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Snorre Lindset (Norway), Andreas L. Ulvaer (Norway), Bertel Anestad (Norway) 

Securitization of life insurance policies 

Abstract 

In this paper we develop, price, and analyze a securitization structure of life insurance policies. By transferring term 

insurance policies to a special purpose vehicle, all risk is transferred from insurers to the capital market. With mortality 

rates as the only underlying source of uncertainty, the structure is easy to analyze. We calibrate our model to the Swiss 

Re/Vita III-deal and find that insurers may transfer mortality risk to the capital market at a reasonable cost. 

Keywords: life insurance, securitization, mortality risk. 

Introduction© 

In this paper we construct, analyze, and price a pos-

sible securitization structure of life insurance poli-

cies, hereafter abbreviated SSLIP. We calibrate it to 

market data using the Vita III-deal from 2007. 

Securitization is a relatively new and important in-

novation in the history of modern finance. The tech-

nique has developed rapidly, and the scope has ex-

panded from mortgage loans to odd cash flow 

streams such as future royalties from rock music. 

Admittedly, the financial turmoils and the recession 

that have followed in the wake of the subprime cri-

sis have put securitization in a dim light. 

The idea of securitization is to isolate specific future 

cash flow streams and make them tradable. In gen-

eral, all future cash flows have potential for securiti-

zation. The rights or obligation to future cash flows 

may be physically transferred to a single purpose 

vehicle (SPV) as an off-balance-sheet transaction, or 

simply just held as collateral against the SPV in an 

on-balance-sheet transaction. Next, the SPV issues a 

number of tranches of securities with different sen-

iority to the cash flows. The most junior tranche is 

often called the equity class, and typically receives 

what is left after the other tranches have received 

their parts. This tranche is, thus, the most risky, but 

also the one with the highest expected return. Nor-

mally, one or several of the acknowledged rating 

agencies are hired to rate the different tranches be-

fore they are sold to investors through financial 

institutions. 

So far, the life insurance industry has been outside 

the scope of mass securitization. There have been 

some deals in recent years, but most of these have 

been either closed book, value in force, or XXX 

deals (see Cowley and Cummins, 2005; or Garns-

worthy, 2006 for an overview). The first securitiza-

tion directly linked to mortality rates was the Swiss 

Re/Vita deal in 2003, followed by Vita II in 2005 

and Vita III in 2007. 

With growing demand for life insurance and new 

and stricter regulatory reserve requirements, the 
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industry needs more free capital. Life insurers will 

need 80-100 billion of new reserves the next 7-8 

years, according to research by KPMG’s actuarial 

service practice in 2005 (see Life Insurance Interna-

tional, 2005). There are regulations on what types of 

capital classes may be utilized as reserves, and the 

most common have been equity or subordinate debt, 

which both are costly. According to Life Insurance 

International (2006), alternatives as reinsurance and 

letters of credit are limited in volume, costly, and 

are only available for a few years at a time. As a 

consequence, the presence of bankruptcy cost and 

regulation can justify securitization as a new way to 

cope with the capital problems, both as a new source 

of financing and as a risk management tool that can 

lower the need for holding reserve capital. However, 

the main advantage of securitization over traditional 

solutions such as reinsurance and letter of credit, is 

the possibility to develop long-term solutions. 

Most life insurance companies hold large blocks 

of policies with expected profits to emerge in the 

future. Securitization may allow insurers to 

unlock part of these profits today and at the same 

time shift the risk associated with the policies to 

the capital market. The released capital may be 

used to write new policies, which again may be 

securitized. Securitization can, therefore, make it 

possible to undertake new business at a higher 

pace and utilize capital more efficiently. Insurers 

may focus on selling new policies, while the capi-

tal market takes care of investment management 

and risk bearing. The policy servicing function 

could either still be handled by the originator, or 

outsourced to a specialized third party. 

Depending on how a securitization is structured, 

mortality risk or longevity risk may be the main 

drivers. These risk drivers often have low correla-

tion with other risk drivers investors are exposed to. 

Securities based on life insurance products, there-

fore, add little systematic risk to a well diversified 

portfolio, and investors should demand a low rate of 

return. The unsystematic risk is diversifiable. Inves-

tors may, therefore, easier be able to bear this mor-

tality risk and longevity risk than, e.g., reinsurers, 

and may, therefore, offer more attractive conditions.  



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 1, Issue 2, 2010 

 38

Milevsky, Promislow, and Young (2006) show 

that when mortality rates are stochastic not all 

mortality risk is diversifiable. For a more thorough 

discussion regarding securitization, see Cowley and 

Cummins (2005). 

Cairns, Blake, and Dowd (2006) develop a two-

factor model for the development over time of mor-

tality rates that can be used when pricing assets ex-

posed to mortality and longevity risk. The first fac-

tor affects mortality-rate dynamics at all ages in the 

same way. The second factor affects the tilt of the 

mortality curve. Cairns, Blake, Dowd, Coughlan, 

Epstein, Ong, and Balevich (2009) analyze eight 

stochastic mortality-rate models using data from 

England and Wales (EW) and the United States 

(US). They find that both factors in the model by 

Cairns et al. (2006) are important and also that co-

hort effects are important. Cox, Lin, and Wang 

(2006) model mortality rates as a jump-diffusion 

process. They further take into account that changes 

in mortality rates across countries are correlated. 

This work is extended by Chen and Cox (2009) to 

take into account correlation between mortality-rate 

changes over time. Lin and Cox (2008) develop a 

model for analyzing securitization of catastrophe 

mortality risks. 

In this paper we focus on how term insurance poli-

cies can be securitized. The paper is organized as 

follows: In section 1 we describe our securitization 

structure, in section 2 we discuss mortality rate 

modelling, in section 3 we extract the market price 

of risk from the Vita III-deal, and in section 4 we 

analyze the securitization structure we propose in 

this paper. Finally, we conclude in the last section. 

1. The securitization structure 

In this section we present a way insurers can securi-

tize term insurance policies, and also how to find a 

price on these mortality-linked securities. We want 

to transfer all the mortality risk to the capital market 

by setting up a so-called risk transfer securitization
1
. 

This is in principle similar to a closed-book securiti-

zation, as the insurer does not have to worry about 

the risk of holding these policies anymore. Further-

more, the securitization allows life insurers to real-

ize future profits today. 

 
1 

Fig. 1. Illustration of the securitization structure referred to as SSLIP

                                                      
1 In practice, an insurer typically only transfers part of the mortality risk to reduce the problem with asymmetric information. See, e.g., Biffs and 

Blake (2008) for a discussion of asymmetric information and securitization when there is longevity risk. 
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All cash flows t0 SSLIP are at time t0. Investors are, 

therefore, protected against all counterparty risk. 

The collateral is invested in risk-free assets. Mor-

tality and benefits ( tB ) paid upon the underlying 

portfolio of policies, are the only risk drivers influ-

encing TV . To protect policyholders, s  (the safety 

margin) is set such that there is very low probabil-

ity that the collateral is less than the benefits, B . 

The terminal value of the SPV, TV , is divided 

among the classes after the typical waterfall princi-

ple, where A has seniority over B, and C gets what 

is left. There are no coupon payments from the 

SPV. Benefits are paid via the insurer or directly to 

the policyholders. 

We present this structure by setting up an example 

(see also Figure 1). An insurer takes a number, 0m , 

equal single premium n -year term insurance poli-

cies with face value pfv , sold at the same date, 0t , 

to people in the same region of a certain gender and 

age, x . The policies are transferred to a special 

purpose vehicle (SPV). In addition to the fair pre-

miums
1
, 0 :x nm Z , the insurer transfers a safety mar-

gin of size 0 :x nsm Z , to the SPV. The capital of the 

SPV is invested at the risk-free rate, fr , and has the 

value TV  at maturity 0T t n= +  after paying bene-

fits , 1t x t t pB q m fv−=  each year from 1t  to T , where 

, ( , )x tq q x t=  is the probability that a person aged 

x  at 0t t= , who was alive at 1t − , dies between 

1t −  and t , and 1tm −  is the number of policyhold-

ers still alive at 1t − . Hence,  

1(1 ) ,    1, 2,..., ,t t f tV V r B t T−= + − =     (1) 

and 

0

1

(1 ) (1 ) ,
T

T T t

T f t f

t

V V r B r
−

=

= + − +∑     (2) 

where  

0 0 :( 1) ,x nV s m Z= +  

i.e., all single premiums and the safety margin. 

The SPV is split into three classes that have differ-

ent claims on TV . The two most senior classes, A 

and B, are set up as zero-coupon bonds that mature 

at T  with face values Afv  and Bfv . The third class, 

C, can be considered an equity class that receives 

                                                      
1 We denote the present value of expected future cash flows by Zx:n. 

what is left after A and B have received their face 

values. The claim functions on TV  for the three 

classes are: 

( ) min( , ),

( ) min( , ( )),  and

( ) ( ) ( ).

A T A T

B T B T A T

C T T A T B T

V fv V

V fv V V

V V V V

Φ =
Φ = −Φ
Φ = −Φ −Φ

   (3) 

Class A has the payoff structure of a short put with 

strike price Afv  in combination with a risk-free 

investment paying Afv . Class B has the payoff 

structure of a long bull spread in combination with a 

risk-free asset, while class C has the payoff structure 

of a long call. The value of the SPV at time T  could 

in principle become negative if benefits are very 

large due to extreme changes in mortality rates. The 

SPV structure is meant to protect the insurer from 

mortality risk, but also make sure investors cannot 

lose more than invested. To avoid losses for policy-

holders, one can either use a guarantor, or increase 

the safety margin, s . For SSLIP we choose the lat-

ter, and set s  big enough to make sure 

Pr( 0) 1TV > ≈ . 

At 0t t= , investors are offered to buy these claims 

on the SPV and the proceeds go to the insurer. The 

value of the claims are
2
: 

, ( , ) [ ( )],    for A, B, C,Q

t j j TP t T E V jΠ = Φ =    (4) 

where 
Q

E  is the expected value under the risk-

adjusted probability measure Q . The discount fac-

tor, ( , )P t T , is the price at time t  for a risk-free 

zero-coupon bond that pays 1 at T . The cost for the 

insurer to transfer the risk related to the policies at 

0t  is thus 
00 : ,, ,

( 1) .x n t jj A B C
s m Z

=
+ − Π∑  Under the 

real world probability measure P , we get 

( )

, ( , ) [ ( )],    for A, B, C,j T t P

t j j T
P t T e E V j

δ− −Π = Φ =  (5) 

where jδ  can be interpreted as an average risk pre-

mium per annum (see, e.g., Cairns et al., 2006). By 

setting equations (4) and (5) equal we get 

( ) [ ( )]
,    for A, B, C.

[ ( )]

j

P

T t j T

Q

j T

E V
e j

E V

δ − Φ
= =

Φ
   (6) 

                                                      
2 We make the same assumption as Cairns et al. (2006, page 701, 

Assumption 3) that mortality rates and interest rates are stochastically 

independent. Note in particular that the formulation in equation (4) 

implies deterministic interest rates since a zero-coupon bond is used 

for discounting, and the Q-measure and the forward measure, there-

fore, coincide. 
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The risk premium, 
j

δ , is often referred to as the 

price of the investment product j , because it re-

flects how much more (or less) an investor expects 

to get compared to investing the money with no risk 

and earning the risk-free rate. 

The yield to maturity (YTM), 
j

y , can be found for 

the two bond classes by solving for jy  in  

( )

,

,   for A, B.jy T t j

t j

fv
e j

− = =
Π

     (7) 

2. Mortality rate modelling 

We use information contained in the prices from the 

Vita III-deal to price SSLIP. To this end, we need a 

mortality rate model, which can be applied both to 

the Vita III-deal and to SSLIP. According to Alber-

tini (2006), term insurance policies, the underlying 

of SSLIP, are mainly bought by middle-aged males. 

As a consequence, the Vita III index has most 

weight on males between ages of 31 and 60.  

Mortality risk is the only underlying source of 

risk in SSLIP. We need a model for mortality risk 

that uses age-specific mortality rates, and not just 

the population as a whole. The two-factor model 

presented by Cairns et al. (2006) does that. This 

model includes two factors, one that affects all 

ages (a shift in the mortality curve)
1
, and one that 

is linked proportionally to age (a tilt in the mortal-

ity curve). From Figure 2 we see that over the 

years there have been downward shifts in mortal-

ity rates and mortality rates for the younger de-

creased earlier than mortality rates for the older. 

We also find there to be correlation between the 

mortality rates for EW and US for these effects. 

The two-factor model includes data from one re-

gion only. Our model should include at least two 

regions to fit Vita III. Also, the two-factor model 

is constructed to price longevity bonds, and there-

fore, only considers the age group of 60-89 years 

old. For the purpose of this paper, the model 

should include the age group of 31-60 years old. 

Cairns et al. (2009) expand the two factor model by 

Cairns et al. (2006) in three different ways by adding: 

a) a constant cohort effect term; 

b) a quadratic age effect term; 

c) an age-dependent cohort effect term. 

When comparing our data to the data used by Cairns 

et al. (2009), it is clear that a quadratic term is not as 

appropriate for ages of 31-60 as it is for ages of 60-

89. Figure 2 shows logit( )q  for our age group for 

three different years with linear trend lines and cor-

responding 
2

R  for EW and US. 
2

R  for the quad-

ratic trend line
2
 is slightly higher than 

2
R  for the 

linear trend line, but they are both very good. Even 

if the difference between the two 
2

R s would prove 

to be significant, it means very little for the results 

when adding a stochastic term to predict the future. 

We, therefore, do not include a quadratic term in our 

mortality rate model. 

EW

R
2 = 0,9928

R
2 = 0,9968

R
2 = 0,9887

‐7,0

‐6,5

‐6,0

‐5,5

‐5,0

‐4,5

‐4,0

‐3,5

30 35 40 45 50 55 60

Age

1933 1968 2003

       

US

R
2 = 0,9952

R
2 = 0,9965

R
2 = 0,9965

‐7,0

‐6,5

‐6,0

‐5,5

‐5,0

‐4,5

‐4,0

‐3,5

30 35 40 45 50 55 60

Age

1933 1968 2003

Fig. 2. Logit(q) for males aged 30-60 years in EW and US with linear trend line and corresponding R2 for three different years 

When analyzing EW and US data from 1933 to 
2003 for cohort effects, we find some of the same 
cohort effects as Cairns et al. (2009) find in EW 
and US data from 1964 to 2002.

1
 For US data we 

find no cohort effects before 1959,
 2

but for EW data 

                                                      
1 With q being the mortality rate, the mortality curve is defined as how 

logit(q) varies with age, x. 
2 R2 for the quadratic trend line is not shown here. 

the same effects can be traced through all our data
3
. It 

is also difficult to find any cohort effects for the gen-
erations born after 1948 and before 1916. Cairns et al. 
(2009) show that including cohort effects yields a bet-

                                                      
3 It is unlikely that cohort effects suddenly appeared in the US in 1959, 

while it has been present in EW through all our data. However, we 

choose to not research this further, as validating data is not the focus of 

this paper. 
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ter model for data from 1964 to 2002, but we still 
choose to exclude cohort effects in our model because 
we want to keep it as parsimonious as possible.  

The challenge is to find a mortality rate model that 
works with both Vita III and SSLIP. The underly-
ing of Vita III is a mortality rate index that is 
weighted for country, age, and gender to reduce 
basis risk related to the portfolio of policies in the 
Vita III SPV. However, in SSLIP we want to be 
able to look at only one country, one age group, 
and one gender. We find the original two-factor 
model presented in Cairns et al. (2006) to be suit-
able for our purpose, mainly because it allows us to 
use any age we like as input. 

Although the model suits us, we need to expand it in 
a few ways. To model the dynamics of the mortality 
rate index used by Vita III, we need to include more 
than one region and also model the correlation be-
tween regions. By including two regions the princi-
ple is shown, and if the two regions are the US and 
EW, most of the index is covered. Cox et al. (2006) 
also use these two regions when working with Vita 

I. We now have a four-factor model and can find λ  

(the market price of risk) for two different countries 

in Vita III. When we know λ s for different coun-

tries, we are able to price SSLIP by using the λ  

corresponding to the country used as input in 
SSLIP. We ignore gender, and use data for males 

both when we find λ  and when estimating the price 

of SSLIP. Cox et al. (2006) use total population for 
both US and EW in their model, and Cairns et al. 
(2006) use males only, so these simplifications are 
quite common. 

2.1. Specification of the two-region-two-factor 
mortality rate model. The measure for mortality 
applied here is the mortality rate q (t, x). 

q (t, x) = the probability that an individual aged x at 

t0 dies between t – 1 and t, for t = 1, 2, …, T. 

Cairns et al. (2006) show that logit( )q  is close to 

linear in age for males older than 60 years. Plots 

in Figure 2 indicate that this holds for males be-

tween 31 and 60 years old in both EW and US in 

1933, 1968, and 2003. The plots also show that 

the level and the tilt develop over time. We, there-

fore, use a stochastic mortality rate model with 

two stochastic parameters. The model is of the 

form: 

1 2logit( ( , )) ( ) ( )( ),q t x A t A t x x= + −     (8) 

or rearranged: 

1 2

1 2

( ) ( )( )

( ) ( )( )
( , ) ,

1

A t A t x x

A t A t x x

e
q t x

e

+ −

+ −=
+

     (9) 

where x  is the mean age over the range of ages 

being used in this analysis ( 45.5x = ). 

For each year t , 1A , and 2A  are estimated using least 

squares. The plots in Figure 3 show how the parame-

ters develop over time. The level parameter 1A  have a 

downward drift for both EW and the US. The tilting 

factor 2A  develops more randomly, and the sign of the 

drift is not very clear. For both factors we find correla-

tion between EW and US.  

 
Fig. 3. Developing A1 and A2 over time for EW and US 

To forecast future mortality rates we need to 

model how  

1,EW 1,US 2,EW 2,US( ) [ ( ), ( ), ( ), ( )]´A t A t A t A t A t=  (10) 

develops. Here we assume that ( )A t  is a random 

walk with drift 

( ) ( 1) ( ),A t A t CZ tµ= − + +    (11) 

where µ  is a constant 4 1×  vector, C  is a constant 

4 4×  upper triangular matrix, and ( )Z t  is a four-

dimensional standard normal random variable. This 

model specification allows for covariance among all 
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four factors in our two-region-two-factor model. If we 

do not allow for covariance, we are likely to underes-

timate the risk when applying the mortality rate model 

on Vita III. Data of first-differences is used to estimate 

the drift µ  and the covariance matrix V. ´V CC=  

have infinitely many solutions. Similarly to Cairns et 

al. (2006) we restrict C  to be upper triangular and 

can, thus, easily derive a unique solution by applying 

Cholesky decomposition. 

2.2. Selection of mortality rate data. As we choose to 

work with a two-region model and since the objective 

now is to extract risk premiums from the Vita III-deal, 

data from EW and US is used to calibrate the model. 

The Vita III payout structure is based on an index, 

where death rates from EW and the US account for 

80% of the total. Cox et al. (2006) use the same simpli-

fication in their analysis of Vita I. 

Life tables for EW and for US are published as in-
terim life tables for three years at a time. At Human 
Mortality Database (2008) one can find mortality 
rates in life tables for one year at a time for EW and 
US. EW life tables by year of death are available for 
1841-2003, while the same tables for the US only 
are available for 1933-2004. Also, for EW the vola-
tility of the mortality rates was larger before the mid 
1950s than the volatility for the next 50 years. To 
have data from the same time period for both re-
gions we use data from 1933-2003. In the calibra-
tion of the model, data is limited to contain mortal-
ity rates for males aged of 31 to 60. 

2.3. Calibration of the two-region-two-factor 

model and considerations. When mortality rates 
for males between 31 and 60 years old for EW and 
US between 1933 and 2003 are used to calibrate the 
model, we get the following results: 

1,EW

1,US

2,EW

2,US

ˆ 1.684 02

ˆ 1.348 02
ˆ ,    and

ˆ 2.150 04

ˆ 2.101 04

E

E

E

E

µ
µ

µ
µ
µ

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

                     (12) 

4.042 03 4.503 04 3.411 04 5.065 06

4.503 04 6.483 04 3.567 05 2.378 05
ˆ .

3.411 04 3.567 05 4.579 05 2.181 06

5.065 06 2.378 05 2.181 06 2.896 06

E E E E

E E E E
V

E E E E

E E E E

− − − − − −⎡ ⎤
⎢ ⎥− − − − − −⎢ ⎥=
⎢ ⎥− − − − − −
⎢ ⎥− − − − − −⎣ ⎦

                (13) 

As 1,EWµ̂  and 1,USµ̂ are negative, both EW and US 

experience a decrease in the mortality level parameter 

1A . The positive sign of 2,EWµ̂  and 2,USµ̂  indicates 

that mortality rates decrease less for the older than for 

the young. From the V̂  matrix it is clear that the level 

factor 1( )A t  and the tilt factor 2 ( )A t  have higher 

volatility for EW than US. The correlation matrix in 

Table 1 reveals high negative correlation between 1A  

and 2A  for both EW and US, indicating that when 

mortality rates improve, they improve more for the 
young than for the old. Furthermore, we observe posi-
tive correlations between EW and US as expected. 

Table 1. Correlation matrix on first differences of A (t)  

 A1,EW A1,US A2,EW A2,US 

A1,EW  1.00 0.28 -0.79 -0.05 
A1,US  1.00 -0.21 -0.55 
A2,EW   1.00 0.19 
A2,US    1.00 

3. Extracting the market price of mortality risk 

from Vita III 

The stochastic mortality rate model developed in 

section 2 can be used to evaluate SSLIP under the 

real-world probability measure, P . However, to 

estimate the value of SSLIP, a Q -probability meas-

ure needs to be developed. More precisely, the Q -

dynamics of the two-region-two-factor model needs 

to be derived so that expected payoffs of SSLIP 

under the Q -measure can be discounted at the risk-

free rate of return to find the value of SSLIP. The 

time t  value of SSLIP is given by 

[ ], ,

, ,

( , ) ,Q

t V t j T

j A B C

P t T E V
=

Π = Π =∑   (14) 

with the Q -dynamics of the underlying stochastic 

( )A t  process given as 

[ ]( ) ( 1) ( ) ,A t A t C Z tµ λ= − + + +   (15) 

where 
1,EW 1,US 2,EW 2,US, , , ´λ λ λ λ λ⎡ ⎤= ⎣ ⎦ . Rearranging, 

we have 

( ) ( 1) ( ),A t A t CZ tµ= − + +%    (16) 

where 

.Cµ µ λ= +%      (17) 

Note that equation (16) is equal to Cλ  added to 

equation (11). 
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The difference between the P- and Q-probability 

measures depends on the market price of risk, λ . 

As λ  is not specified within our model, it must be 

extracted from the market price of assets with the 

same underlying source of uncertainty, i.e., ( )A t . 

3.1. Method applied to find λ. To estimate the 

market price of risk λ, a payoff model in accordance 
with Vita III is built based on the stochastic mortal-
ity rate model in section 2. Vita III is evaluated 
yearly, and if trigger levels are reached before ma-
turity, Swiss Re receives payouts at the end of that 
year. We simplify and say that all payouts happen at 
maturity, but still evaluate every year separately. 
Then we have the following payoff structure and 

loss for Vita III series j :  

0

1 0

0

max[0,( ) / 2 ]
min[ ,100 %],

( )

j Q QT

t t jQ

j

t t j j

q q q AP
L

q EP AP

−

=

+ −
=

−∑ (18) 

where 0t  is 2007, jT  is the maturity of series j  

(2010 or 2011), jAP  is the attachment point, jEP  is 

the exhaustion point, 
Q

tq  is the mortality rate index 

under the Q -measure at t , and  

0 2004 2005( ) / 2.q q q= +  

Simulations with different values of λ  are con-

ducted until the discounted expected risk-adjusted 
payoff is in accordance with the actual price the 
bonds were sold at. When this is true, we have an 

estimate of λ . Or, in mathematical terms, λ  and 

the corresponding Q -measure are found when 

equation (19) holds 

( ) [ ] +−=∏ jjt

Q

j

Q
fvLETtP

, 0
0

1,  

( )( )
jjf

T

tt

fvrttP δ++∑
= 1

,0 ,   (19) 

where 1t  is the time of the first interest payment. 

For Vita III, the value of bond series j  at 0t t=  is 

the same as the face value jfv  (
0 ,t j jfvΠ = ). Thus, 

investors are only compensated for possible losses 

by being paid a spread jδ , over LIBOR/EURIBOR 

(see Appendix A). jL  is the percentage loss on 

the bond series j  (see equation (18)). By using 

constant interest rates1, equation (19) may be re-
written as 

                                                      
1 To simplify we do not distinguish between LIBOR/EURIBOR and the 

risk-free rate of return, rf. Issues regarding interest rates are not the main 

focus of this paper, and as a simplification we set LIBOR/EURIBOR 

and rf at all maturities to 4.5% annually compounded for all further 

calculations. 

1

(1 ) .
T

Q Q T t

j j j f

t t

EL E L rδ −

=

⎡ ⎤= = +⎣ ⎦ ∑   (20) 

Q

jEL  is the simulated risk-adjusted payoff. We vary 

λ  until equation (20) holds. Or, by defining the 

annual loss rate under Q  as 

1

,

(1 )

Q

j

j T
T t

f

t t

E L
d

r −

=

⎡ ⎤⎣ ⎦=
+∑

    (21) 

we try to achieve  

j jd δ=      (22) 

when running simulations for different values of λ2. 

There are three securities from Vita III we can use 

to estimate λ ,Vita III – series 1, 2, and 7 (see Ap-

pendix A). Series 3 is identical to series 1, except 

for the currency, while series 4, 5, and 6 include a 

guarantor and, therefore, have a much lower δ 3. 

3.2. Assumptions made to find λ. The two-region-

two-factor model allows for two regions, hence, a 

total of four λ s: 1,EW 1,US 2,EW,  ,  ,λ λ λ  and 2,US.λ  

From equations (16) and (10) we can see that 1λ  

represents the market price of risk of a shift in the 

mortality curve, and 2λ  the market price of risk of a 

tilt in the mortality curve. 

If only one of the bond series of Vita III is used, 

there are infinitely many possible combinations of 

1,EW 1,US 2,EW,  ,  ,λ λ λ  and 2,USλ  that fulfill equation 

(20). Four variables cannot be uniquely specified 

with only one equation or by applying only one 

price from the Vita III series. As a compromise we 

set 2,EW 2,US 0λ λ= = . It is then, in principle, possi-

ble to solve for three unique sets of 1,EWλ  and 1,USλ  

by combining the three series of Vita III. Unfortu-

nately, none of the combinations could fulfill equa-

tion (20) for both series with one unique set of 

1,EWλ  and 1,USλ . This is addressed further in section 

3.3. Therefore, we also assume that 

1,EW 1,US 1λ λ λ= =     (23) 

for all further analysis. 

                                                      
2 The elements in the variance-covariance matrix in equation (13) are 

small in magnitude. Throughout the paper we run 500,000 simulations, 

which are sufficient to obtain estimates with low standard errors and 

also lead to acceptable computation times. 
3 If we knew how much Swiss Re paid for the guarantee, we could have 

used these series as well, but this information has not been available to us. 
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Another important restriction used in this paper is 

that λ  is time independent. Without this restric-

tion there is too little data to estimate λ . This is a 

common assumption in financial economics (for 

further discussion, see Cairns et al. (2006, foot-

note 22)). 

As explained in section 2, we have chosen to only 

have two regions in the mortality rate model. Vita 

III is linked to indices in five countries: the US, 

EW, Germany, Japan, and Canada. In section 2.1, 

the US and EW are chosen as the two regions be-

cause they account for 80% (62.5% and 17.5%, 

respectively) of the Vita III index. The volatility of 

EW mortality rates is larger than the volatility of 

the US mortality rates. One of the reasons for this 

is larger fluctuations in mortality rates around 

World War II, specifically in 1939 and 19451. 

Germany and Japan were also hit hard during and 

after World War II. For EW, the volatility is even 

greater when looking at data as far back as 1900, 

due to World War I and the Spanish flu, both be-

fore 19332. We like SSLIP to work as an insurance 

against catastrophes. Because of these facts, we 

keep the weight of US at 62.5% and set the weight 

of EW (with the highest volatility) to 37.5%. 

To find 1λ  we need to calculate an age-weighted 

mortality rate index corresponding to Vita III. In 

addition to weighting for gender and country, the 

Vita III mortality rate index is weighted for age. 

A weighted average of mortality rates for 5-year 

age groups for EW and 10-year age groups for the 

US is found. We use the same weights, but ex-

clude ages below 31 and above 60 years old as 

our model is not calibrated for these ages3. To get 

each age group assigned to one specific mortality 

rate, we split the US age groups to match the EW 

age groups, and then find the middle age value. 

The mortality rates for these middle values are 

weighted to find the index mortality rate. 

The target equation, equation (20), shows that the 
Q

jEL  we seek and the corresponding 1λ  depend on 

fr . However, 1λ  is not very sensitive to fr . For 

instance for Vita III – series 1, 
Q

EL  varies from 

4.53% to 4.96% as fr  varies from 2% to 8%.   

                                                      
1 When removing 1939 and 1945 from the dataset, the variance of first 

differences of A1 and A2 for 1933-2003 decreases by 81% and 85% for 

EW, and only by 2% and 3% for US. 
2 When including 1900-1932 in the dataset, the variance of first differ-

ences of A1 and A2 increases by 77% and 40%, respectively. 
3 For EW, 31-60 year-old males account for 86.50% of the total male 

population in the portfolio. For the US, 25-64 year-old males account 

for 95.50% of the total male population, and we assume 31-60 year old 

males to account for 86.33%. 

3.3. Estimates of λ1 and discussion. In theory, 1λ  

should be equal for all securities on the same under-
lying (and the same time to maturity), which means 

series 2 and 7 should yield the same 1λ . Table 2 

shows jd , annual loss rate under Q  as defined in 

equation (21), after simulations with different values 

for 1λ . The correct 1λ  is found when j jd δ=  ( jδ  

equals the number of basis points series j  was is-

sued at). 

Table 2. The tables below show jd  as basis points 

(bps) when running simulations for different values 

of 1λ  for three different series of Vita III. We 

search for the 1λ  that yields j jd δ= . 

Series 1 – 4 years, class B, 1 110δ =  bps 

1λ  1.260 1.269 1.270 1.271 1.280 

1d  [bps] 105 109 110 111 114 

Series 2 – 5 years, class B, 2 112δ =  bps 

1λ  1.090 1.103 1.104 1.105 1.100 

2d  [bps] 105 111 112 113 115 

Series 7 – 5 years, class A, 7 80δ =  bps 

1λ  1.460 1.471 1.472 1.473 1.480 

7d  [bps] 76 79 81 81 83 

As Table 2 shows, the three values for 1λ  do not 

match exactly. Also, in the previous subsection 

we find that there are no unique solutions to a set 

of 1,EWλ  and 1,USλ . There are at least two possible 

reasons: 

1. The stochastic mortality rate model is misspeci-

fied. 

2. Some of the assumptions we make for pricing 

do not hold. 

There are a number of stochastic mortality rate mod-

els, and they are all influenced by the data used to 

calibrate them. Including jumps could be reasonable 

when pricing CAT bonds like Vita III. However, we 

have chosen not to include jumps in the analysis.  

The other reason may be violations of assumptions 

of the pricing theory applied. One of the assump-

tions is that there exists a liquid and frictionless 

market, where assets on the same underlying are 

traded. Obviously, this assumption is violated. Dif-

ferent 1λ  estimates from the different series of Vita 

should in theory give arbitrage possibilities. In the 

present market, though, with few securities and low 
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liquidity, the theoretical arbitrage possibilities may 

be difficult to exploit. As a result, different investors 

with different appetite for risk may buy the different 

series, and no one is able or willing to exploit the 

theoretical arbitrage possibility. 

Other assumptions, like, e.g., constant λ  over time, 

may also not hold, and thus, explain why the 1λ  

estimates differ between series 1 and 2, which have 
different maturities. 

The rating and spread paid on series 7 (the most 
secure series) may not reflect the underlying mortal-
ity risk, but rather the credit quality of the collateral 

and the swap counterparty. Thus, the 1λ  results 

from series 7 (see Table 2) are likely to be overesti-

mated. Estimates of 1λ  from series 1 and 2 can also 

be affected by these non-mortality risks, although 
not by as much as for series 7. We, therefore, place 

less emphasis on the 1λ  corresponding to series 7. 

4. Analysis of the securitization structure 

We now have an estimate of the market price of 

mortality risk and can, hence, analyze and price 

SSLIP. When we refer to the price of SSLIP we 

mean the risk premium (expected rate of return) 

investors demand on the three classes. The prices of 

classes A and B are presented as basis points (bps) 

above fr  ( Aδ  and Bδ ), and for C the price is pre-

sented as the total required rate of return ( f Cr δ+ ). 

For classes A and B one can also find the yield to 

maturity, YTM. This is the rate of return investors 

earn if there is no loss and investors receive face 

values at maturity, and is, therefore, greater than the 

risk premium.  

To analyze and find the prices of the different 
classes of SSLIP we run simulations. As the only 
stochastic underlying is mortality rates, we run 
simulations with different development of mortality 
rates for ages from 31 to 60. For each simulation we 

use λ  to derive the risk-adjusted mortality rates 

under Q . In that way we use the same random 

numbers for all calculations under both P  and Q . 

Given a set of specified input parameters, we calcu-

late the terminal value of the SPV, TV , under both 

P  and Q  for each simulation. Furthermore, for 

each simulation we use TV  to calculate the payoffs 

on classes A, B, and C, according to the claim func-
tions given in equation (3). By averaging over the 
simulated payoffs, we obtain estimates for the ex-

pected values ( )P

j TE V⎡ ⎤Φ⎣ ⎦  and ( )j T

Q
E V⎡ ⎤Φ⎣ ⎦  for 

all classes. 

4.1. Base case parameters. We first present results 
from a simulation with base case parameters. Then 
we analyze how prices vary when some of these 
parameters are changed. Our base case parameters 
have values as shown in Table 3.  

Table 3. The parameters used when simulating the 
base case. 

Parameter Value 

Region US 

Gender Males 

Agreed benefit,
 

pfv
 

$200,000 

Number of contracts, 0m  100,000 

Market price of risk of tilt factor, 
2λ  0 

Market price of risk of shift factor, 1λ  1.10 

Safety margin, s  55% 

Face value class A, Afv  55% 

Face value class B, Bfv  15% 

Years in term policy, n 10 years 

Age at t0, x 35 years old 

Risk-free interest rate, fr  4.5% 

The first five parameters in Table 3 are considered 
constant throughout the paper while the last seven 
are changed when doing sensitivity analysis. The 
US is chosen as base case. Mortality rates are differ-
ent for males and females. Analyse of different mor-
tality rates are done by varying age, not gender. 
According to Standard & Poor’s (2007), 65% of 
Vita III policyholders are males, and we, therefore, 
use mortality rates for males in the base case. 
Agreed benefit is proportional to the value of the 

SPV at T  ( ~p Tfv V ) and does, thus, not affect the 

results. The number of contracts in the securitization 
only affects the basis risk, and is, therefore, only 
changed when analyzing this risk. For all other 
cases, basis risk is ignored, and hence, the number 
of contracts does not affect the prices of the classes. 

The market price of risk of the tilt factor, 2λ , is set 

to 0 as explained in section 3.2.  

In section 3.3, Table 2, we get three different val-

ues for 1λ . Series 2 is more similar to SSLIP than 

series 1 and 7 and we have, therefore, set 

1 1.104λ = , c.f., Table 2. For Vita III, class B has 

lower trigger levels than class A, and is, therefore, 

more similar to SSLIP in that less extreme events 

affect the payoff. Also, the 1λ  estimate from se-

ries 7 might be biased because of strong influence 

from other risk factors than mortality (see discus-

sion in section 3.3). Because SSLIP has a matur-

ity of ten years in the base case, the five-year 

bonds of Vita III are more similar than the four-

year bonds. Hence, series 2 is used in the base 
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case. Although we find 1λ  to the nearest thou-

sandth in section 3.3, we round to the nearest hun-
dredth here and use 1.10.  

The safety margin, s , is set to 55%. With s = 55%, 

0r ( ) 1P P

TV > ≈ . The total cost for the insurer to 

transfer risk to investors is not affected by s  (see 

section 4.3), as opposed to the δ s. 55% yields sen-

sible prices of the three classes. By sensible prices 

we mean that prices and rating roughly correspond 

to other previously traded assets. 

The face values of classes A and B are set to 55% and 

15% of [ ]P

TE V , respectively. Although the total cost 

for insurers is independent of these numbers, they have 

great influence on the δ s. After trying many different 

combinations of Afv  and Bfv , we found these values 

to yield sensible prices and ratings for all three classes.  

10-year term insurance policies are chosen for the base 

case. In ten years mortality rates might change a lot, 

and insurers are, hence, exposed to a significant risk. 

Also, 10-year term contracts are typical for the US life 

insurance market.  

35 years old is chosen as age for the base case. People 

with families are more likely to buy life insurance 

products than other people and 35 year old males are 

good representatives for this group. 

The risk-free interest rate, fr , is as before set to 4.5% 

annually compounded for the base case1. 

4.2. Base case results. Results from simulating the 

base case are reported in Table 4. 

Table 4. Results from 500,000 simulations with base 

case parameters 

The price of class A, Aδ  8 bps 

Expected loss, class A, P

AEL  0.0005% 

Moody’s rating, class A Aaa 

YTM, class A, Ay  4.58% 

The price of class B, Bδ  220 bps 

Expected loss, class B, P

BEL  0.1204% 

Moody’s rating class B Aa3 

YTM, class B, By  6.72% 

The price of class C, C frδ +  20.41% 

Weighted average prices, priceswa  3.16% 

Insurer’s minimum markup, minim  14.34% 

Number of SPV defaults 0 

StdDev( [ ]P

TE V ) 10.69% 

                                                      
1 All interest rates and prices are presented as annually compounded. Equa-
tion (6) gives the prices as continuously compounded, so annually com-

pounded rates have been computed from these before presented here. 

The prices are found as explained above using equa-
tion (6). Another interesting measure is the expected 
loss for classes A and B,  

[ ( )]
1 for A, .   B

P

j TP

j

j

E V
EL j

fv

Φ
= − =   (24) 

Investors are concerned with expected loss, and it is 
possible to make some assumptions about what 
kinds of investors are willing to buy the classes, and 
at what price level. 

According to Moody’s Investors Service (2000), the 
expected loss rate has become the primary measure 
of credit quality, particularly for structured finance 
securities. Numerical simulations are often con-
ducted to estimate expected loss rates. Different 
levels of expected loss rates correspond to different 
rating levels that give an impression of relative 
credit quality of the different classes. The cumula-
tive expected loss rates estimated in this paper are 
mapped with Moody's Idealized Loss Rate Table, 
which is shown in Appendix B. YTM is found using 
equation (7)2.  

The weighted average of prices, waprices, is the total risk 
premium investors demand for the SPV as a spread 

above fr , and is found by solving for waprices in 

[ ]
0

0

( )( )

,

.prices f

P
wa r T t T

t V

E V
e

+ − =
Π

   (25) 

Insurer’s minimum markup, immin, is the cost for the 
insurer to transfer the risk to the capital market, as 
percent of received fair premiums. Hence, 

0 00 : , ,

0 : 0 :

,
x n t V t V

min

x n x n

sm Z
im s

m Z m Z

−Π Π
= = −   (26) 

and is one of the measures we find the most inter-
esting. 

Number of SPV defaults is for how many of the 

simulations we observe 0TV <  and 

StdDev( [ ]P

TE V ) is the standard deviation of the 

expected values of 
TV  under P .  

4.3. Sensitivity analysis. To analyze how the results 

depend on the different parameters, simulations are 

performed when varying one parameter at a time. 

Some parameters affect the underlying mortality rates 

and, hence, the cost for the insurer to transfer the risk 

to the investors. Other parameters do not affect this 

value, but changes the prices investors are willing to 

pay for the different claims. In all tables presented in 

                                                      
2
 Because YTM does not take into account the possibilities of losses, it 

is greater than or equal to the price added the risk-free rate, 

fy rδ≥ + . 
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this subsection, the slanted characters are used for the 

base case results.  

4.3.1. The market price of risk of a shift in the mortal-

ity curve, 
1λ . The market price of risk of a shift in the 

mortality curve, 1λ , affects the mortality rates under 

the Q -measure, and hence, all valuations of SSLIP. 

From Table 5 we see that the higher the market price 
of risk is, the higher compensation do investors require 

to take on mortality risk. Even if 
1λ  is as high as 1.50, 

the insurer only needs a markup of 20.09% to transfer 
the risk to the capital market. 

Table 5. Sensitivity analysis of the market price of 

risk of a shift in the mortality curve, 
1λ  

1λ  
prices

wa  
minim  

0.70 1.83% 8.94% 

0.90 2.46% 11.62% 

1.10 3.16% 14.34% 

1.30 3.94% 17.17% 

1.50 4.81% 20.09% 

4.3.2. Safety margin, s. When varying the safety 
margin, s , immin is constant. This makes sense, be-

cause the underlying risk and the premiums do not 
vary with immin, and hence, should immin neither do 
so. Table 6 shows the results when varying s. The 
only actual requirement is that s is big enough to 

obtain ( 0) 0P

TPr V < ≈ . This is true for all trials 

with s except when s = 20%. It is, thus, no problem 
to use s = 30% as the safety margin. 

In theory (assuming a liquid and efficient market), 
the attractiveness of the securities is not affected by 
these values. However, we want to create securities 
that are rated as investment grade and thus, 
StdDev(EP[VT]) cannot be too high. We find that 

when StdDev(EP[VT]) ≈ 10% and hence, waprices ≈ 3% 
we achieve the ratings we seek on the structure. If 
one wants to create classes with Aaa ratings for both 
classes A and B, and at the same time one wishes to 
avoid too high prices for class C, one needs to set s  

even higher than what is done in the base case.  

Table 6. Sensitivity analysis of the safety margin, s  

s Defaults priceswa  StdDev( [ ]P

TE V ) 

20% 474 13.96% 29.63% 

30% 0 6.94% 19.69% 

40% 0 4.68% 14.75% 

50% 0 3.54% 11.76% 

55% 0 3.16% 10.69% 

60% 0 2.85% 9.78% 

70% 0 2.39% 8.40% 

80% 0 2.06% 7.35% 

90% 0 1.80% 6.52% 

Note: Defaults is the number of times VT < 0 out of the 500,000 
simulations. 

4.3.3. Face value class A and B, Afv  and Bfv . The 

face values of classes A and B, Afv  and Bfv , are 

expressed as percentages of [ ]P

TE V . Class C re-

ceives what is left, and therefore, has no face value. 

How the investors split the SPV at maturity does not 

affect the value of the SPV at maturity, TV . Hence, 

waprices and immin are constant when the face values are 

varied. For the capital market to be interested in buy-

ing the different classes, the classes should be as 

transparent as possible, i.e., the payoff profiles should 

resemble other securities in the market. 

Figure 4 shows the prices and Moody's ratings of the 

three classes for different values of Afv  and Bfv . The 

rightmost bar shows the base case, with Afv = 55% 

and Bfv = 15%. The prices and corresponding ratings 

for the classes are attractive and also compare some-

what to similar securities traded, for example, the 

Queensgate securities presented in Lane (2006). 

 

Fig. 4. The prices and Moody's ratings of the three classes 

for different values of fvA and fvB, expressed as percentages 

of EP[VT]. The rightmost bar shows the base case 

4.4.3. Years in term, n. Term insurance policies 

are usually sold with maturity of 1, 5, 10, 15, 20, 

or 30 year(s). When modelling the two-region-

two-factor model from section 2.1 we look at 

mortality rates ten years ahead, and hence, are not 

able to analyze maturities longer than ten years. 

We do, however, look at results for 1-year and 5-

year policies. Table 7 shows the results when 

varying years in term. Results show that when 

reducing n, immin decreases. This makes sense, 

because one is now exposed to the underlying 

mortality risk for only one or five years and hence 

the cost of transferring risk is less. The 

StdDev( [ ]P

TE V ) also decreases with decreasing 

maturity because s  is kept constant. The value for 

s  is set to fit 10n =  and could be lower when 

5n =  to get the same StdDev( [ ]P

TE V ) as for the 

base case.  
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Table 7. Sensitivity analysis of years in term, n  

n 
minim  StdDev( [ ]P

TE V ) 

10 14.34% 10.69% 

5 7.49% 9.12% 

1 2.41% 6.70% 

4.3.5. Age, x. Age is important because it directly 

influences the only underlying, mortality rates. 

Mortality rates increase as age increases. The 

same absolute increase in mortality rates, there-

fore, results in a smaller relative increase for high 

ages compared to lower ages. Table 8 shows re-

sults when varying age, x . It is clear that as x  

increases, waprices, immin, and StdDev( [ ]P

TE V ) 

decrease. They do not vary much though, and, 

apparently, SSLIP works for all ages presented 

here. The small differences also make it unprob-

lematic to combine several age groups without 

changing the properties of SSLIP much. Note that 

the variation of StdDev( [ ]P

TE V ) indicates that a 

lower safety margin, s , may be applied when 

securitizing policies for higher ages. 

Table 8. Sensitivity analysis of age, x  

x 
priceswa  

minim  
StdDev( [ ]P

TE V ) 

31 3.18% 14.51% 12.61% 

35 3.16% 14.34% 10.69% 

40 3.13% 14.17% 8.77% 

45 3.09% 13.99% 7.69% 

50 3.03% 13.79% 7.71% 

4.3.6. Risk-free interest rate, fr . The risk-free inter-

est rate affects what returns the SPV gets on in-

vested capital. Because the focus of this thesis is 

mortality risk, and not interest rate risk, we assume 

interest rates to be constant. We still run simulations 

to analyze scenarios with higher or lower interest 

rates. Results are shown in Table 9. 

Table 9. Sensitivity analysis of the risk-free interest 

rate, fr  

fr  P

AEL  
B

P
EL  

Aδ  
Bδ  

C frδ +  
minim  

2.0% 0.0006% 0.1477% 10 245 18.35% 14.86% 

4.5% 0.0005% 0.1204% 8 220 20.41% 14.34% 

7.0% 0.0003% 0.1066% 6 197 22.48% 13.85% 

The consequence to TV  of 100 unexpected deaths is 

greater if it happens in year one relative to year ten. 

This is due to lost return on the collateral when bene-

fits are paid out early. Interest rates strongly influence 

how important the development in mortality rates in 

the first years is relative to the last years. Higher inter-

est rates make the first years more important, while 

lower interest rates make the last years more impor-

tant. The mortality rate model applied is random walk, 

and hence, big deviations from expected mortality 

rates are most likely in the last years. As a conse-

quence, lower interest rates make TV  relatively more 

dependent on the last years’ volatile mortality rates, 

and hence, make TV  more volatile.  

Increased volatility of TV  under P  caused by lower 

interest rates, results in higher expected loss on 

classes A and B. The adjustment between Q  and P  

mortality rates increases every year. With relatively 
more weight on the last years due to lower interest 

rates, the payoffs under Q  are reduced compared to 

under P . Hence, when the difference between 

[ ]Q

TE V  and [ ]P

TE V  increases, the risk premium 

jδ  increases, cf. equation (6). Most importantly, the 

sensitivity analysis shows that immin increases with 
lower interest rates, but is not very sensitive. 

4.4. Basis risk. To analyze basis risk is not straight-
forward. Basis risk is defined as the remaining risk 
associated with hedging a position in SSLIP with 
mortality index linked securities. Or, put differently, 
the risk of deviation between realized mortality in 
SSLIP and officially published population mortality 
rates. There are two reasons for this risk. One is that 
the policyholders do not represent the population, 
and hence, are subject to different mortality rates. 
We do not analyze this type of basis risk, and con-
tinue to assume it can be ignored. 

The second source of basis risk is simply statistical 
sample risk1. When the number of policyholders in the 
sample portfolio is increased, the realized sample mor-
tality rate is likely to vary less from the population 
mortality rate. Hence, this risk is diversifiable, and 
investors should not demand a risk premium for this 
risk. However, basis risk results in increased volatility 
of VT. Because of the non-linear payoff structure of the 
different classes, the increased volatility affects the 
expected payoff for all classes under both P and Q. So, 
even if investors do not demand a risk premium, basis 
risk affects YTM on A and B. 

To analyze this risk we use the binomial distribution to 
simulate sample mortality under P. It is not straight-
forward to simulate sample mortality under the risk 
adjusted Q-measure. Thus, we are not able to value the 
claims directly. We are, however, able to look at 

StdDev(EP[VT]), 
P

AEL , and
P

BEL , and from that we can 

draw some conclusions of how the values and YTM of 
the different classes are affected. 

                                                      
1 Hereafter, when we refer to basis risk, we mean only this second, 

statistical type of basis risk. Dahl (2004) refers to this type of risk as 

“unsystematic mortality risk”. 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 1, Issue 2, 2010 

 49

The maturity of the policies, n, is important when 
considering basis risk. As n increases, basis risk 
becomes less important, because the variation 
tends to even out over the years. When including 
basis risk in the model, some results change, 

while others are unchanged. EP[VT] is not affected 
by basis risk, but StdDev(EP[VT]) increases, as 
shown in Figure 5. Although basis risk is small 
for m = 200,000 when n = 10 years, it is still pre-
sent. 
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Fig. 5. These charts show that when including basis risk, the standard deviation of the expected value of the SPV at maturity, 

StdDev(EP[VT]), decreases as number of contracts, m, increases and maturity of policies, n, increases. Basis risk is, thus, more 

important for 5-year bonds than for 10-year bonds 

When StdDev(EP[VT]) increases, expected loss under 

the P -measure of the two bond classes A and B, P

AEL  

and P

BEL , also increase. Thus, ratings might worsen, 

and the YTM demanded by investors, Ay  and By , 

increase. For class C, it is opposite and the initial value 

of class C, 
0 ,t C

Π , increases due to its call option char-

acteristics1.  

Figure 6 shows the mortality risk and the basis risk for 

class A and B for n = 10 years with different number 

of policies included in the SPV. It is clear that basis 

risk affects the expected loss of the bond classes. 

One should include at least 100,000 policies in the 

SPV to reduce the basis risk. 200,000 are of course 

even better. If this is difficult for one insurer to 

achieve alone, several insurers can cooperate. 

However, the expected loss and corresponding 

rating do not change much. For 10 years, only class 

B with 50,000 policies changes rating one class. 

The others are unchanged. Note that one should 

focus on expected loss, and that whether the rating 

changes or does not depend on the choice of base 

case parameters.  
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Fig. 6. These charts show how basis risk affects the expected loss and corresponding ratings for classes A and B for n = 10 

when including a different number of policies, m, in the SPV
1

                                                      
1 As is known from option pricing theory, call options increase in value with increasing volatility. Thus, the value of class C,

 0 ,t CΠ , increases when 

StdDev(EP[VT]), which is the volatility of the underlying of class C, increases. 
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Conclusion 

This paper contributes to the literature on mortality 
rate modelling and on securitization. In the paper we 
have proposed a possible securitization structure for 
term insurance policies. The securitization structure 
has also been calibrated to market data using the Vita 
III-deal and mortality data for England and Wales and 
the United States. We find that the structure makes it 
possible for life insurance companies to reduce their 
exposure to mortality risk, i.e., changes in mortality 
rates at a reasonable cost. To make the different classes  

of the structure transparent for investors, we have con-

structed classes A and B so as to have ratings Aaa and 

Aa3. High ratings, combined with decent expected 

rates of returns that have low correlation with other 

asset classes are likely to make securitization struc-

tures of life insurance policies attractive investments. 

The only uncertainty included in our model is changes 

in mortality rates. This simplification makes the struc-

ture easy to analyze and hopefully will foster a 

stronger interest among life insurers and investors 

towards securitization of life insurance policies. 
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Appendix A. Vita Capital III overview 

Table 10. Overview of the nine different bonds issued on January 1st, 2007, called Vita III.  

Series 1 2 3 4 5 5 6 6 7 

Rating A A A AAA AAA AAA AAA AAA AA- 

Principal $90 $50 €30 $100 $100 $50 €55 €55 €100 

Class B B B A A B A B A 

Attachment 120% 120% 120% 125% 125% 125% 125% 120% 125% 

Exhaustion 125% 125% 125% 145% 145% 145% 145% 125% 145% 

Maturity 4 5 4 4 5 5 4 4 5 

Currency L L E L L L E E E 

Margin 110 112 110 21 20 21 21 22 80 

Guaranteed    X X X X X  

Source: Standard & Poor’s (2007). 
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Appendix B. Moody's idealized loss rate table 

 Horizon 

Rating 1-Year 2-Year 3-Year 4-Year 5-Year 6-Year 7-Year 8-Year 9-Year 10-Year 

Aaa  0,0000% 0,0001% 0,0004% 0,0010% 0,0016% 0,0022% 0,0029% 0,0036% 0,0045% 0,0055% 

Aa1  0,0003% 0,0017% 0,0055% 0,0116% 0,0171% 0,0231% 0,0297% 0,0369% 0,0451% 0,0550% 

Aa2  0,0007% 0,0044% 0,0143% 0,0259% 0,0374% 0,0490% 0,0611% 0,0743% 0,0902% 0,1100% 

Aa3  0,0017% 0,0105% 0,0325% 0,0556% 0,0781% 0,1007% 0,1249% 0,1496% 0,1799% 0,2200% 

A1  0,0032% 0,0204% 0,0644% 0,1040% 0,1436% 0,1815% 0,2233% 0,2640% 0,3152% 0,3850% 

A2  0,0060% 0,0385% 0,1221% 0,1898% 0,2569% 0,3207% 0,3905% 0,4560% 0,5401% 0,6600% 

A3  0,0214% 0,0825% 0,1980% 0,2970% 0,4015% 0,5005% 0,6105% 0,7150% 0,8360% 0,9900% 

Baa1  0,0495% 0,1540% 0,3080% 0,4565% 0,6050% 0,7535% 0,9185% 1,0835% 1,2485% 1,4300% 

Baa2  0,0935% 0,2585% 0,4565% 0,6600% 0,8690% 1,0835% 1,3255% 1,5675% 1,7820% 1,9800% 

Baa3  0,2310% 0,5775% 0,9405% 1,3090% 1,6775% 2,0350% 2,3815% 2,7335% 3,0635% 3,3550% 

Ba1  0,4785% 1,1110% 1,7215% 2,3100% 2,9040% 3,4375% 3,8830% 4,3395% 4,7795% 5,1700% 

Ba2  0,8580% 1,9085% 2,8490% 3,7400% 4,6255% 5,3735% 5,8850% 6,4130% 6,9575% 7,4250% 

Ba3  1,5455% 3,0305% 4,3285% 5,3845% 6,5230% 7,4195% 8,0410% 8,6405% 9,1905%  9,7130% 

B1  2,5740% 4,6090% 6,3690% 7,6175% 8,8660% 9,8395% 10,5215% 11,1265% 11,6820% 12,2100% 

B2  3,9380% 6,4185% 8,5525% 9,9715% 11,3905% 12,4575% 13,2055% 13,8325% 14,4210% 14,9600% 

B3  6,3910% 9,1355% 11,5665% 13,2220% 14,8775% 16,0600% 17,0500% 17,9190% 18,5790% 19,1950% 

Caa1  9,5599% 12,7788% 15,7512% 17,8634% 19,9726% 21,4317% 22,7620% 24,0113% 25,1195% 26,2350% 

Caa2  14,3000% 17,8750% 21,4500% 24,1340% 26,8125% 28,6000% 30,3875% 32,1750% 33,9625% 35,7500% 

Caa3  28,0446% 31,3548% 34,3475% 36,4331% 38,4017% 39,6611% 40,8817% 42,0669% 43,2196% 44,3850% 

Note: Cumulative idealized loss rates for Moody's rating classes. 

Sourse: Moody’s Investor Service, April 2007, Special Comment on Default & Loss Rates of Structured Finance Securities: 1993-

2006, New York. 
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