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Complex aging-triggered disorders are multifactorial programs that comprise a myriad
of alterations in interconnected protein networks over a broad range of tissues. It
is evident that rather than being randomly organized events, pathophysiologies that
possess a strong aging component such as cardiovascular diseases (hypertensions,
atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia,
Alzheimer’s disease, mild cognitive impairment, Parkinson’s disease), in essence
represent a subtly modified version of the intricate molecular programs already in place
for normal aging. To control such multidimensional activities there are layers of trophic
protein control across these networks mediated by so-called “keystone” proteins. We
propose that these “keystones” coordinate and interconnect multiple signaling pathways
to control whole somatic activities such as aging-related disease etiology. Given its
ability to control multiple receptor sensitivities and its broad protein-protein interactomic
nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of
these key network controllers. Considerable data has emerged, suggesting that GRK5
acts as a bridging factor, allowing signaling regulation in pathophysiological settings
to control the connectivity between both the cardiovascular and neurophysiological
complications of aging.

Keywords: G-protein coupled receptor kinase 5, aging, cardiovascular disease, neurodegeneration, GRK5
interactors

INTRODUCTION

GPCR Signaling
Heptahelical G protein-coupled receptors (GPCRs) represent one of the largest superfamilies
of transmembrane receptor proteins. Rough estimates suggest the presence of between 800 and
900 somatic (i.e., outside of odorant receptors; Fredriksson et al., 2003; Matthews and Sunde,
2012) GPCR genes, or just over 1% of protein-generating genome. These plasma membrane
GPCRs facilitate cell sensitivity to a diverse array of external stimuli including light, small
chemical transmitters and large glycoprotein hormones (Takeda et al., 2002). GPCRs undergo a
conformational change in response to an impinging regulator, allowing them to serve as guanyl
nucleotide exchange factors for heterotrimeric GTP-binding proteins (G-proteins) resulting in their
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dissociation (Cabrera-Vera et al., 2003). Dissociated
heterotrimeric α and βγ subunits can then productively
interact with downstream effectors to generate soluble second
messenger molecules (e.g., calcium or inositol trisphosphate)
to engender a broad range of biological actions (Blank et al.,
1992; Exton, 1996; Maudsley et al., 2004; Hewavitharana and
Wedegaertner, 2012). In addition to their capacity to confer
sensitivity to stimuli involved in productive cellular signaling,
GPCR systems also form a crucial part of stress response
pathways linked to disease-propagating pathophysiologies.

G Protein-Coupled Receptor Kinases
Modulate GPCR Signaling
GPCR-regulated heterotrimeric G protein signaling termination,
as a specifically organized molecular event, has been described
by many research teams and is now considered canon for most
GPCRs (Zhang et al., 1999). After the initial ligand induced
conformational change of the receptor and G protein complex,
there is a recruitment of a class of serine/threonine kinases
to the active receptor, i.e., G protein-coupled receptor kinases
(GRKs). This association is initiated by interaction between the
free G protein βγ subunits and a pleckstrin homology (PH)
domain present within the GRK protein. Upon association,
the GRK typically phosphorylates the receptor on available
serine or threonine residues within an acidic amino acid
context (Aspartate or Glutamate) found in the receptors three
intracellular loops or the carboxyl-terminus (C-terminus). This
phosphorylation both attenuates subsequent association with
GDP-bound Gαβγ G protein heterotrimers, while promoting
the association of β-arrestin molecules with the activated and
phosphorylated receptor. This stable β-arrestin association serves
to further inhibit subsequent G protein heterotrimer association
and simultaneously increase the ability of the receptor to interact
with components of endocytic systems such as clathrin and the
AP-2 adaptor protein (Laporte et al., 1999). Therefore, via both
GRK phosphorylation and subsequent β-arrestin association, the
ligand-induced receptor activity is considered to be quenched
and eventually terminated – this process has been classically
referred to as agonist-induced receptor desensitization (Maudsley
et al., 1998; Zhang et al., 1999). The desensitization process is
vital to maintain continued physiological responsivity to stimuli
and to protect the responding cell/tissue against protracted
deleterious exposure to ligands. GRKs are not the only kinase
type that can phosphorylate GPCRs after ligand activation,
so-called heterologous (as opposed to GRK homologous)
receptor phosphorylation can be mediated by second messenger-
dependent protein kinases, e.g., protein kinase A or C (Steele
et al., 2002). Subsequent research, however, has demonstrated
that this generic desensitization process is not simply a signal
termination event, as more of a signal modulation event. Hence,
this canonical GRK-β-arrestin cascade actually transmutes the
G protein signaling identity of the receptor to a non-G protein
signaling mode, involving GRKs, β-arrestins and other GPCR-
associated signaling molecules (Hall et al., 1998; Luttrell et al.,
1999; Cant and Pitcher, 2005; van Gastel et al., 2018b). With
specific respect to the interactions between GRK and β-arrestin

signaling dynamics, there are further levels of nuance in this
paradigm. Hence, it has been shown that GPCRs can be regulated
by a variety of interacting GRKs, where some display a relative
selectivity of interaction, while others demonstrate a promiscuity
of association. In this scenario, differential phosphorylation
patterns upon the receptor loops or C-terminus can engender
a specific downstream effect on subsequent β-arrestin-based
signaling cascades (Nobles et al., 2011; Lefkowitz, 2013).

Due to their ability to control a wide array of biological
functions, GPCR-based signaling activity has become perhaps
the primary target for effective therapeutic research. GPCR-
based regulation of cellular pathological mechanisms has shown
tremendous clinical relevance for neurodegenerative (Maudsley
et al., 2007; Huang et al., 2017), metabolic (Martin et al., 2017;
Riddy et al., 2018), neoplastic (Liu et al., 2016), respiratory
(Douthwaite et al., 2017), and cardiovascular (Conrad, 2016)
disorders. As studies continue to uncover further nuances in
GPCR regulatory behavior, new roles, aside from simple receptor
phosphorylation, for GRKs in GPCR systems have emerged.
It is now apparent from many excellent studies that GRKs
also control intermediary cellular metabolic signaling pathways,
independent of GPCR functionality. It is in this regard that our
review will focus, especially with respect to the body’s capacity to
control complex multi-tissue processes – such as aging – through
coordination via systemic “keystone” proteins that possess a
trophic level of control over coherent signaling networks.

Keystone Control of Cardiovascular
Disease and Neurodegeneration
Communication
At the present time there is considerable evidence emerging that
suggests a functional connectivity between blood vessel damage
due to arterial stiffness (Cefalu, 2011; Vlachopoulos et al., 2015;
Costantino et al., 2016) and resultant dementia (van Sloten et al.,
2015; Cooper and Mitchell, 2016; Pase et al., 2016; de Roos et al.,
2017). Multiple molecular mechanisms that interconnect these
two pathophysiological domains have been proposed based on
the evidence of both in cellulo and in vivo animal studies. Arterial
stiffness is a condition linked to the age-dependent pathological
elevation of pulse wave velocity (PWV). Both murine and human
studies have suggested that increases of PWV can lead to an
increased incidence of cognitive decline and dementia (O’rourke
and Hashimoto, 2007; Avolio, 2013; Marfella and Paolisso,
2016; Ryu et al., 2017). In addition to elevated PWV, arterial
stiffness can result in a potentiated pulsatile flow in a broad
range of cerebral blood vessels. Increased blood flow pulsatility
has been shown to engender the creation of cellular reactive
oxygen species (ROS) that, upon interaction with vascular and
neuronal proteins, can induce cerebral gliosis and endothelial
dysfunction with concomitant dysregulated blood brain-barrier
(BBB) permeability. These deleterious effects of ROS can often
cause a functional deficit within cerebral perfusion circuits,
that both attenuate the distribution of metabolic fuels, while
simultaneously reducing the ability to clear neurotoxic chemical
products – these two events then conspire to promote cognitive
dysfunction and dementia (Sadekova et al., 2013; Iulita et al.,
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2017). It is widely accepted that complex age-related disorders
represent highly interconnected molecular events spanning
multiple tissues. We have demonstrated previously that in order
to control these processes “keystone” proteins, that coordinate
self-reinforced signaling networks in these processes, can be
identified and potentially targeted therapeutically to attempt to
mitigate these systems-level disorders (Lu et al., 2015; Martin
et al., 2016; van Gastel et al., 2018a).

Aging, as a pathological process represents perhaps the
strongest risk factor for both cardiovascular disease (CVDs) and
neurodegenerative conditions (Kennedy et al., 2014). Indicative
of the strong etiological role of the pathological aging process in
the generation of cardiovascular diseases it has been shown that
many of the well-characterized “hallmarks of aging” (López-Otín
et al., 2013) are prominent in multiple CVD paradigms. Hence
CVDs are often strongly associated with telomere attrition (De
Meyer et al., 2018), epigenetic alterations (Rando and Chang,
2012), proteostasis alterations (Wiersma et al., 2016), disrupted
nutrient sensing (Uryga and Bennett, 2016), mitochondrial
dysfunction (Marzetti et al., 2013), and cellular senescence
(Donato et al., 2018). Such a profound intersection is also
observed between classical neurodegenerative pathways and
those typically associated with pathophysiological aging. For
example, aging has been correlated with the occurrence of
several types of dementia, affecting 5–10% of people over 65,
and about 50% of people over 85 years old (Prince et al.,
2015). Alzheimer’s disease (AD), perhaps one of the most
common forms of dementia, shares multiple functional overlaps
with canonical brain aging pathways including mitochondrial
dysfunction (Müller et al., 2018), oxidative stress (Watts et al.,
2018), calcium management alterations (Popugaeva et al., 2018)
and impaired proteostasis (Chadwick et al., 2012; Martínez et al.,
2017). Given the significant molecular connections between
aging pathomechanisms and these two prevalent disease realms
(CVD and neurodegeneration), the likelihood that there are
physical bridges between these signaling domains is high. In
this review, we will particularly discuss an incipient role of
GRK5 in the context of a potential role for this GPCR-associated
signaling factor as a trophic coordinator of both cardiovascular
and neurodegenerative pathophysiologies.

G-Protein Coupled Receptor Kinases
GRKs are found nearly universally in complex organisms ranging
from non-metazoans to vertebrate mammals (Mushegian et al.,
2012). Currently there are known to be seven different GRK
types, i.e., GRK1 to GRK7 (Kohout and Lefkowitz, 2003; Penela
et al., 2003). Across these different types there is a shared 60–70%
sequence homology. The seven GRK members are divided into
three subfamilies based on their sequence homology (Premont
and Gainetdinov, 2007). The rhodopsin kinase or visual
GRK subfamily comprises GRK1 and GRK7. The β-adrenergic
receptor kinases subfamily, comprising GRK2 and GRK3 have
been most widely studied due to their strong association
with canonical agonist-induced desensitization pathways. Finally,
the GRK4 subfamily, comprises the kinases GRK4, 5, and 6.
Here in this review we will focus upon the multidimensional
functionalities of one of these isoforms, i.e., GRK5. With respect

to their somatic distribution, near ubiquitous somatic expression
has been shown for GRKs 2, 3, 5, and 6. The expression of GRK1
and GRK7 is restricted the retina (Hisatomi et al., 1998), while
GRK4 expression is predominantly found in testicular, renal and
cerebellar tissues (Premont et al., 1996; Sallese et al., 1997).

As previously discussed, the primary role conceptualized for
GRKs was their ability to actively phosphorylate-signaling cell
surface GPCRs (Pitcher et al., 1998; Penela et al., 2003; Lefkowitz
and Shenoy, 2005). This GRK-mediated phosphorylation was
then considered to simply attract β-arrestins to the active state
receptor to further inhibit G protein-mediated signaling, through
the so-called process of homologous receptor “desensitization.”
As a result of this desensitization process, phosphorylated
receptors can then be targeted for endocytic removal from the
plasma membrane via clathrin- or caveolae mediated processes.
The fate of the internalized receptor is then sensitive to the degree
of prevailing ligand stimulation – moderate cell surface receptor
stimulation allows for recycling of the receptor to the surface
for re-engagement with a ligand, while protracted excessive
ligand stimulation overloads the recycling machinery and results
in GPCR targeting for lysosomal degradation (Pitcher et al.,
1998). While agonist-induced desensitization was considered to
represent a signaling termination event, groundbreaking research
demonstrated that indeed components of the desensitizing
molecular machinery actual constitute a further mode of
signaling of the “desensitized” receptor (Maudsley et al., 1998;
Luttrell et al., 1999). Thus, pro-desensitizing β-arrestin activity
represents only a small component of its activity and instead
arrestin signaling itself seems to be potentially independent
of G protein signaling and facilitates the creation of ligand-
induced GPCR-based adaptor protein scaffolds. As well as
possessing a potent role in the regulation of GPCR signaling
dynamics, both GRKs and β-arrestins are also important
signal conditioning factors in receptor tyrosine kinase signaling
cascades (Hildreth et al., 2004; Robinson and Pitcher, 2013;
Zhang et al., 2015). Therefore, it is clear that our appreciation
of GRK functionality may need to include diverse cellular
activities and also subcellular localities. For example, while
the majority GRKs are predominantly cytosolic or found
in proximity to the plasma membrane, GRK5 is also often
concentrated in the cellular nucleus (Martini et al., 2008;
Gold et al., 2013). Along with this re-appraisal of canonical
GRK functionality, it was originally proposed that the GRK
only phosphorylates the active ligand-bound GPCR (Li et al.,
2015). With particular respect to this, it has been shown
that members of the GRK4 subfamily (including GRK5) can
also effectively phosphorylate inactive GPCR structures. This
ligand-independent GRK phosphorylation still retains some of
the aspects of the canonical agonist-induced desensitization
paradigm, i.e., subsequent β-arrestin recruitment to the inactive
yet GRK-phosphorylated receptor is still evident.

In addition to these non-canonical GRK functions, these
multifunctional kinases can also control the ability of GPCRs
to demonstrate biased signaling, dependent on the GRK-
specific phosphorylation patterns generated in the receptor
primary sequence (Choi et al., 2018). These phosphoprotein
patterns can effectively determine which β-arrestin isoforms
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(β-arrestin1 or 2) are recruited, and which specific super-
structure conformations these eventual receptor-arrestin
complexes then adopt (Lee et al., 2016). In this context therefore,
the GRK interaction with receptors has a profound effect upon
subsequent downstream non-G protein-dependent signaling
cascades emanating from GPCRs. Therefore, both the qualitative
and quantitative aspects of GPCR signaling (at both the G
protein-dependent and –independent level) are likely to be
a function of the relative expression level, catalytic activity,
interactomic associations and subcellular localization of GRKs.
In the following sections, the GRK5 protein itself, numerous
GRK5 interacting proteins and GRK5’s biological role in the
context of connecting multiple age-related disease paradigms
will be discussed.

Molecular Functionality of GRK5
GRK5 is composed of 500–700 amino acids and shares multiple
common features with other members of the GRK superfamily
(Figure 1). Thus, GRK5 possesses a central catalytic domain
(∼270 residues), surrounded by a C-terminal domain of variable
length (∼105–230 residues). GRK5, like the other members
of the GRK4 subfamily possesses a specific amino-terminal
(N-terminal) domain (∼185 residues). GRK5 possesses an
amphipathic helix membrane binding domain, located in its
C-terminal RH (RGS homology) domain, which is important
for its function and proper localization at the plasma membrane
(Pitcher et al., 1992; Koch et al., 1993; Premont et al., 1999;
Kohout and Lefkowitz, 2003; Thiyagarajan et al., 2004; Penela
et al., 2006; Xu et al., 2014). In contrast, the N-terminal domain
of GRK5 appears to be important for intracellular membrane
localization as well as for receptor recognition (Murga et al.,
1996). The N-terminus also contains an RH domain (∼120
residues) (Kohout and Lefkowitz, 2003; Penela et al., 2003) as well
as a phosphatidylinositol (4,5) bisphosphate (PIP2) region that
can influence the kinases catalytic activity (Pitcher et al., 1998).
Recently, GRK5 has been crystalized in two unique monomeric
structures with consistent C-terminal structures closely packed
to the RH domain. Individual subunits of the GRK5 architecture
have been shown to be insufficient for persistent membrane
association since disruption of the C-terminus/RH domain
interface significantly decreases the GRK5 catalytic activity on
GPCRs (Xu et al., 2014). Both the C- and N-terminal motifs
predominantly localize GRK5 to the plasma membrane (at the
expense of cytosolic concentration), which in turn facilitates
its ability to control activation-independent phosphorylation
activity at GPCRs (Li et al., 2015). GRK5 is subtly different from
the other GRK4 subfamily members due to its possession of
a nuclear localization sequence (NLS) motif. This NLS motif
enhances the ability of GRK5 to translocate to the nucleus
where it can exert non-canonical GRK activities, e.g., it has
been shown that nuclear GRK5 can act as a histone deacetylase
kinase and thus control gene transcription activity (Johnson et al.,
2004; Martini et al., 2008). Binding of Ca2+ and calmodulin
(CaM) to GRK5 has been shown to inhibit GRK5’s membrane
association, thus augmenting its nuclear localization (Gold et al.,
2013). Hence it is apparent that the nuclear translocation of
GRK5 likely exists in competition with its membrane localization.

For example, C-terminal protein kinase C (PKC)-mediated
phosphorylation attenuates its nuclear functional activity.

In addition to their classical roles in GPCR signaling
cascades, work in the past decade has shown that GRKs also
productively interact with many signaling factors outside this
paradigm (Kurose, 2011; Gurevich et al., 2012; Hullmann et al.,
2016). A broad range of GRK5 binding partners have been
identified via different molecular biological approaches, e.g.,
Affinity Purification Mass Spectrometry and yeast-two hybrid
screens. With the advent of well curated interactomic metadata
for signaling proteins it is now relatively simple to appreciate
that for many signaling systems, e.g., the GRK pathway, the
extent of protein–protein interactions can significantly expand
the potential of such multidimensional molecules to control
both health and disease in a manner outside of their canonical
activities. GRK5 interacting partners currently include single
transmembrane receptors (Freedman et al., 2002; Hildreth et al.,
2004) as well as cytosolic (Liu et al., 2005; Barthet et al., 2009;
Lafarga et al., 2012) and nuclear proteins (Parameswaran et al.,
2006; Martini et al., 2008). The productive interaction of GRKs
with intracellular non-GPCR proteins profoundly influences
diverse transduction pathways (Ho et al., 2005; Peregrin et al.,
2006; Sorriento et al., 2008; Barthet et al., 2009; Wang et al.,
2009; Patial et al., 2010) including cell cycle (Penela et al., 2010;
Michal et al., 2012), apoptosis (Chen et al., 2010), cell motility
(Penela et al., 2008; Lafarga et al., 2012), and inflammation
(Sorriento et al., 2008; Patial et al., 2010). The study therefore
of the functional GRK5 interactome, will likely help elucidate
both novel mechanisms of intrinsic protein regulation as well
as to further clarify GRK5-associated physiological signaling
properties.

To assess the current state of the metadata concerning the
known functional interactome of GRK5 (Figure 2A – left
panel), we extracted binding partner identities from BioGrid1,
HPRD2, IntAct3, MINT4 (The Molecular INTeraction Database),
STRING5 and DIP (Database of Interacting Proteins)6. The
cumulated known physical interaction partners for GRK5
are detailed in the annotated Supplementary Table S1. The
diversity of subcellular distribution (Figure 2A – center panel)
and molecular function (Figure 2A – right panel) of these
interactors were categorized using Ingenuity Pathway Analysis
(IPA)-based annotation of the extracted GRK5 interactome
metadata. The potential functional relationships between the
protein factors in the GRK5 interactome were then analyzed with
STRING functional network association analysis (Figure 2B).
Using a high strength reliability cut-off, a strong functional
connectivity between 134 of the 183 known GRK5 interactors
was found. This GRK5 associated network demonstrated a very
high enrichment probability for the represented network (i.e.,
p < 10e−16). This network contained several functional groups

1https://thebiogrid.org/
2http://www.hprd.org/
3https://www.ebi.ac.uk/intact/
4https://mint.bio.uniroma2.it/
5https://string-db.org/
6http://dip.mbi.ucla.edu/dip/
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FIGURE 1 | A graphical block depiction (A) of the multiple functional regions of human GRK5 indicates the diverse range of activities mediated by this protein (α-N,
terminal domain; PIP2, phosphatidylinositol bisphosphate binding domain; RH, Regulator of G protein signaling homology domain; NES, Nuclear Export Sequence;
NLS, Nuclear Localization Sequence). In the primary sequence two autophosphorylation sites are indicated within the catalytic domain. A crystal-assisted model of
human GRK5 (B) was constructed and annotated using 3DBionotes-WS (http://3dbionotes.cnb.csic.es/ws). This model indicates the three-dimensional proximities
of the α-N domain (green), PIP2 binding domains (blue), NES (pink), catalytic domain (orange), and the NLS domain (red).

(assessed with unbiased k-means clustering) associated with:
(i) classical GPCR functionality (group 1-Blue); (i) stress- and
DNA damage-responsiveness (group 2 – Dark Green); (iii)
protein chaperoning (group 3 – Mint); (iv) RNA metabolism
and transcriptional control (group 4 – Yellow). Reinforcing this
unbiased appreciation of the known molecular functionalities
of the GRK5 interactome we found, using the network-
building suite of the IPA platform, that similar functions
(i.e., DNA Replication, Recombination, and Repair, RNA Post-
Transcriptional Modification) were enriched in the top three
most highly enriched signaling networks created using the
metadataset of known GRK5 interactors (Figure 3). In addition

to these functions reminiscent of the STRING-based predictions,
we also noted that physiologically-relevant functions germane to
the central hypothesis of this review were also evident related to
these networks, i.e., “Cardiovascular System Development and
Function” and “Nervous System Development and Function.”
Merging the top three highest scoring IPA-generated networks
and allowing the unbiased IPA-mediated creation of a radial
hierarchical super-network, revealed that indeed with simple
database cross-analysis, GRK5 was evidently the central nexus
of control of this aggregated dataset. Beside the generation of
functional insights from protein–protein interaction networks
within the GRK5 interactome, we also investigated this metadata
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FIGURE 2 | Molecular analysis of the functional GRK5 interactome. The interactors of a protein are indicative of its function. Thus, to further investigate the function
of GRK5 we extracted empirically identified GRK5 interacting partners from multiple informatics databases, BioGrid (https://thebiogrid.org/), HPRD (Human Protein
Reference Database: http://www.hprd.org/), IntAct (https://www.ebi.ac.uk/intact/), MINT (The Molecular INTeraction Database), STRING (https://string-db.org/) and
DIP (Database of Interacting Proteins: http://dip.mbi.ucla.edu/dip/). This curation generated a list of 183 proteins which are proven interactors of GRK5 (A). The left
panel indicates the distribution of the curated proteins from the aforementioned databases. This dataset was further analyzed using Ingenuity Pathway Analysis (IPA)
to first create an unbiased assessment of the subcellular distribution (center panel) of the interactors and then secondly a functional categorization of the GRK5
interactors (right panel). Using our curated 183 protein input we employed STRING to investigate the strength of interactions between these diverse GRK5
interacting proteins. With this we applied a “strong” cut-off strength of confidence (0.7) and also limited the protein-protein interaction types to those empirically
observed in physical interaction of co-expression experiments. In addition, all unconnected nodes were removed from the network (B). K-means clustering was
employed to group the interacting proteins in the network into five main clusters (blue, red, yellow, mint, and dark green).

from the aspect of IPA-assisted canonical signaling pathway
analysis (Figure 4A). Using our standard cut-offs of signaling
pathway enrichment (i.e., >2 proteins per pathway, with an
enrichment probability <0.05) we found that from a signaling
cascade perspective the GRK5 interactome was associated with
multiple signaling systems linked to cellular protective activity
(e.g., PI3K/AKT Signaling), apoptotic regulation (e.g., Myc
Mediated Apoptosis Signaling), DNA damage repair and aging
(e.g., Telomerase Signaling), metabolic activity (e.g., PPAR
signaling), GPCR regulation and cardiovascular system control
(e.g., Nitric Oxide Signaling in the Cardiovascular System).
Applying a cut-off of at least three shared proteins between

these diverse signaling pathways we found that indeed functional
links between all of these cascades were evident (Figure 4B).
This close connectivity indeed suggests that through a common
association with GRK5, the different proteins populating these
signaling systems are likely to coordinate these distinct activities
in concert across the multiple tissues where GRK5 is expressed.
Therefore, using unbiased informatic analyses of our curated
GRK5 interactomic metadata, we have been able to demonstrate
multiple insights into GRK5 functional biology and also reinforce
our central post that GRK5 can act as an age-related bridge
between cardiovascular and neurological pathomechanisms.
A more detailed appreciation of the GRK5 interactome and its
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FIGURE 3 | IPA-mediated creation of a radial hierarchical super-network. A radial hierarchical “supernetwork” was constructed using the IPA network construction
suite. Through this analysis the three highest scoring networks (based on numbers of interacting proteins from the primary input list of 183 GRK5 interactors) were
associated with “Cellular organization and movement,” “Cardiovascular System Development and Function,” and “Nervous System Development and Function.”
These networks carry physiologically relevant functions germane to the central hypothesis of this review: GRK5 as a functional bridge between cardiovascular and
neurodegenerative disorders. Upon merging these top three scoring protein networks we discovered that they all centrally converged upon GRK5 itself.

functional signaling spectrum will likely assist in the derivation
of potentially new signal-specific therapeutics that exploit this
signaling paradigm in a beneficial manner. In addition, our
expanded understanding of GRK5 interactomics also helps place
its comprehensive signaling activity in the context of whole-
somatic “programs” of related molecular signatures.

Role(s) of GRK5 in Molecular Aging
GRK activity has been linked with multiple age-associated
neoplastic, metabolic, neurodegenerative and cardiovascular
ailments (Premont and Gainetdinov, 2007; Gurevich et al., 2012).
At the specific disease level, the expressional regulation and
activity of GRK5 has been linked with multiple age-related
diseases such as type 2 diabetes mellitus (T2DM) (Li et al.,
2013), cardiac hypertrophy (Gold et al., 2012), hypertension
(Harris et al., 2008), Parkinson’s disease (Arawaka et al., 2006;
Bychkov et al., 2008), and Alzheimer’s pathology in mice and
humans (Suo et al., 2007). As we age, a progressive dysfunction
of multiple receptor signaling systems, across a broad range
of tissues, takes place. In this context of age-related receptor
system dysfunction, the loss of signaling system sensitivity has
been most intensively studies for the insulinotropic signaling
cascade. Disruption of the ability to effectively sense, uptake
and eventually metabolize glucose has been identified as a
pivotal regulator of the rate of aging in nearly every animal
model tested (Ma and Gladyshev, 2017). Many of the first genes
identified in lower species that control animal longevity were

almost exclusively associated with the insulinotropic/insulin-like
growth factor system (Mathew et al., 2016). The glycometabolic
system, as well as the somatic sensitivity to insulin receptor
functionality, is also strongly controlled through the functional
status of adipose tissue in the body, e.g., adiponectin release
from white adipose tissue is a potent insulin sensitizing factor
(Diez and Iglesias, 2003). Commensurate with a potentially
important role of GRK5 in aging, it has been shown to
be strongly expressed in adipose tissues, suggesting that its
functionality may impact the glycoregulatory system. Wang
F. et al. (2012) demonstrated that GRK5 genomic deletion
in murine models resulted in the generation of significant
insulin resistance. In addition to this, genetic polymorphisms
of GRK5 have been strongly associated with the generation
of T2DM (Xia et al., 2014) and the efficacy profile of anti-
diabetic therapeutic agents (Shang et al., 2018). Furthermore,
previous studies performed in GRK5 knock-out mice (GRK5-
KO) reinforced the importance of GRK5 in metabolism as these
animals displayed a decreased white adipose tissue mass, a lower
weight gain, a decreased expression of adipogenic genes and
a reduced adipocyte differentiation when fed a high-fat diet
(Wang F. et al., 2012; Wang L. et al., 2012). Although human
data linking GRK5 to metabolism are sparse, a recent genome-
wide association study found a robust association of two single
nucleotide polymorphisms (SNPs) in the GRK5 gene with apoB
levels and total LDL-cholesterol, highlighting the role of GRK5 in
cholesterol metabolism.
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FIGURE 4 | IPA-assisted canonical signaling pathway analysis for the GRK5 interactome. The canonical signaling pathway suite of IPA was employed to generate a
signaling cascade appreciation of the functional activity of the GRK5 interactome. (A) Indicates the top 20 most significantly (p < 0.05) enriched canonical signaling
pathways generated with our curated GRK5 interactome. The pathways are color coded and clustered into different functional groups. The close association
between these 20 pathways (mediated by common proteins involved in multiple signaling pathways: ≥3 proteins in common) is depicted by the pathway network
diagram in (B).

As well as long-term dysfunction of metabolic signaling
systems in the aging process, significant disruptions of
inflammatory mediator receptor systems are evident. This
inflammatory signaling perturbation typically results in
the creation of chronic low-grade inflammatory syndrome,
recently codified as “inflammaging” (Baylis et al., 2013;
Franceschi et al., 2018; Olivieri et al., 2018). Inflammaging, as
a process, has been proposed to be functionally independent
of exogenous systemic infection (Franceschi et al., 2000;

Frasca and Blomberg, 2016). This chronic inflammatory
condition has been linked to potentiated circulatory C-reactive
peptide and IL-6 (interleukin 6) concentrations. Protracted
exposure to these pro-inflammatory agents predisposes patients
to an increased incidence of obesity, premature immunological
aging, vascular sclerosis and neurodegenerative phenotypes
(Tabas, 2010; Barzilai et al., 2012). The inflammaging process
itself appears to be closely tied to the mechanisms of whole-
somatic aging trajectory control. Hence, inflammaging has been

Frontiers in Pharmacology | www.frontiersin.org 8 December 2018 | Volume 9 | Article 1484

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01484 December 13, 2018 Time: 17:30 # 9

Hendrickx et al. GRK5 in Age-Related Disorders

strongly linked to the potentiation of nuclear factor-κB (NF-κB)
activity – a process that at the hypothalamic level seems to act as
an arbiter of the aging process (Salminen et al., 2012; Zhang G.
et al., 2013).

At a fundamental level NF-κB has been shown possess
the ability to regulate the expression of GRK5 (Islam et al.,
2013) – therefore these two systems in fact potentiate each
other’s activity in a feed-forward loop, a mode of signaling
highly characteristic of the aging process itself. Demonstrating
the intersection of GRK5 with the inflammatory aging process,
GRK5 has been shown to antagonize TLR4 (Toll-like receptor 4)
mediated phosphorylation of the NF-κB p105 protein. This action
inhibits inflammatory mediator (lipopolysaccharide) sensitivity
in macrophages (Parameswaran et al., 2006). Subsequent to the
discovery of GRK5 regulation of p105, Sorriento et al. (2008)
reported that GRK5 binding to IκBα stabilizes this protein
and facilitates the nuclear accumulation of IκBα by masking
and thus inhibiting its nuclear export signal sequence. This
nuclear accumulation of IκBα can then lead to decreased NF-
κB activation in vascular endothelial cells. Research from Wu
et al. (2012) employing a GRK5 knockout (KO) murine model
confirmed that endothelial GRK5 likely stabilizes IκBα in a
manner reminiscent to previous studies (Rockman et al., 1996;
Sorriento et al., 2008). Using this model, Islam et al. (2013) further
demonstrated an NF-κB inhibitory action of GRK5 in cardiac
muscle cells.

Taken together, GRK5 is clearly a vital component in both
energy metabolism and chronic inflammation paradigms. It is
interesting to note that both of these systems are known to
strongly control molecular aging pathologies implicated in many
different human disorders and consequently in inflammatory
pathways (Packiriswamy et al., 2013). These findings therefore
make GRK5 a potentially important therapeutic target in
the treatment of age-related diseases such as cardiovascular
disease, neurological and metabolic disorders. In this review,
we discuss the role of GRK5 in the context of cardiovascular
and neurodegenerative disease to emphasize its function in
inflammaging.

The Role of GRK5 in Cardiovascular Disease
Pathology
Cardiovascular pathophysiologies, such as myocardial ischemia,
myocardial infarction or hypertension involve the dysregulation
of cardiac GPCR responsiveness, which in turn is partly induced
by deleterious GRK signaling activity profiles (Dorn, 2009;
Cannavo et al., 2013). The first cardiac GRK form identified
was GRK2 (Kwatra et al., 1989), while the discovery of cardiac
GRK5 came later (Premont et al., 1994). GRK5 was found to
be highly expressed in the myocardium through several studies
employing genetically engineered mice with altered GRK5 levels
(Kunapuli and Benovic, 1993; Premont et al., 1994; Premont
and Gainetdinov, 2007). Homozygous GRK5-KO mice are born
with a normal basal phenotype, although a loss of both GRK5
and GRK6 in mice results in lethality (Gainetdinov et al., 1999;
Burkhalter et al., 2013). Further studies in zebrafish lacking
the GRK5 homolog Grk5l, suggested the importance of GRK5
fine tuning capacity in cardiac development through the mTOR

pathway. Hence, these Grk5l deficient fish demonstrated altered
cardiac tissue generation associated with premature loss of
muscle cell progenitors leading to an imbalance of gross structure
(Burkhalter et al., 2013; Philipp et al., 2014). Of note, GRK5 is
shown to be up-regulated in heart failure (Chen et al., 2001).
It has been demonstrated that elevation of GRK5 expression
in vascular smooth muscle cells (VSMCs) can also induce the
development of high blood pressure (Harris et al., 2008) via
altered β1-adrenergic receptor (β1-AR) and angiotensin II (Ang
II) receptor signaling dynamics (Eckhart et al., 2002; Keys
et al., 2005). GRK5 functionality also appears to be linked
to the generation of atherosclerotic vascular pathophysiologies.
Hence, the genomic deletion of GRK5 in an ApoE4-deficient
murine background significantly accelerated the creation of
aortic atherosclerosis compared to control mice (Wu et al., 2012).

Cardiac failure
GRK5 appears to exert a pivotal role in cardiac failure and several
cardiomyopathies including cardiac hypertrophy (Dzimiri et al.,
2004; Gold et al., 2012). Cardiac hypertrophy refers to the
abnormal enlargement, or thickening, of cardiac muscle. This
thickening can be caused by increases in cardiomyocyte size
themselves or via changes in other cardiac muscular components,
such as extracellular matrix. Cardiac hypertrophy can be induced
via physiological effects (e.g., elevated cardiovascular exercise) or
as the result of pathophysiology (e.g., hypertension or valvular
disease) (Tardiff, 2006).

In humans, four non-synonymous SNPs of GRK5 with
translational significance have been demonstrated. Of these
known SNPs, the RH-domain resident Q41L polymorphism
[leucine (L) converted to a glutamine (Q)] is highly enriched
amongst African-American (A-A) individuals (Liggett et al.,
2008). This divergent form of GRK5 possesses an augmented
capacity to desensitize β2-adrenergic receptors (β2ARs)
(Wang et al., 2008), thus engendering a population specific
cardiovascular effect. The Q41L GRK5 variant appears to afford
protection against congestive cardiac failure amongst A-A heart
failure patients (Eijgelsheim et al., 2008; Liggett et al., 2008).
Reinforcing the potential protective capacity of GRK5 in the
cardiac setting, increased GRK5 expression has been shown
to attenuate cardiac burden in response to intense adrenergic
stimulation (Chen et al., 2001; Brinks et al., 2010). As expected,
a GRK5 activity blockade mediates the opposite effect, i.e.,
increased cardiac performance as well as improved resilience
in the context of heart failure (Raake et al., 2008; Vinge et al.,
2008). It has also been shown that functional GRK5 inhibition,
performed by ectopic expression of an N-terminal GRK5 peptide
fragment of GRK5, reduces the extent of cardiac muscle damage
and attenuates the risk of heart failure (Sorriento et al., 2010).

During cardiac failure, the expression and activity of GRK5
are reflexively increased to enhance β-adrenergic receptor
desensitization and thus attenuate contractility (Chen et al.,
2001). Activation of GPCRs by hypertrophic agonists, such
as phenylephrine and/or Ang II, engages a number of
intracellular signaling pathways, including calcineurin-nuclear
factor of activated T cells (NFAT) (Molkentin et al., 1998),
Ca2+/CaM – dependent kinase II (CamK II) (Zhang et al., 2007;

Frontiers in Pharmacology | www.frontiersin.org 9 December 2018 | Volume 9 | Article 1484

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01484 December 13, 2018 Time: 17:30 # 10

Hendrickx et al. GRK5 in Age-Related Disorders

Bossuyt et al., 2008), MAPKs (Purcell et al., 2007; Kehat et al.,
2011) and the Akt-mechanistic target of rapamycin (mTOR)
pathway (Shioi et al., 2002; Sussman et al., 2011) among many
others, that are important transducers of the hypertrophic
response.

GRK5 can undergo nuclear translocation in a calmodulin-
dependent manner following Gαq-based signals emanating from
α-adrenergic and Ang II receptors. This nuclear translocation
of GRK5 has been shown to be mutually exclusive with its
interaction with plasma membrane GPCRs – thus distinguishing
canonical and non-canonical GRK5 functions (Gold et al., 2012,
2013). This cellular redistribution is proposed to help mitigate
the deleterious functions of cardiac hypertrophy (Yi et al., 2002;
Johnson et al., 2004, 2013; Martini et al., 2008; Zhang et al.,
2011; Gold et al., 2013). Nuclear GRK5 migration is assisted
through a productive interaction with calcium sensing proteins
(CSP) (Akhter et al., 1998) – thus GRK5 is specifically sensitive
to the presence of Ca2+/CaM (Freeman et al., 1998; Haeseleer
et al., 2000). Indeed, GRK5, possessing a high affinity for CaM, is
rapidly inactivated in cells upon elevations in cytosolic calcium.
This aspect of GRK5 biology reinforces its pivotal role in the
modulation of calcium-associated muscular contractility (Ikura,
1996; Schafer and Heizmann, 1996).

It has been demonstrated that nuclear GRK5 acts as a class II
histone deacetylase kinase (HDAC). In this scenario it has been
reported that GRK5 is able to phosphorylate HDAC5 (histone
deactylase 5) (Johnson et al., 2013). This GRK5-mediated
phosphorylation causes redistribution of HDCA5 out of the
nucleus resulting in a function alleviation of its MEF2 (myocyte
enhancer factor 2) transcription factor repression – leading to
“de-repression” of MEF2. Demonstrating the important role
of GRK5 in cardiovascular aging this GRK5-mediated MEF2
activation transcribes multiple genes associated with cardiac
hypertrophy (Martini et al., 2008; Johnson et al., 2013). GRK5
activity has further been shown to control hypertrophic responses
via its interaction in the nucleus with components of the NFAT
pathway (Hullmann et al., 2014). GRK5 interacts with the NFAT-
pathway in the nucleus during pathological hypertrophy. In
addition, it is clear that GRK5 is strongly connected with the NF-
κB signaling cascade (Parameswaran et al., 2006; Sorriento et al.,
2008; Patial et al., 2009; Valanne et al., 2010; Islam and Koch,
2012; Wu et al., 2012; Islam et al., 2013) as an NF-κB binding
element has been identified within the GRK5 DNA promoter
region. This functional signaling region has subsequently been
demonstrated to orchestrate the expression pattern of GRK5 in
cardiac muscle cells (Islam and Koch, 2012).

Physiological hypertrophy does not only occur naturally in
the heart due to augmented exercise regimens but also during
pregnancy (Dorn, 2007). Non-pathological cardiac hypertrophy
is a process typified by relatively normal and proportionate
myocyte growth – this reflexive response increases the capacity
for cytoprotective cardiac activity (Huang et al., 2011; van Berlo
et al., 2013). In contrast, pathological hypertrophy involves
a disruption of the proportions of the new myocytes that
causes an eventual diminution of heart chamber volume with a
concomitant augmentation of septal wall thickness (van Berlo
et al., 2013). Recent research has suggested that GRK5 is

only a controller of non-pathological hypertrophy (Traynham
et al., 2015). In this study, using TgGRK5 mice, it was
shown that physical exercise induced a classical physiological
cardiac hypertrophy response. With specific respect to the
nuclear functionality of GRK5 in cardiac hypertrophy it was
shown in this exercise context that minimal nuclear GRK5
activity was found (Traynham et al., 2015). This corresponds
with a study demonstrating that NFAT was not shown to
regulate physiological hypertrophy (Wilkins et al., 2004). While
elevated levels of intracellular Ca2+ levels are common to
both physiological and pathological cardiac hypertrophy, it
has been proposed that pathological hypertrophic effects are
differentially controlled through distinct intracellular calcium
stores. Thus differential sources of “activating” calcium may
allow the specific stimulation of the GRK5-related hallmarks
of pathological hypertrophy, i.e., nuclear GRK5 accumulation,
HDAC kinase activity and increased NFAT activity. Reinforcing
the concept of differential hypertrophic mechanisms, none of
these selective events are routinely found in standard exercise-
induced hypertrophic paradigms (Traynham et al., 2015).

While GRK5 is evidently associated with deleterious cardiac
signaling and cell growth, GRK5 does appear to possess
additional non-pathological roles in heart functionality. For
example, GRK5 has been shown to be an important intermediate
in the mitogenic and pro-survival signaling cascades emanating
from the β1-adrenergic receptor-mediated transactivation
(Maudsley et al., 2000) of the epidermal growth factor receptor
(EGFR) (Noma et al., 2007). Therefore, it appears that GRK5
possesses a dual functionality with respect to cardiac activity,
i.e., GRK5 is involved in both protective and detrimental
signaling events that are delineated via differential subcellular
compartmentalization between nuclear and non-nuclear
sites.

Hypertension
The maintenance of well-controlled vascular blood pressure is
imperative for effective and reliable delivery of oxygenated blood
to all major life-preserving organs. Significantly and chronically
elevated blood pressure, i.e., hypertension, is a prominent risk-
determining player in the etiological profile of multiple chronic
conditions including ischemic heart disease with associated
subsequent cardiac and renal failure (Bath et al., 2003; Chobanian
et al., 2003). The major organs and processes that endogenously
regulate vascular pressure include the kidney, heart and the
contractile state of VSMCs which regulates radial changes of
blood vessels, thus modulating peripheral vascular resistance.

High blood pressure, with its associated stressful effects on
vascular wall integrity, can result in the potentiation of GRK5
expression within VSMCs. Associated with these observations
it has been shown that Ang II stimulation of VSMCs can also
increase GRK5 expression levels in a calcium dependent manner
(Ishizaka et al., 1997). This association between VSMC-based
GRK5 expression and hypertension was again studied by Keys
et al. (2005) in which an ectopic increase of GRK5 expression
in vessels was genetically engineered. GRK5 overexpression was
subsequently found to induce a gender-specific hypertensive
response, i.e., blood pressure increases were much more
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profound in males compared to females (Keys et al., 2005). Both
male and female hypertension in these GRK5-overexpressing
mice was ablated upon treatment with the inhibitor of Gαi
signaling, pertussis toxin. Further gender-specific effects on the
cardiovascular parameters of these GRK5-overexpressing mice
were also apparent, e.g., β1-adrenergi receptor signaling in males
was altered while Ang II-mediated increased vascular tone was
only found in females (Keys et al., 2005). Interestingly, and in
contrast to the reported overexpression of GRK2 in VSMCs, the
elevation of GRK5 expression failed to induce any significant
cardiac hypertrophy (Eckhart et al., 2002).

Atherosclerosis
Atherosclerosis presents as a long-term inflammatory disease
found primarily in the major arteries. This condition is
typified by the accumulation of oxidized low-density lipoproteins
(LDL) within the arterial wall and a progressive inflammatory
cell infiltration into the vessel (Ross, 1999; Braunersreuther
et al., 2007). The recruitment of inflammatory cells to these
lesions is triggered by the production of chemokines within
the plaque microenvironment (Braunersreuther et al., 2007).
Chemokine-stimulated GPCRs initiate several downstream
effectors, promoting actin polarization, shape changes and
directed cell movement which ultimately leads to atherosclerotic
plaque formation (Kehrl, 1998).

GRK5 possesses the capacity to regulate signaling through
multiple heptahelical receptors (Pitcher et al., 1998; Premont
and Gainetdinov, 2007) including multiple types that have been
strongly linked to etiological activities in the atherosclerotic
process (Hayek et al., 1999; Tiruppathi et al., 2000; Fan and
Malik, 2003; Kim et al., 2005; Bea et al., 2006; Zernecke
et al., 2008). Interestingly GRK5 has also been shown to
phosphorylate other signal transduction proteins that can
influence the atherosclerotic process too, including p53 (Mercer
et al., 2005), IκBα (Patial et al., 2009, 2011), platelet derived
growth factor receptor-β (PDGFRβ) (Wu et al., 2006; Cai
et al., 2008) and HDCA5, via MEF2 activation (Martini et al.,
2008). GRK5 can also stimulate anti-atherogenic signaling
activity in model systems. For example, GRK5-KO mice
have an increase in lesion area when compared to wildtype
mice through two different cell-type regulatory mechanisms
in monocyte/macrophages and VSMCs (Wu et al., 2012). In
VSMCs, GRK5 is able to promote the degradation of the
pro-atherogenic platelet-derived growth factor receptor-β in
lysosomes which is thought to reduce platelet-derived growth
factor-mediated VSMC proliferation and migration (Wu et al.,
2012). GRK5 also regulates monocyte chemotaxis; i.e., in vitro
GRK5-KO monocytes possess increased migration capacity in
response to C-C chemokine ligand 2 (CCL2) (a ligand for
the C-C chemokine receptor type 2 (CCR2) receptor) and
colony stimulating factor-1 (CSF1) (a ligand for the colony
stimulating factor 1 receptor (CSF1R) tyrosine kinase) (Wu
et al., 2012). CCL2-mediated leukocyte migration is instrumental
in atherosclerotic lesion progression and responsible for the
increased macrophage content in lesions from GRK5-KO
mice. These findings highlight the potential mechanisms in
both monocyte retention and emigration after their migration

across the endothelium and present new strategies to limit
atherosclerotic lesion progression.

GRK5 in Neurodegeneration
In contrast to its expression profile in cardiovascular
organs, central nervous system (CNS) expression of GRK5
is comparatively sparse (Kunapuli and Benovic, 1993; Premont
et al., 1994) because of a low GRK5 expression in the majority of
cortical areas, except for the limbic system (Erdtmann-Vourliotis
et al., 2001). As we have outlined previously there is emerging
evidence that demonstrates the multiple non-canonical roles
of GRK5 outside of GPCR activity regulation. These novel
effects of GRK5 are also associated with multiple important
neurophysiological functions. For example, GRK5 deficient
mice display a specific and nuanced subtype-specific muscarinic
receptor dysfunction while closely-associated adrenergic and
opioid receptor activity was not altered (Gainetdinov et al.,
1999; Matsui et al., 2004; Liu et al., 2009). CNS muscarinic
receptor activity has long been associated with the maintenance
of learning and memory behavior (Blokland, 1995). Thus, it
is unsurprising that GRK5-KO mice present with cognitive
dysfunction shown to correlate with hippocampal neurosynaptic
failure (Liu et al., 2009). Again, as with the cardiovascular
effects, gender differences in GRK5 activity were seen with
respect to neurodegenerative phenotypes, i.e., augmented axonal
defects and synaptic degenerative changes, were shown to be
greater in female experimental animals as opposed to males.
In addition, at the molecular signaling level, hippocampal
levels of the synaptosomal-associated protein 25 (SNAP25) and
synaptophysin were significantly lower in females compared to
males (Liu et al., 2009).

It has also been proposed that the involvement of GRK5 in
dementia-related conditions is likely associated with its potent
role in regulating neurite outgrowth that is required for optimal
learning and memory function (Chen et al., 2011).

Obstructive sleep apnea (OSA) occurs in approximately 2
to 4% of middle-aged women and men, respectively. Among
these, OSA is also observed to be more common in obese
patients, potentially due to increased tracheal occlusion caused
by excessive cervical adipose deposits. While OSA can induce
health concerns with respect to lack of effective sleep patterns,
it is evident that OSA is also closely associated with intermittent
cerebral hypoxia. Considering this deleterious hemodynamic
effect it is unsurprising that OSA has been shown to be a
potent risk factor for associated cognitive impairment in nearly
a quarter of diagnosed OSA patients (Singh et al., 2016). At the
molecular level CNS hypoxic episodes can often result in the
increased production rate of ROS – these oxygen species can
rapidly interact and modify a broad range of CNS lipids, nucleic
acids and proteins. Enhanced CNS ROS production has therefore
been associated vascular endothelial dysfunction, perturbations
of blood-brain barrier integrity and eventual neurosynaptic signal
transduction dysfunction. Rodent models of intermittent hypoxia
have been developed to effectively replicate the OSA found in
human patients (Badran et al., 2014; Singh et al., 2016). Using
these, it has been demonstrated that intermittent hypoxia effects
upon behavioral rodent activity (anxiety, balance, short-term
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memory) are acutely sensitive to, and potently augmented by,
the genetic deletion of GRK5 (Badran et al., 2014; Singh et al.,
2016). Such research suggests that part of the CNS functionality of
GRK5 may be associated with oxygen sensation neurochemistry,
potentially via controlling astrocytic functions.

GRK5 and Alzheimer’s disease (AD) pathology
For a significant period of time, undue focus on amyloid
pathologies and their subsequent association with Alzheimer’s
disease (AD) has been in effect (Tanzi and Bertram, 2005;
Jack et al., 2010; Mawuenyega et al., 2010; Lesne et al.,
2013; Selkoe and Hardy, 2016). However, and from a more
therapeutically important aspect, there has long been known to
be an extant cholinergic receptor (post-synaptic nicotinic and
M1 muscarinic acetylcholine) hypofunction evident in AD (Terry
and Buccafusco (2003)). In AD it has been demonstrated that
augmented presynaptic cholinergic activity results in the reflexive
attenuation of synaptic acetylcholine release. This reduced release
therefore results in diminished level of activity at the post-
synaptic muscarinic M1 GPCRs. Indicating the importance of
muscarinic signaling in AD pathophysiology, muscarinic M1
receptor signaling cascades can inhibit β-amyloidogenic (Aβ)
amyloid precursor protein (APP) processing, resulting in a
decreased level of cytotoxic β-amyloid accumulation (Sadot et al.,
1996). From genetic deletion mouse models (i.e., GRK5-KO) it
has been shown that GRK5 functionality is associated with severe
hippocampal dysfunction (loss of neurosynaptic proteins and
axonal swelling) as well as increased amyloidosis (Suo et al., 2007;
Li et al., 2009).

When combined with murine AD models (Tg2576) GRK5
deficiency was found to cause increased inflammatory astrogliosis
in both hippocampal and cortical brain areas (Li et al., 2008).
In addition to this effect, the GRK5 deficiency was also linked
with both increased soluble Aβ levels as well as increased
insoluble Aβ plaque load (Cheng et al., 2010). These findings
were proposed to be due to a GRK5-induced potentiation of
presynaptic muscarinic M2 receptor activity that resulted in
a significant reduction of synaptic acetylcholine transmission
levels (Liu et al., 2009; Cheng et al., 2010). This GRK5-
associated alteration of synaptic receptor activity in murine
models of AD has been shown to be linked to disruptions
in sub-cellular compartmentalization of GRK5. Hence, Zhang
et al. (2014) were able to demonstrate that aged AD model
mice possess a highly specific plasma membrane deficiency of
GRK5 (Zhang et al., 2014). A paucity of pre-synaptic GRK5,
with its concomitant detrimental effect on M2-acetylcholine
receptor-controlled acetylcholine release, has been subsequently
linked to an exacerbation of tau hyperphosphorylation and
further neuronal dysfunction. Using chemical blockade of these
hyperactivated M2 receptors Zhang et al. (2014) were able to
attenuate this tau hyperphosphorylation in a GSK3β-dependent
manner.

It is thus apparent that GRK5 may indeed hold the key
to the connection between the current major theories of
AD, i.e., the amyloid and the cholinergic hypotheses. The
cholinergic hypothesis suggests that cholinergic CNS dysfunction
is responsible for the cognitive decline (Bartus et al., 1982) while

the amyloid hypothesis proposes that Aβ is the AD-causative
factor (Bartus et al., 1985; Woolf, 1996; Hardy and Selkoe, 2002;
Small and Cappai, 2006; Fisher, 2008). Interestingly, as we have
previously outlined, Aβ is thought to be one of the driving
forces for alterations of membrane associated GRK5 in AD (Suo
et al., 2004). GRK5 plasma membrane deficiencies can mediate
presynaptic M2 acetylcholine autoreceptor hyperactivation that,
in turn, causes post-synaptic cholinergic hypoactivity through
the functional attenuation of cholinergic neurotransmission.
This disrupted cholinergic transmission then serves to augment
Aβ amyloid production leading to a “feed-forward” process of
progressive neurosynaptic dysfunction and amyloid toxicity. In
this recursive process both amyloid deposition and cholinergic
dysfunction each can serve as a cause and/or consequence of
each other, with the extant GRK5 dysfunction as the pivotal
mediator. Given the present interest in these hypotheses in AD
pharmacotherapy, the importance of GRK5 as a drug target in
this system may increase significantly in the future.

As a prelude to our next section, it is intriguing to note that
GRK5 can be further connected with AD through its ability to
phosphorylate α-synuclein (SNCA) (Pronin et al., 2000; Arawaka
et al., 2006; Bychkov et al., 2008), tubulin as well as the AD-
associated tau protein (Zhang et al., 2014). This pathological
effect has been proposed to occur through GRK5-mediated
phosphorylation causing increased SNCA polymerization and
eventual aggregation – in a similar manner to that seen with Aβ

in the context of AD (Carman et al., 1998).

Parkinson’s disease (PD)
Parkinson’s disease (PD) is one of the most commonly
encountered neurodegenerative diseases at the present time, just
behind AD with respect to world prevalence. The pathological
effects of PD impact the primary fine motor systems of the body.
PD is clinically typified by progressive deterioration of tremor,
rigidity, bradykinesia/akinesia, gait disturbance, and postural
instability. The major defining neuropathological feature of PD
has long been considered to be the loss of neurons in the
substantia nigra that provide dopaminergic innervation to the
striatum, the CNS region most heavily implicated in fine motor
control. Since the molecular mechanism causing dopaminergic
neuron dysfunction are yet to be comprehensively defined,
there are unfortunately no effective current pharmacotherapeutic
interventions capable of retarding, or reversing, the disease
(Dawson and Dawson, 2002). One of the lesser known aspects
of PD is the fact that advancing age is arguably the strongest
risk factor for its generation (Rango and Bresolin, 2018). In this
light it is unsurprising that PD is typically is presented after the
age of 60.

With respect to the functional intersection between GRK5 and
PD pathology, it has been demonstrated by multiple research
groups that GRK5 represents one of the major kinases that can
phosphorylate SNCA. This classical function of GRK5 results
in the promotion of the oligomerization of PD (with actual
co-localization of GRK5 and SNCA), facilitating the creation
of pathological Lewy bodies in the substantia nigra and locus
coeruleus of PD patients (Pronin et al., 2000; Arawaka et al.,
2006; Bychkov et al., 2008). The nuclear functionality of GRK5
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is one of its defining functional features among GRK proteins –
GRK5 activity itself has also been shown to promote the nuclear
translocation of SNCA and its associated factors PLK2 and 3
(Polo-like kinase 2 and 3) (Goncalves and Outeiro, 2013; Fares
et al., 2014). While the full ramifications of nuclear SNCA
remain currently cryptic, it has been proposed that this aspect of
SNCA biology may be independent of the classically-pathological
SNCA aggregation modality. It is important to note, especially
with respect to aging pathomechanisms, that oxidative stress
environments promote the enhanced nuclear localization of
SNCA (Xu et al., 2006; Monti et al., 2010; Siddiqui et al.,
2012). Within the nuclear domain SNCA has been shown to
functionally antagonize histone acetylation, resulting in increased
neurotoxicity (Goers et al., 2003; Kontopoulos et al., 2006).
Nuclear SNCA has also been found to be a transcriptional
regulator capable of binding to PGC1-α (Peroxisome proliferator
activated receptor gamma coactivator 1-alpha) promoter regions,
and in doing so, potentially regulate mitochondrial gene
transcription and thus neurometabolic ROS-associated activity
(Siddiqui et al., 2012). In addition to these cell signaling-based
analyses, genetic association studies have proposed a haplotypic
association of GRK5 gene with the clinical presentation of
sporadic PD. These pathological haplotypes associated with
functional GRK5 SNPs that can control multiple transcription
factors (Yin Yang-1 (YY1) and cAMP response element-binding
protein (CREB-1)) that together are capable of potentiating
SNCA transcription (Arawaka et al., 2006). Unfortunately, and
as is quite common with genetic association studies, subsequent
studies have failed to reproduce some of these propositions.
Hence, studies employing GRK5 deletion in cells have failed to
find a resultant attenuation of SNCA phosphorylation (Sakamoto
et al., 2009; Liu et al., 2010). In addition, further studies have
not observed a strong localization of GRK5 in Lewy bodies
(Takahashi et al., 2006) or a firm association of GRK5 SNPs with
PD (Tarantino et al., 2011).

Meta-Analysis of Diverse Molecular
GRK5 Interactors
In our previous section (Molecular Functionality of GRK5)
we applied multiple unbiased informatic pipelines to our
extracted GRK5 interactome metadata to demonstrate that these
diverse proteins do indeed possess concerted and interconnected
molecular functions. Using a latent semantic analysis platform
(GeneIndexer) (Cashion et al., 2013; Chen et al., 2013; Maudsley
et al., 2018) we were able to prioritize multiple, functionally
diverse GRK5 interactome factors that possessed the strongest
textual associations with input interrogator terms describing,
aging of cardiovascular and nervous systems. These proteins
included L-3-hydroxyacylcoenzyme A dehydrogenase type II
(HADH), 5-hydroxytryptamine receptor 4 (HTR4), GPCR-
kinase interacting protein-1 (GIT1), histone deacetylase 6
(HDAC6), and eukaryotic elongation factor 2 (EEF-2). In
the following sections we shall detail how these functionally
diverse proteins, informatically prioritized from our unbiased
GRK5 interactome metadata, still generate a dimensionally-
condensed signature of the greater role of GRK5 in somatic

coordination of cardiovascular and neurological deterioration
with aging.

Enzyme: HADH – Mitochondrial Trifunctional Enzyme
Subunit β

L-3-hydroxyacyl-coenzyme A dehydrogenase type II (HADH)
acts as an endoplasmic reticulum (ER) amyloid β-peptide-
binding protein (ERAB). It has been proposed that HADH
can facilitate amyloid-induced neurodegeneration by enhancing
Aβ toxicity and accumulation in neurons of AD patients.
Investigations by Frackowiak et al. (2001) showed the absence
of HADH in amyloid plaques or vascular amyloid, but did
however denote the expression of HADH in VSMCs in both
juvenile and aged control subjects as well as in amyloid free
blood vessels in AD cases (Frackowiak et al., 2001). In this
respect a potential interaction between HADH and Aβ in
amyloid-producing cells was further studied in isolated VSMCs
from CNS vessels presenting with an Aβ-related angiopathic
condition. HADH had a mitochondrial localization (Zhou et al.,
2012; Ibdah et al., 2001) and failed to co-localize with classical
endoplasmic reticulum marker proteins. Aβ accumulating cells
were those with a low HADH expression. However, the
association between low HADH expression levels and Aβ

depositions by brain VSMCs requires further studies (Frackowiak
et al., 2001).

GPCR: HTR4 – 5-Hydroxytryptamine Receptor 4
The 5-hydroxytryptamine receptor type 4 (HTR4) appears
to be the predominant cognate receptor responsible for
serotonin responsivity within cardioventricular tissue in
experimental models of congestive heart failure. HTR4 receptor
expression contributes to positive inotropic responses and the
productive signaling activity of these receptors is increased upon
pathological transitions to heart failure. The HTR4 mediates
positive inotropic responses to LV dilatation, as seen in post-
infarction congestive heart failure (Brattelid et al., 2007). HTR4
mRNA levels are increased in male Wistar rats with increasing
left ventricular hypertrophy and elevated further aging with
increasing left ventricular (LV) hypertrophic failure. Therefore,
the HTR4 can be differentially induced in LV hypertrophy and
failure.

Experimental studies have also demonstrated that the HTR4
serotonin receptor is a prime controller of cognitive activity,
depressive conditions and also the etiology of AD. Positron-
emission tomographic studies of HTR4 CNS expression patterns
across lifespan, using the selective ([11C]SB207145 ligand), found
a gender-specific variation in expression profiles, i.e., HTR4 levels
showed a profound decline in limbic system areas only in female
subjects (Madsen et al., 2011). The deficits of HTR4 receptor
expression found in women suggests a role for HTR4 receptors in
cognitive and emotional control and may eventually contribute to
the higher rate of affective diseases coincident with AD in female
patients (Madsen et al., 2011).

Kinase: GPCR-Kinase Interacting Protein-1 (GIT1)
The GPCR-kinase interacting protein (GIT) family of proteins
(GIT1 and GIT2) were originally identified as GRK and
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GPCR interacting proteins (Premont et al., 1998). GIT1 is
a multifunctional scaffold protein that possesses an ADP-
ribosylation factor GTPase activating capacity. With respect
to the intersection between GIT1 activity and cardiovascular
functionality it has been demonstrated using GIT1 knockout
(GIT1-KO) mice that loss of this receptor-associated protein
caused structural and functional changes in cardiac mitochondria
(Pang et al., 2011). In addition, this group found that several
mitochondrial regulator genes (PGC-1α, PGC-1β, Tfam) were
also profoundly reduced in the hearts of GIT1-KO mice. As
expected, these mice subsequently present with reduced ATP-
synthetic capacity and a strong increase in cardiac muscle
apoptosis (Pang et al., 2013).

GIT1 genomic deficiency also has been shown to profoundly
attenuate vascular smooth muscle growth capacity (Pang et al.,
2013). Using a specific GIT1 deletion model of aortic smooth
muscle cells Cyclin D1, a key cell cycle regulator, was found
to be strongly downregulated significantly decreased in GIT1
knockout cells. Pang et al. (2013) continued to demonstrate
that GIT1-associated muscle proliferation control occurred in
a PLC-γ- and ERK1/2-sensitive manner. Further linking GIT1
functionality to vascular control in an aging paradigm, GIT1
has been shown to be a novel eNOS (endothelial nitric oxide
synthase) binding partner. The association of GIT1 with eNOS
has been shown to enhance the catalytic activity of this synthase
and therefore suggests that GIT1 is an important controller
of vascular relaxatory behavior. Interestingly, genomic ablation
of GIT1 results in the opposite functional effect upon nitric
oxide synthesis. GIT1 expression has also been shown to be
reduced in vascular endothelial cells following hepatic damage
(Shikata et al., 2003; Zhang et al., 2005; Jones et al., 2009;
Pang et al., 2009). In this specific scenario, recovery of the
endothelial expression of GIT1 was found to reverse the evident
endothelial dysfunction found in hepatic damage cases. Re-
expression of GIT1 after liver injury rescued the endothelial
phenotype. Hence the GRK5-interacting protein GIT1, appears
important for eNOS function and thus such an interaction will
likely have tremendous import upon vascular disorders involving
dysregulated eNOS such as arterial stiffness (Liu et al., 2012;
Avolio, 2013).

In addition to its role in regulating nitric oxide synthesis,
GIT1 has been linked to muscle cell proliferation as it can
exert potent cardiovascular signaling effects via the control of
Ang II-induced angiotensin receptor signaling. In a case of
elegant research Pang et al. (2008) were able to demonstrate
that Ang II-mediated HDAC5 phosphorylation (implicated in
the c-Src-PLCγ-CamK II-HDAC5 signaling cascade that controls
VSMC gene transcription) was GIT1-dependent (Pang et al.,
2008). Within this paradigm the direct interaction of GIT1 and
CamK II was required for effective Ang II-mediated HDAC5
phosphorylation. Finally, Pang et al. (2008) found that GIT1
genetic deletion reduced the transcriptional activity of MEF2
induced by Ang II. As GIT1 was selected as a binding partner
of GRK5 in the meta-analysis, these findings reinforce the pivotal
role of the non-canonical activity of GRK5 in the cardiovascular
system which is largely associated with its nuclear HDAC5 kinase
activity.

Transcriptional Regulator: HDAC6
As a cluster of enzymes, the primary role of histone deacetylases
(HDACs) is to remove acetyl groups from an N-acetyl lysine
amino acid on histone proteins. This histone deacetylation allows
for a more compact and efficient packing of DNA with these
histones. HDACs, as a protein family, are proteins grouped into
four functional classes (I, II, III, IV). Class I, II, and IV possess
a zinc dependent active site – these so-called “classic” HDACs
are also typified by their enzymatic sensitivity to inhibition by
trichostatin A. Class III HDACs comprise a family of trichostatin-
insensitive, NAD+-dependent, proteins that are also referred to
as “sirtuins” (de Ruijter et al., 2003; Vaquero et al., 2007). With
specific respect to the GRK5-interacting HDA6, this protein is
classified as a Class IIb HDAC. Demonstrating its close functional
association with GRK5 signaling paradigms, HDAC6 expression
and activity has been shown to be significantly elevated in stressed
cardiac muscle (Lemon et al., 2011), while remaining unchanged
in physiological cardiac hypertrophy models. In addition to these
in vivo analyses, HDAC6 catalytic activity can also be induced
by stressful stimuli impinging upon cultured cardiac muscle cells
and fibroblasts (Lemon et al., 2011).

In a manner reminiscent to cardiac tissue, HDAC6 levels
were found to be potently elevated in CNS regions important
for the disease etiology of AD. At the present time research
into the role of HDAC6 in AD, it has been proposed that the
evident increased HDAC6 expression could be a driving factor in
AD-associated neurodegeneration (Zhang L. et al., 2013). While
HDAC6 activity has been proposed to be a pro-degenerative
factor in the CNS, alternative evidence also points to some
potentially neuroprotective functions. For example, molecular
targeting of HDAC activity has been shown to be able to
directly protect neurons and glia and thus improve physiological
outcomes in CNS injury and disease models (Rivieccio et al.,
2009).

Translational Regulator – EEF2
Evidence has been generated that directly implicates the
transcriptional regulator eukaryotic elongation factor 2 (EEF2)
in regulating the functionality of cells in response to myocardial
ischemia (Demeulder et al., 2013). EEF2 interaction with mTOR
and p70S6K appears to generate a regulatory complex that
control protein synthesis in times of cellular stress and metabolic
aging. This regulatory activity of EEF2 was subsequently shown
to be sensitive to the expression levels of AMPKα2. The
AMPKα2 protein was demonstrated in this cardiac ischemic
models to control p70S6K and EEF2 in normoxic conditions
specifically (Demeulder et al., 2013). Besides the role of EEF2
in the cardiovascular system, this elongation factor is found
to be active in neurodegenerative signaling paradigms as well.
Arguelles and co-workers investigated the role of EEF2 in the
hypothalamic-hypophysis system. In old rats it is observed that
during aging a considerable diminution of protein synthesis takes
place in several tissues, potentially linked to modifications in
EEF2. More specifically, research indicated that oxidative stress
could be involved in EEF2 post-translational modification, with
the resultant formation of covalent malondialdehyde (MDA)
and 4-hydroxynonenal (HNE) EEF2 adducts. These long-lasting
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alterations in EEF2 structure have therefore been proposed
to effect the age-dependent attenuation of EEF2-controlled
protein synthesis and thus dysfunctional hypothalamic control of
neurometabolic activity (Arguelles et al., 2011).

DISCUSSION

GPCR signaling is an adaptable and highly dynamic process that
forms a major component of the current pharmacopeia. Effective
control of GPCR signaling dynamics is strongly dependent on
several key proteins that regulate signaling sensitivity and post-
activation functional fate (Takeda et al., 2002; Cabrera-Vera et al.,
2003; Preininger and Hamm, 2004; Oldham and Hamm, 2008;
Ritter and Hall, 2009; Hewavitharana and Wedegaertner, 2012).
One such family that is intricately linked to the regulation of the
activated receptors are the GRKs (Pitcher et al., 1998; Penela et al.,
2003; Lefkowitz and Shenoy, 2005). GRKs demonstrate a broad
range of activities within multiple physiologically important
processes. Commensurate with this importance, perturbations of
GRK systems have been linked to diverse pathologies such as
bipolar disease (Barrett et al., 2007), AD (Obrenovich et al., 2009),
rheumatoid arthritis (Lombardi et al., 1999), multiple sclerosis
(Vroon et al., 2005), and PD (Bychkov et al., 2008). This review
has focused on one such GRKs, i.e., GRK5 and in particular,
the capacity of GRK5 to mediate a signaling connection between
cardiovascular and neurodegenerative disease. GRK5 is one of
the main cardiac GRK isoforms which is strongly expressed
not only in cardiovascular but also CNS tissues. Moreover,
unique non-receptor-dependent regulatory roles of GRK5 have
been recently uncovered that may prove important for future
therapeutic targeting (Kunapuli and Benovic, 1993; Premont
et al., 1994; Premont and Gainetdinov, 2007; Schumacher-Bass
et al., 2012). Human studies have suggested that GRK5 is
increased in expression and activity in various cardiac diseases
(Ishizaka et al., 1997; Tardiff, 2006; Gold et al., 2012; Wu et al.,
2012) and GRK5 has recently been designated as a potential
therapeutic target in cancer due to its anti-tumor effect when
inhibited. Molecular inhibition strategies targeting GRKs have
been shown to improve cardiac function in several animal
models of cardiomyopathy (Raake et al., 2008; Rengo et al., 2009;
Volkers et al., 2011; Homan et al., 2014; Gambardella et al.,
2016).

To date, one GRK5 inhibitor, amlexanox, has been reported.
This agent directly binds the GRK5 kinase domain and hereby
inhibits the MEF2 transcriptional domain significantly (Homan
et al., 2014). However, amlexanox is not GRK5 selective and yet
has to be tested in cancer-related paradigms. To this end, the
synthesis of a GRK5 selective inhibitor would be an effective
anti-tumor treatment by promoting apoptosis and cell cycle
arrest, especially in tumors with a low pro-apoptotic protein
p53 abundancy. On the other hand, stimulation of GRK5
expression would be more effective in GPCR-dependent tumors
(Gambardella et al., 2016). Xia et al. (2009) has previously
performed work in which they classified 1800 compounds that
can stimulate CREB activity, a transcription factor of, among
other things, the GRK5 gene (Xia et al., 2009) – hence refining

molecular CREB regulators may lead to the development of
future GRK5 expression regulators.

Alterations of GRK levels, due to both canonical effects on
GPCR sensitivity as well as through non-GPCR effects can
lead to changes in signaling pathways that regulate apoptosis
(Chen et al., 2010), inflammation (Sorriento et al., 2008; Patial
et al., 2010) and hypertrophy (Dzimiri et al., 2004; Gold
et al., 2012). While canonical cardiac GRK5 signaling can
exacerbate the progression to heart failure, novel, non-canonical
nuclear GRK5 molecular mechanisms (Martini et al., 2008;
Zhang et al., 2011) suggest tremendous future opportunities
for pharmacotherapeutic development (Schumacher and Koch,
2017). With the elucidation of novel therapeutically-tractable
GPCR biased signaling mediated via β-arrestins, the importance
of GRK signaling has received renewed interest. Hence, it has
been shown that the specific coterie of GRKs that phosphorylate a
receptor can exert a strong functional effect upon the subsequent
nature of both G protein-dependent and β -arrestin-dependent
signaling functions (Noma et al., 2007; Nobles et al., 2011; Choi
et al., 2018). Thus, GPCR phosphorylation by GRKs is a pivotal
cellular event as it desensitizes the active GPCR, but also dictates
downstream signaling, functionally selecting for downstream G
protein pathways or enabling β-arrestin-mediated pathways.

At the present time, it is widely accepted that complex
age-related disorders such as cardiovascular and CNS ailments
represent highly interconnected molecular events spanning
multiple tissues. Moreover, considerable in vivo and in vitro
research in both humans and animals suggests the functional
connectivity of cardiovascular disorders with neurodegeneration.
To reinforce this plethora of scientific literature, our review
particularly focused on the potential function of GRK5 to
both physically and functionally bridge cardiovascular and
neurodegenerative disorders. Nowadays, a broad range of
GRK5 binding partners, connecting many signaling proteins
associated with these disorders, have been identified via multiple
molecular biological approaches. The extent of such protein–
protein interactions can significantly expand the potential
of multidimensional molecules to control both health and
disease beyond their canonical activities. More specifically, the
interaction of GRK5 with non-GPCR proteins has been shown
to profoundly influence transduction pathways controlling both
CNS and cardiovascular disease trajectories. Hence, here we
have assessed the current state of both literature-based data, as
well as functional metadata, concerning the known scientific
literature and the GRK5 interactome to better elucidate novel
mechanisms of intrinsic protein regulation as well to further
clarify GRK5-associated physiological signaling proteins. Our
unbiased informatic analysis review of the curated GRK5
interactomic metadata, obtained from previously published
material, reveals multiple insights into GRK5 functional biology
and thus reinforces our central post that GRK5 can act as
an age-related bridge between cardiovascular and neurological
pathomechanisms. Likewise, physiologically-relevant functions
are noted, when analyzing potential functional relationships in
the GRK5 interactome, that are germane to the central hypothesis
of this review, i.e., “Cardiovascular System Development and
Function” and “Nervous System Development and Function.”

Frontiers in Pharmacology | www.frontiersin.org 15 December 2018 | Volume 9 | Article 1484

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01484 December 13, 2018 Time: 17:30 # 16

Hendrickx et al. GRK5 in Age-Related Disorders

An additional radial hierarchical super-network revealed GRK5
was as the central controlling nexus of this aggregated dataset.
Moreover, we were able to prioritize multiple, functionally
diverse GRK5 interactome factors via a latent semantic indexing
platform that possessed the strongest textual associations with
input interrogator terms describing, aging of cardiovascular and
nervous systems. These proteins included HADH, HTR4, GIT1,
HDAC6, and EEF2 which generate a dimensionally-condensed
signature of the greater role of GRK5 in somatic coordination
of cardiovascular and neurological deterioration with aging.
A more nuanced appreciation of the GRK5 interactome and its
functional signaling spectrum will likely assist in the derivation
of potentially new signal-specific therapeutics in the future
that exploit this signaling paradigm in a beneficial manner. In
addition, our expanded understanding of GRK5 interactomics
also helps place its comprehensive signaling activity in the context
of whole-somatic “programs” of related molecular signatures.
However, the complete ramifications of the correlation between
GRK5 levels to different cardiac and neurodegenerative disease
etiologies, across the human lifespan, still remains to be
determined. Continued investigation will likely reinforce the
importance of GRK5 as a therapeutically-exploitable systems-
level controller and coordinator of the cardiovascular-dementia
pathological axis.
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