknown	parameters	of	Burr	XII	distribution	using	the	
maximum	 likelihood	method.	The	 likelihood	 function	
based	on	a	progressive	censored	sample	from	BXII(α,β)	
is	given	by

and	the	corresponding	log	likelihood	function	is

																																																						 	 				(10)

Taking	derivatives	with	respect	to	α and	β	of	(10)	and	
putting	then	equal	to	zero	we	obtain

																																		 					 																																																		(11)

																																																																																		(12)

Maximum	 likelihood	 estimates	 of	 α and	 β,	 say	 â 	
and	 b̂ respectively,	 can	 be	 obtained	 by	 solving	 these	
two	 likelihood	 equations.	 But	 the	 explicit	 solutions	
of	 (11)	 and	 (12)	 cannot	 be	 obtained.	We	 propose	 to	
use	 the	 EM	 algorithm	 to	 compute	 the	 MLEs	 of	 the	
unknown	 parameters	which	 involves	 solving	 two	 one	
dimensional	 optimization	 problems	 rather	 than	 one	
two	 dimensional	 problem	 (see	 Appendix).	 Now,	 we	
want	to	evaluate	the	different	methods	of	the	prediction	
of	Z=Xi,(s);	s=1, 2, …, ri;	 i=1, 2, …, m	[29].	We	know	
that	 the	 conditional	distribution	of	Z	 given	 X 	 is	 just	
the	distribution	of	Z given	Xi=xi	due	to	the	Markovian	
property	of	progressively	censored	order	statistics.	This	
indicates	that	the	density	of	Z	given	 X x= 	is	the	same	
as	the	density	of	the	sth	order	statistic	out	of	ri	units	from	
the	left	truncated	distribution	with	the	density	function

	 	 	 	 	 	 				(13)

where

Table 1. Estimated	parameters,	K-S	distances	and	AIC	values	for	different	distribution	functions	of	the	degree	of	splashing			data.

Distribution Estimated	parameters 	K-S	(p-value) AIC BIC MLC

Weibull α=0.56168		,		β=1.8533 0.1134	(0.4237) 113.6794 117.86810
7.50859

Burr	XII α=0.89478		,		β=3.66013 0.0744	(0.8944) 98.4622 102.65090
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and

( ) 1 (1 )i iF x xb a−= − +

Thus,	the	conditional	density	of	Z=Xi,(s)	given	Xi=xi	for	
the	Burr	distribution	is	given	by

	 	 	 	 	 	 				
	 	 	 	 	 	 					(14)

5.1. Conditional Median Predictor

The	median	of	the	distribution	of		Z=Xi,(s)	given	Xi=xi	
whose	density	is	given	in	(14),	is	called	the	conditional	
median	 predictor	 (CMP)	 [30].	 On	 the	 other	 hand,	 a	
statistic	 Ẑ 	 is	called	a	conditional	median	predictor,	 if	

	
ˆ ˆ( ) ( )P Z Z X x P Z Z X x≤ = = ≥ =

So
	

It	 is	clear	 that	 the	distribution	of	 11
1 i

Z
x

ab

b

−
 +

−  + 
given	

Xi=xi	is	a	Beta(s, ri-s+1)	distribution	with	a	pdf	of
	

So,	the	conditional	median	predictor	can	be	written	as

																																									 	 																		(15)

Where,	B	has	a	Beta	distribution	with	shape	parameters	
s	and	ri-s-1,	respectively.

5.2. Pivotal Quantity

In	this	case,	our	interest	is	to	predict	Z=Xi,(s)	using	the	

pivotal	method.	So,	we	choose	 11
1 i

ZW
x

ab

b

−
 +

= −  + 
	as	a	

pivotal	quantity	for	obtaining	the	prediction	interval	for	
Z.	 Therefore,	 the	 100(1 )%−℘ 	 prediction	 interval	 for	
the	order	statistic	Z	is	given	by	eq.	(16),	where, /2℘Β is	
the	percentile	of	the	Beta	distribution	with	parameters	
s	 and ri-s+1,	 respectively.	 Prediction	 interval	 can	 be	
obtained	by	substituting	the	unknown	parameters	with	

	 	 	 	 	 	 			(16)

their	MLEs.	Now,	we	consider	the	different	prediction	
methods	 for	 predicting	 the	 censored	 splashing	 data.	
We	propose	that	m=46		and	consider	the	following	two	
censoring	schemes:

Censoring Scheme 1:		(19*0,	3,	10,	10*0,	1,	14*0	).	We	
obtain	 the	 following	 progressively	 censored	 sample:	
0.2783,	0.4688,	0.5054,	0.5128,	0.5201,	0.5274,	0.5494,	
0.5860,	0.5934,	0.6007,	0.6080,	0.6080,	0.6813,	0.7399,	
0.7545,	0.7838,	0.8278,	0.8644,	0.8791,	0.8864,	0.9010,	
C,	0.9304,	0.9377,		C	,0.9523,	C,	0.9743,	0.9743,	0.9816,	
1.0183,	1.0476,	1.0549,	1.0915,	1.1135,	1.1355,	1.1721,	
1.2161,	1.2527,	C,	C,	C,	1.4285,	C,	1.4871,	1.4945,	C,	
C,	C,	C,	1.6483,	1.6630,	C,	1.8095,	2.0586,	C,	2.4102,	
C,	3.1794,	4.6300.

Censoring Scheme 2:	 	 (45*0,	 14).	 We	 obtain	 the	
following	progressively	censored	Sample:
0.2783,	0.4688,	0.5054,	0.5128,	0.5201,	0.5274,	0.5494,	
0.5860,	0.5934,	0.6007,	0.6080,	0.6080,	0.6813,	0.7399,	
0.7545,	0.7838,	0.8278,	0.8644,	0.8791,	0.8864,	0.9010,	
0.9157,	0.9304,	0.9377,		0.9377	,0.9523,	0.9523,	0.9743,	
0.9743,	0.9816,	1.0183,	1.0476,	1.0549,	1.0915,	1.1135,	
1.1355,	1.1721,	1.2161,	1.2527,	1.3186,	1.3553,	1.4212,	
1.4285,	1.4652,	1.4871,	1.4945,	C,	C,	C,	C,	C,	C,	C,	C,	
C,	C,	C,	C,	C,	C.
Here,	 C	 denotes	 the	 censored	 data.	 In	 both	 the	

schemes	 we	 have	 estimated	 the	 unknown	 parameters	
using	 the	 MLEs.	 For	 computing	 the	 MLEs	 we	 have	
used	the	EM	algorithm.	For	schemes	1	and	2,	the	MLEs	
of	 (α,β)	 for	 the	 Burr	 XII	 distribution	 are	 (1.09106,	
3.37267),	(1.52112,	4.33760),	respectively.	The	results	
for	different	prediction	methods	and	different	censoring	
schemes	 are	 presented	 in	Tables	 2	 and	 3.	 From	 these	
tables,	it	is	observed	that	the	prediction	methods	work	
well.

6. Conclusion

In	 this	 paper,	 we	 compare	Weibull	 distribution	 and	
Burr	XII	distribution	for	the	degree	of	particle	splashing	
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in	thermal	spray.	Different	plots	and	statistical	criteria	
were	 used	 to	 identify	 the	 best	 fitted	 distribution	
for	 this	 data.	 Using	 several	 statistical	 criteria,	 like	
minimum	 K-S	 distance,	 minimum	 AIC	 value	 and	
minimum	 BIC	 value,	 the	 Burr	 XII	 distribution	
function	appears	to	be	a	more	appropriate	statistical	
distribution	 function	 for	 this	 data.	 One	 important	

Table 2. Values	of	interval	prediction	method	for	Xi,(s);	s=1, …, ri,	(for	scheme	1,	i=20, 21, 32 and	for	scheme	2,	i=46)		and	their	real	values.

Scheme	1 Scheme	2

Xi,(s) Real	values PI	(Pivot) Xi,(s) Real	values PI	(Pivot)

X20,(1) 0.9157 (0.8832,	0.9517) X46,(1) 1.5604 (1.5287,	1,5935)

X20,(2) 0.9377 (0.9245,	0.9734) X46,(2) 1.5750 (1.5335,	1.5865)

X20,(3) 1.3186 (1.2789,	1.3395) X46,(3) 1.5750 (1.5335,	1.5865)

X21,(1) 1.3553 (1.3228,1.3497) X46,(4) 1.6190 (1.5758,	1,7169)

X21,(2) 0.9523 (0.9410,	0.9844) X46,(5) 1.6483 (1.6355,	1.6697)

X21,(3) 1.4212 (1.4052,	1.4637) X46,(6) 1.6630 (1.6067,	0.6954)

X21,(4) 1.4652 (1.4180,	1.4909) X46,(7) 1.7802 (1.7525,	1,8240)

X21,(5) 1.5604 (1.5356,	1.6011) X46,(8) 1.8095 (1.7843,	1,8278)

X21,(6) 1.7802 (1.7525,	1.8240) X46,(9) 2.0586 (2.0168,	2.1137)

X21,(7) 1.5750 (1.5199,	1.5747) X46,(10) 2.0805 (1.9956,	2.1754)

X21,(8) 2.0805 (1.9956,	2.1754) X46,(11) 2.4102 (2.3768,	2.4096)

X21,(9) 1.5750 (1.5199,1.5747) X46,(12) 2.4175 (2.3766,	2.4562)

X21,(10) 2.4175 (2.3766,	2.4562) X46,(13) 3.1794 (3.1547,	3.2128)

X32,(1) 1.6190 (1.5699,	1.7068) X46,(14) 4.6300 (4.6036,	4.4637)

Table 3. Values	of	point	prediction	method	for	Xi,(s);	s=1, …, ri,	(for	scheme	1,	i=20, 21, 32 and	for	scheme	2,	i=46)		and	their	real	values.

Scheme	1 Scheme	2

Xi,(s) Real	values PI	(CMP) Xi,(s) Real	values PI	(CMP)

X20,(1) 0.9157 0.9076 X46,(1) 1.5604 1.5546

X20,(2) 0.9377 0.9265 X46,(2) 1.5750 1.5637

X20,(3) 1.3186 1.3245 X46,(3) 1.5750 1.5637

X21,(1) 1.3553 1.3463 X46,(4) 1.6190 1.6045

X21,(2) 0.9523 0.9511 X46,(5) 1.6483 1.6247

X21,(3) 1.4212 1.4286 X46,(6) 1.6630 1.6739

X21,(4) 1.4652 1.4625 X46,(7) 1.7802 1.7748

X21,(5) 1.5604 1.5587 X46,(8) 1.8095 1.8137

X21,(6) 1.7802 1.7819 X46,(9) 2.0586 2.0455

X21,(7) 1.5750 1.5688 X46,(10) 2.0805 2.0732

X21,(8) 2.0805 2.0654 X46,(11) 2.4102 2.4269

X21,(9) 1.5750 1.5567 X46,(12) 2.4175 2.4020

X21,(10) 2.4175 2.4030 X46,(13) 3.1794 3.1663

X32,(1) 1.6190 1.5941 X46,(14) 4.6300 4.6451

problem	in	engineering	sciences	is	the	prediction	of	
future	 observations.	 So,	 we	 reported	 the	 different	
prediction	values	of	future	observations	and	observed	
that	 these	methods	of	prediction	work	well.	Finally,	
we	should	mention	 that	our	 results	can	be	extended	
for	the	degree	of	particle	splashing	observed	at	other	
spray	angles.
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Appendix	

The	EM	algorithm	is	an	efficient	iterative	procedure	
to	 compute	 the	 maximum	 likelihood	 estimate	 in	 the	
presence	of	missing	data	and	consists	of	an	expectation	
step	 (E-step)	and	a	maximization	step	 (M-step).	First,	
let	us	denote	the	observed	and	censored	data	by	X = (X1,  
..., Xm)	and	Z = (Z1, ..., Zm),	respectively,	where	each	Zj	
is	1×rj vector	Zj =	 (Zj1, ..., Zjrj)	 for	 j=1,...,	m	 and	 they	
are	not	observable.	The	censored	data	vector	Z	can	be	
thought	of	as	missing	data	W=	(X,Z)	and			represents	the	
complete	data	set.	Therefore,	the	log-likelihood	function		
Lc=	 (W;	α, β)	 of	 the	 complete	 data	 after	 ignoring	 the	
constants	can	be	written	as:
		

																																					 	 	 				 			
	 	 	 	 	 	 				(17)

E-step:
This	step	involves	the	computation	of	the	conditional	

expectation	 of	 the	 log-likelihood	 with	 respect	 to	 the	
incomplete	 data	 given	 the	 observed	 data.	 For	 this	
purpose,	we	compute	the	pseudo	log-likelihood	function	
as:
	

	 	 	 	 	 	 					(18)

where
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the	estimate	of		(α, β)	is	(α(k), β(k)),	then	(α(k+1), β(k+1))	can	
be	obtained	by	maximizing

	 	 	 	 	 	 					(19)

with	 respect	 to	α	and	β.	Notice	 that	 the	maximization	
of	(19)	can	be	obtained	by	different	methods,	such	as,	
Kundu	and	Pradhan	[31].
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