

Journal of Information Technology and Computer Science
Volume 1, Number 2, 2016, pp. 82-97

Journal Homepage: www.jitecs.ub.ac.id

Hybrid Genetic Algorithm and Simulated Annealing for

Function Optimization

Gusti Ahmad Fanshuri Alfarisy1, Andreas Nugroho Sihananto2, Tirana Noor

Fatyanosa3, M. Shochibul Burhan4,Wayan Firdaus Mahmudy5

Universitas Brawijaya, Faculty of Computer Science, Veteran Road. 8,
65145 Malang, Indonesia

1gusti.alfarisy@gmail.com, 2andreas.nugroho90@gmail.com, 3fatyanosa@gmail.com,
4burhan.aan@gmail.com, 5wayanfm@ub.ac.id

Received 9 Desember 2016; accepted 8 February 2017

Abstract. The optimization problems on real-world usually have non-

linear characteristics. Solving non-linear problems is time-consuming.

Thus heuristic approaches usually are being used to speed up the

solution’s searching. Among of the heuristic-based algorithms, Genetic

Algorithm (GA) and Simulated Annealing (SA) are two among most

popular. The GA is powerful to get a nearly optimal solution on the broad

searching area while SA is useful to looking for a solution in the narrow

searching area. This study is comparing performance between GA, SA,

and three types of Hybrid GA-SA to solve some non-linear optimization

cases. The study shows that Hybrid GA-SA can enhance GA and SA to

provide a better result.

1 Introduction

In recent years, Evolutionary Algorithm (EA) has already become an important tool

to solve optimization problem such as multi-objective problems. This kind of problem

sought to look for an optimal solution or nearest optimal solution to be achieved.

However, sometimes that solution is hard to obtain if we use a common mathematical

approach which may lead into local optimum only. To solve this kind of problems, we

can use a heuristic algorithm such as Genetic Algorithm (GA) [1].

The genetic algorithm (GA) is a search algorithm that emulates the heredity and

advancement of biology in a common habitat with the attributes of solid parallels,

randomness, and self-adaption likelihood. The hypothetical establishments of the GA

are the Darwinian biological evolution standard and Mendel's heredity hypothesis. The

GA controls the search procedure utilizing existing data, merging to ideal or acceptable

solutions by evaluating the fitness of chromosomes and also performing the selection,

crossover, mutation and other genetic operations [2, 3].

Simulated annealing (SA) is a single objective combinatorial improvement

algorithm utilizing an analogy to the measurable mechanics of tempering in solids. It

was presented in 1982 by Kirkpatrick et al. [4]. Annealing defines a procedure in

material science where a solid is warmed to a temperature that grants various atomic

mailto:andreas.nugroho90@gmail.com
mailto:fatyanosa@gmail.com
mailto:burhan.aan@gmail.com
mailto:5wayanfm@ub.ac.id

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 83

p-ISSN: 2540-9433; e-ISSN: 2540-9824

adjustments. The solid is then gradually cooled in a controlled procedure until the solid

crystallizes [5]. It is easy for SA to be modified, one of them is using functions or

operators that are produced particularly according to the problem which used to

generate the neighbor solution [6].

The SA can adequately escape local optima and meet to the global optima by joining

a probabilistic hopping property with changing time qualities and an inclination to

converge to zero in the inquiry procedure. The benefit of the GA and SA is that they

are not restricted by the coherence or differentiability of the optimization issues. Thus,

they are reasonable for complicated and nonlinear issues that conventional search

strategies cannot solve. Nevertheless, the GA has poor nearby pursuit capacity, and the

SA has low proficiency [7].

To overcome the both shortcomings of GA and SA, there are several studies

proposed the hybrid between GA and SA. Junghans & Darde [5] compare between GA

and hybrid GA with modified SA (MSA). The SA used in their experiment has been

modified which control the reduction of the temperature. They found that hybrid GA-

MSA provides higher reliability than GA.

Another research conducted by Chen & Shahandashti [8] which also compare the
GA, SA, a hybrid of GA-SA, and MSA. They found that hybrid GA-SA is outperformed
the GA, SA, and MSA. However, they ensure the fairness through the same total number
of iterations, which is set to 10,000. This setting will lead to the unfairness as the GA is
a population-based meta-heuristics algorithm and SA is a non-population-based meta-
heuristics algorithm.

In this paper, we hybrid the GA-SA with three scenarios, namely hybrid GA-SA,
hybrid SA-GA, and cyclic GA-SA. The hybrid GA-SA process is to get the best solution
in GA and use it as the initial population in SA. Otherwise, the hybrid SA-GA process
is using the result from SA as the initial population for GA. While the cyclic GA-SA
process is to randomly select the individual for interval 1000 iteration and improved by
the SA, then processed again using GA.

2 Heuristic Algorithm

2.1 Genetic Algorithm (GA)

Genetic Algorithms (GA) depend on the mechanics of natural selection and natural

hereditary qualities [3]. The GA works with an initial population of a series of

variables known as chromosomes which hold the parameters or qualities and the

measure of population. There are three operators specifically, selection, crossover,

and mutation to create new population from the old populace. In the selection, an

arrangement of chromosomes is chosen as initial parents at the generation stage based

on their fitness. The fittest are given a more prominent chance of survival and also

greater probability of reproducing more off-springs. The way toward mating is

executed through the crossover. Mutation, a discretionary change of the genes, is

actualized to safeguard the differing genetic qualities in the population. Mutation

occurrence probability can be kept low as it can disturb the best solution [9, 10]. The

process of GA can be seen in Figure 1.

84 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Start

Generate Initial
Population

Calculate Fitness of
Individuals

Satisfy stop
criterion

Random Selection of
parent

Extended
Intermediate
Crossover to

produce children

Random Mutation of
children

Calculate fitness of
children

Elitism Selection to
produce new
generation

End

No

Yes

Fig. 1. The GA process

The GA will be processed some individuals, and they do crossover among

individuals then mutate every child, result of the previous crossover. By calculating

fitness among the children and the parents, the most ‘elite’ individual will be selected

as new population, replace the old. This new population will be through crossover,

mutation, and selection again until the stopping criteria met.

2.2 Simulated Annealing

Simulated Annealing is a local search algorithm that simulates the melting and

cooling in metal processing. It has a variable initial temperature that set very high and

gradually cooling by time to time[11]. Simulated Annealing usually implemented to

search optimal solution on short range area even it sometimes also performs equally

or even better than GA in some cases like research conducted by [12] to solve 8-

Queens Problem or research by [13] that is looking for optimal reservoir operation by

using GA and SA.

This crystallization frames an assortment of rigid, and, subsequently, mechanically

enhanced structures. The SA optimization algorithm utilizes a closely resembling

"controlled cooling" handle for nonphysical optimization issues. In the improvement

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 85

p-ISSN: 2540-9433; e-ISSN: 2540-9824

issue, the adjustment of the low vitality bonds at the warming stages is the fitness

function of the optimization issue [5].

The controlled cooling procedure is the improvement procedure itself. In every

emphasis step, the temperature is expected to diminish so that a low vitality obligation

of the molecules is accepted. Inside the emphasis step, the algorithm seeks the

neighbors of the present solution for a preferred arrangement. The iterative process is

rehashed until a more proper arrangement is found [5]. The process of SA can be seen

in Figure 2.

Start

Generate random
solution

Set the initial
temperature,

cooling rate, and
final temperature

Calculate the cost

Generate a random
neighboring solution

Calculate the new
solution’s cost

Cost of new
solution larger

than cost of new
solution?

Move to the new
solution

Calculate the
acceptance
probability

Generate random
value between [0,1]

Acceptance
probability >

random value?

Remains to the old
solutions

Multiplying the
temperature by the

cooling rate

Final temperature
bound reached?

Yes

No

End

Yes

No

No

Yes

Fig. 2. The SA process

The SA is different from GA. SA have only one solution’s candidate and will be

looking for its neighbors to achieve an optimum solution. How long SA will be

searching the optimum solution depends on the temperature. This initial temperature

will be gradually down over time and after the final temperature bound is being reached,

the process will be stopped.

86 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

2.3 Hybrid GA-SA

A hybrid between GA and SA may reach balanced the power of algorithms to let GA

explore huge search of space and let SA exploit local search areas. While the standard

SA typically begins with random initial parameter configuration of parameter settings,

in the proposed solution, the best solution of the GA is utilized as the initial

configuration in SA.

This combination already studied by [14] which proved that Hybrid GA-SA

outperforms common GA and SA. Another study by [15] shows that GA-SA hybrid

can solve Permutation Flowshop Scheduling Problem.

Another research which utilizes local search-based algorithm conducted by [16].

The researchers implements hybridization between GA to explore huge search space

and Variable Neighborhood Search (VNS) to exploit local search areas. They found

that the hybridization delivers better outcomes comparable with the sequential

approach.

For the sake of simplicity, we called this kind of hybridization as GASA1. The

process of this hybrid method is starting by processing population on GA then

processing the output of GA in SA to check whether the most optimal solution can be

found. The process is being shown in Figure 3.

Start

Generate Initial
Population

Processed Through
GA

Timeout for GA?

Select 50%
best among

last population
as SA s initial

solution

Processed
through SA

Timeout?

Output

Stop

No

Yes

No

Yes

Fig. 3. Hybrid GA-SA process

After processed under GA for some time, 40% best among the last population

selected to be treated by SA, and after that, we may get the optimum solution.

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 87

p-ISSN: 2540-9433; e-ISSN: 2540-9824

2.4 Hybrid SA-GA

Almost same with hybrid GA-SA, hybrid SA-GA processing the input on SA first

before continuing to GA. For the sake of simplicity, we called this kind of

hybridization as GASA2. The process can be shown in Figure 4.

Start

Generate some
Initial Solution

Processed each of
the initials through

SA

Timeout for SA?

NO

Processed
Through GA

Timeout?

Select 80%
best among

last population
as GA’s input

YES

Output

Stop

YES

NO

Fig. 4. Hybrid SA-GA process

 To implement this hybrid, firstly we generate some initial population for SA. Then

each of them will be handled by SA, and when they have been done, they will be GA’s

initial population and addressed through GA until time allocation expiry.

2.5 Cyclic GA-SA

Another type of hybrid GA and SA is Cyclic GA-SA. For the sake of simplicity, we

called this kind of hybridization as GASA3. This model will consist of some GA-SA

iteration. On the first iteration, the input will be processed through GA first then some

of best GA’s output – 10% to be exact – will be processed in SA process. After that

about 10% of best solution from SA’s first iteration’s will be addressed through GA

again then the new best solution will be addressed through SA. This process will be

repeated until stopping criteria is being met. Time allocation is the most important on

this model. So we are going to test some scenarios based on time allocation later. The

detailed process of this model can be seen in Figure 5.

88 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Start

Generate Initial
Population

Processed through
GA

Timeout for GA?

NO

Processed
Through SA

Timeout for SA?

Select 10%
best among

last population
as SA’s input

YES

Output

Stop

YES

NO

Timeout?

NO

YES

GA Turn?
YES

NO

Fig. 5. The Proses of Cyclic GA-SA

3 Experimental Result and Discussion

Besides using real-world problems, some papers also use test function. Test

functions are artificial issues. It can be utilized to assess the conduct of an algorithm

in some of the time various and troublesome circumstances [17]. Numerical

experiments carried out by [18] shows that the evolved EA has better performance

than the GA. They use unimodal and highly multimodal test function.

In this study, the comparison between GA, SA, hybrid GA-SA, hybrid SA-GA and

cyclic GA-SA, to test its robustness and validate its performance is conducted using

five test functions. There are Sphere, Rosenbrock, Rastrigin, Cosine Mixture, and

Schwefel function.

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 89

p-ISSN: 2540-9433; e-ISSN: 2540-9824

3.1 Experimental Scenario

We experiment with GA, SA, and hybridization of both algorithms which are

GASA1, GASA2, and GASA3. All experimental algorithms were tested using five

different test function which is described in Table 1.

Table 1. Test functions used in this study [19, 20]

Name Formula Range

Sphere (F1) 𝑓0(�⃗�) = ∑𝑥𝑖
2

𝑛

𝑖=1

 [−100,100]𝑛

Rosenbrock

(F2)
𝑓1(�⃗�) = ∑(100(𝑥𝑖+1 − 𝑥𝑖

2)2
𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)2)

[−30,30]𝑛

Rastrigin (F3) 𝑓2(�⃗�) = ∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1

 [−5.12,5.12]𝑛

Cosine Mixture

(F4)
𝑓5(�⃗�) = ∑𝑥𝑖

2 − 0.1∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 [−1,1]𝑛

Schwefel (F5) 𝑓6(�⃗�) = 418.9829𝑛 −∑𝑥𝑖sin(√|𝑥𝑖|)

𝑛

𝑖=1

 [−500,500]𝑛

In each testing scenario, we tune the different number of the random rate which is

ranged between 0.1 and 1 to obtain the minimum value. We use random rate

parameter to select the number of individual randomly that will be processed in

GASA1, GASA2, and GASA3. The random rate of 0,1 in GASA1 means that the

10% of the population in GA will be addressed through SA while the random rate of

0,2 on GASA2 means that 20% of the number of individual SA will be dealt with

through GA. While on the GASA3 random rate of 0,1 means only 10 % of the

population that selected randomly will be put on GA then processed through SA and

returned to GA.

For a fair comparison, we test all algorithm in the same environment. GA, SA,

GASA1, GASA2, and GASA3 were coded in Scala programming language which

provides both functional and object-oriented paradigm. This experiment uses

multithreading concept. The first thread is working as a timer to stop the second

thread that working as optimization process of each algorithm.

The timer is set to 60 seconds which cause the algorithm process will be terminated

exactly after 60 seconds. After terminating the process, a necessary procedure in GA

like selection may not be executed. Thus, we select the lowest value as the best

individual to be compared with other algorithms.

90 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

3.2 Result and Discussion

We conducted a test for 5 seconds and 60 seconds for all of the algorithms in ten

attempts. The 5 seconds test is to analyze the best random rate for each algorithm in

each function which will be used to analyze the 60 seconds computation time. The

best random rate parameter for all hybrid algorithms in 5 seconds is described in

detail in Table 2 – 4. It shows that on each test function, all hybrid algorithms have a

different best parameter which is shown in bold type value.

In GASA1, the best random rate for F2 and F5 is found on 0.4. While for F1 and F3,

the best random rate is found on 0.5 and 0.6 respectively. For F4, the best random

rates are 0.4 and 0.9. In GASA2, 0.8 is considered as the best random rate for F1 and

F2. The best random rate for F4 is 0.1. The best random rates for F3 are 0.1 and 1.0.

While for F5, the best random rates are 0.2, 0.8, and 0.9. In GASA3, test function of

F1, F2, and F3 use 0.1 as the best random rate. For F4, 0.6 is found as the best random

rate. For F5, the best random rates are 0.1 and 0.4. Furthermore, the summary of all

best random rate is described in Table 5.

Even though each hybridization algorithm needs different random rate, they share the

same behavior. In GASA1, about a half random rate is necessary to provide a better

result. While in GASA2, the high number of random rate produce a better result. In

GASA3, almost all of test function only need a low number of random rate.

Table 2. The GASA1’s random rate result

Random

Rate
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5

0,1 1,25E-05 13,39431 48,1563 0,138859 1077.940896

0,2 2,32E-05 13,74637 51,04164 0,311456 734.6215134

0,3 1,62E-05 5,399684 27,75929 0,314052 1812.562847

0,4 6,25E-05 0 30,14812 0 355.3150806

0,5 7,8E-08 399,4428 69,051 0,384212 1089.93686

0,6 8,87E-05 5,318751 12,93446 0,054739 1800.568659

0,7 8,99E-07 11,03829 66,66245 0,134115 1089.936377

0,8 2,18E-05 31906,05 63,40571 0,443705 710.6304082

0,9 3,73E-05 7,524262 64,0758 0 1089.941013

1 1,24E-06 45077,52 54,23071 0,182509 1445.252028

Table 3. The GASA2’s random rate result

Random

Rate
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5

0,1 1,78E-05 10,76142 0 -0,00437309 710,6302

0,2 6,72E-05 10,90107 26,76438 0,157753974 0

0,3 5,2E-05 6,184537 13,631 0 710,6306

0,4 0,000104 8,421549 15,72088 0 367,3107

0,5 0,000458 8,264391 37,60953 0 710,6304

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 91

p-ISSN: 2540-9433; e-ISSN: 2540-9824

0,6 7,75E-06 16,36613 15,02388 0,134492714 355,3151

Random

Rate
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5

0,7 4,96E-05 13,90743 24,47611 0,069461259 355,3151

0,8 5,94E-06 5,559561 14,72731 0 0

0,9 8,43E-05 11,17417 15,22288 0,128197068 0

1 1,26E-05 11,04685 0 0,212436539 367,3106

Table 4. The GASA3’s random rate result

Random

Rate
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5

0,1 1,55E-06 8,280117 15,83719 -0,11712 0

0,2 2,44E-05 16,55039 37,31108 -0,33692 734,6213

0,3 1,71E-05 19,01591 32,74106 0,14891 367,3106

0,4 1,1E-05 16,44364 35,81847 0,085439 0

0,5 0,001055 10,92486 63,11316 -0,4553 1421,262

0,6 1,51E-05 22,19587 18,10899 -0,85856 2487,206

0,7 0,000246 16,49219 75,64121 -0,31772 1089,937

0,8 9,06E-05 19,18546 59,49968 0,17845 2143,886

0,9 0,000659 19,31824 79,2068 -0,04576 1433,256

1 0,001229 19,23141 32,63476 -0,73595 710,6302

Table 5. Best random rate for GASA1, GASA2, and GASA3

Algorithm
Best Random Rate

F1 F2 F3 F4 F5

GASA1 0.5 0.4 0.6 0.4/0.9 0.4

GASA2 0.8 0.8 0.1/1.0 0.1 0.2/0.8/0.9

GASA3 0.1 0.1 0.1 0.6 0.1/0.4

The best random rate for each algorithm in 5 seconds is used to test the best algorithm

for each function in 60 seconds. The best algorithms for each benchmark functions in

60 seconds computation time described in detail in Table 6 – 11. It shows that on each

test function has a different best algorithm with the different best random rate. The

bold type value denotes the best value and the suffix “_0.1R” denotes random rate.

In Sphere function, GASA2 with a random rate of 0.8 provide the best result. In

Rastrigin and Schwefel function, GASA1 with a random rate of 0.5 provide the best

result. However, in Rosenbrock and Cosine Mixture function, all hybrid algorithms

fail to provide better result comparing to GA. In this case, GA provides the best result.

92 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Table 6. The Comparison of Algorithms on the Sphere Function

Algorithm Average Min Max STD

SA 3.305274217 2.653319125 3.874782956 0.341572122

GA 1.13414E-06 0 1.12891E-05 3.56812E-06

GASA1_0.5R 1.97836E-06 0 1.50E-05 4.6456E-06

GASA2_0.8R 3.53527E-07 0 2.07157E-06 7.40544E-07

GASA3_0.1R 6.30704E-06 0 4.09383E-05 1.26652E-05

Min 3.53527E-07 0 2.07157E-06 7.40544E-07

Table 7. The Comparison of Algorithms on the Rosenbrock Function

Algorithm Average Min Max STD

SA 286.6908975 244.2679184 365.0979707 34.98299215

GA 19.61130637 0 35.69561389 13.81433565

GASA1_0.5R 10.64713993 0 27.23886208 13.74909805

GASA2_0.8R 10.89054876 0 27.74453831 14.06232146

GASA3_0.1R 10.90110841 0 27.59731668 14.07468841

Min 10.64713993 0 27.23886208 13.74909805

Table 8. The Comparison of Algorithms on the Rastrigin Function

Algorithm Average Min Max STD

SA 202.7379348 166.642457 245.4150998 26.69258884

GA 1.591924382 0 15.91924382 5.03410691

GASA1_0.5R 2.487388412 0 24.87388412 7.865812807

GASA2_0.8R 2.885385091 0 28.85385091 9.124388813

GASA3_0.1R 3.780828343 0 37.80828343 11.95602901

Min 1.591924382 0 15.91924382 5.03410691

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 93

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Table 9. The Comparison of Algorithms on the Cosine Mixture Function

Algorithm Average Min Max STD

SA 2.749803292 2.414070218 3.237574912 0.240510047

GA -3 -3 -3 1.71144E-10

GASA1_0.5R -2.202341837 -2.704431458 -1.66994172 0.369519055

GASA2_0.8R -2.394082464 -2.852215081 -1.965508857 0.27383257

GASA3_0.1R -2.32019165 -2.852215702 -1.817725862 0.328245019

Min -3 -3 -3 1.71144E-10

Table 10. The Comparison of Algorithms on the Schwefel Function

Algorithm Average Min Max STD

SA 6731.687029 5709.94333 8360.507287 771.8286095

GA 355.3150422 0 3553.150422 1123.60482

GASA1_0.5R 0 0 0 0

GASA2_0.8R 710.6300844 0 3553.150422 1498.13976

GASA3_0.1R 379.3061221 0 3793.061221 1199.471276

Min 0 0 0 0

From all tables, it can be concluded that generally, GA, GASA1 with a random rate of

0.5 and GASA2 with a random rate of 0.8 returned the best random rate for those

functions. While SA produces the worst result for all function. The standard deviation

for SA for each function consists of higher value than another algorithm. It shows that

the result is widely spread which caused the obtained result is bad. The standard

deviation for the best algorithm for each function consists of lower value which

caused the obtained result is good.

4 Conclusion

This paper presents the three kinds of hybridization of GA and SA. The obtained

result from 5 benchmark functions shows that hybridizing GA with SA can enhance

both performances to solve a nonlinear problem. Using cyclic GA-SA process show

the minimum average value in two benchmark function. We also define the random

94 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

rate which is sensitive with provided result. In the different case, random rate

parameter needs to be tuned to obtain the best result.

References

1. Liu X, Jiao X, Li C, Huang M (2013) Research of Job-Shop Scheduling Problem

Based on Improved Crossover Strategy Genetic Algorithm. In: Proc. 2013 3rd

Int. Conf. Comput. Sci. Netw. Technol. pp 1–4

2. Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

3. Goldberg D (1989) Genetic algorithms in search, optimization and machine

learning. Addison Wesley, New York

4. Kirkpatrick S, Gelatt CD, Vecchi MP (2007) Optimization by Simulated

Annealing. Science (80-) 220:671–680. doi: 10.1126/science.220.4598.671

5. Junghans L, Darde N (2015) Hybrid single objective genetic algorithm coupled

with the simulated annealing optimization method for building optimization.

Energy Build 86:651–662. doi: 10.1016/j.enbuild.2014.10.039

6. Mahmudy WF (2014) Improved simulated annealing for optimization of vehicle

routing problem with time windows (VRPTW). Kursor 7:109–116.

7. Liu W, Ye J (2014) Collapse optimization for domes under earthquake using a

genetic simulated annealing algorithm. J Constr Steel Res 97:59–68. doi:

10.1016/j.jcsr.2014.01.015

8. Chen PH, Shahandashti SM (2009) Hybrid of genetic algorithm and simulated

annealing for multiple project scheduling with multiple resource constraints.

Autom Constr 18:434–443. doi: 10.1016/j.autcon.2008.10.007

9. Deb K (2001) Multi-objective Optimization using Evolutionary Algorithms.

Wiley, Chichester, United Kingdom

10. Vasan A (2005) Studies on advanced modeling techniques for optimal reservoir

operation and performance evaluation of an irrigation system. Birla Institute of

Technology and Science, Pilani, India

11. Brownlee J (2011) Clever Algorithms: Nature-Inspired Programming Recipes,

2nd ed.

12. Al-Khateeb B, Tareq WZ (2013) Solving 8-Queens Problem by Using Genetic

Algorithms, Simulated Annealing, and Randomization Method. In: Int. Conf.

Dev. eSystems Eng. pp 187–191

13. Vasan A, Raju KS (2009) Comparative analysis of Simulated Annealing,

Simulated Quenching and Genetic Algorithms for optimal reservoir operation.

Appl Soft Comput 9:274–281.

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 95

p-ISSN: 2540-9433; e-ISSN: 2540-9824

14. Crossland AF, Jones D, Wade NS (2014) Electrical Power and Energy Systems

Planning the location and rating of distributed energy storage in LV networks

using a genetic algorithm with simulated annealing. Int J Electr Power Energy

Syst 59:103–110. doi: 10.1016/j.ijepes.2014.02.001

15. Czapinski M (2010) Parallel Simulated Annealing with Genetic Enhancement for

flowshop problem. Comput Ind Eng 59:778–785. doi: 10.1016/j.cie.2010.08.003

16. Mahmudy W, Marian R, Luong L (2013) Hybrid Genetic Algorithms for Multi-

Period Part Type Selection and Machine Loading Problems in Flexible

Manufacturing System. In: IEEE Int. Conf. Comput. Intell. Cybern. pp 126–130

17. Jamil M, Yang X-S (2013) A Literature Survey of Benchmark Functions For

Global Optimization Problems Citation details: Momin Jamil and Xin-She Yang,

A literature survey of benchmark functions for global optimization problems. Int

J Math Model Numer Optim 4:150–194. doi: 10.1504/IJMMNO.2013.055204

18. Oltean M (2003) Evolving Evolutionary Algorithms for Function Optimization.

7th Jt Conf Inf Sci 1:295–298.

19. Pehlivanoglu YV (2013) A New Particle Swarm Optimization Method Enhanced

With a Periodic Mutation Strategy. 17:436–452.

20. Pant M, Thangaraj R, Abraham A (2009) Particle Swarm Optimization :

Performance Tuning and Empirical Analysis. Foundations 3:101–128. doi:

10.1007/978-3-642-01085-9

Appendix: The experimental results details

Sphere Function

Algorithm 1 2 3 4 5 6 7 8 9 10
Ave-

rage

SA

2.65

3319

125

3.8

747

83

3.4

364

99

3.3

308

99

3.2

434

73

3.5

695

5

3.4

203

21

3.4

176

23

2.8

856

31

3.2

206

44

3.30

5274

217

GA
1.13

E-05
0

5.7

3E-

10

0 0 0

3.0

2E-

11

3.0

2E-

11

4.2

0E-

08

9.6

7E-

09

1.13

414

E-06

GASA1
2.10

E-06
0

9.1

8E-

07

0

1.5

0E-

05

1.9

2E-

07

1.5

5E-

06

0 0 0

1.97

836

E-06

GASA2 0

2.1

6E-

08

0 0 0 0

6.7

7E-

08

1.3

7E-

06

2.0

7E-

06

0

3.53

527

E-07

96 JITeCS Volume 1, Number 2, 2016, pp 82-97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

GASA3 0

2.7

5E-

06

2.6

0E-

07

0

4.0

9E-

05

1.9

5E-

06

0

1.0

4E-

05

6.7

7E-

06

0

6.30

704

E-06

Rosenbrock Function

Algorithm 1 2 3 4 5 6 7 8 9 10
Ave-

rage

SA

291.

5157

319

277

.65

78

365

.09

8

315

.83

61

259

.48

13

296

.45

54

253

.15

34

244

.26

79

288

.88

87

274

.55

46

286.

6908

975

GA

26.6

9260

191

0

26.

583

63

27.

300

62

26.

733

25

26.

621

71

35.

695

61

0 0 0

16.9

6274

23

GASA1

27.2

3886

208

25.

909

08

26.

770

31

0 0

26.

553

14

0 0 0 0

10.6

4713

993

GASA2

27.3

2381

615

0

26.

593

22

27.

744

54

27.

243

91

0 0 0 0 0

10.8

9054

876

GASA3 0 0 0

26.

810

06

0 0 0

27.

442

74

27.

160

96

27.

597

32

10.9

0110

841

Rastrigin Function

Algorithm 1 2 3 4 5 6 7 8 9 10
Ave-

rage

SA

245.

4150

998

220

.38

61

184

.29

49

179

.91

1

166

.64

25

188

.10

15

193

.61

02

215

.75

83

191

.50

51

241

.75

47

202.

7379

348

GA 0 0 0

15.

919

24

0 0 0 0 0 0

1.59

1924

382

GASA1 0 0 0 0 0

24.

873

88

0 0 0 0

2.48

7388

412

GASA2 0

28.

853

85

0 0 0 0 0 0 0 0

2.88

5385

091

GASA3 0 0 0 0 0 0

37.

808

28

0 0 0

3.78

0828

343

Cosine Mixture Function

Algorithm 1 2 3 4 5 6 7 8 9 10
Ave-

rage

SA

2.74

6452

107

2.9

867

05

2.4

140

7

2.7

641

8

2.5

206

37

2.5

685

16

2.7

900

15

2.6

205

16

3.2

375

75

2.8

493

67

2.74

9803

292

GA
-

2.99
-3 -3 -3 -3 -3 -3 -3 -3 -3 -3

Alfarisy et al., Hybrid Genetic Algorithm and Simulated... 97

p-ISSN: 2540-9433; e-ISSN: 2540-9824

9999

999

GASA1

-

1.96

5508

314

-

1.9

655

1

-

2.2

610

8

-

2.5

566

5

-

2.5

566

5

-

1.8

215

1

-

2.7

044

3

-

2.5

566

5

-

1.6

699

4

-

1.9

655

-

2.20

2341

837

GASA2

-

2.55

6646

182

-

2.4

088

6

-

2.2

610

8

-

2.5

566

4

-

2.8

522

2

-

1.9

655

1

-

1.9

655

1

-

2.5

566

5

-

2.4

088

6

-

2.4

088

6

-

2.39

4082

464

GASA3

-

1.81

7725

862

-

2.5

566

5

-

2.2

610

8

-

2.5

566

5

-

2.2

610

8

-

2.8

522

2

-

1.9

655

1

-

1.9

655

1

-

2.4

088

6

-

2.5

566

5

-

2.32

0191

65

Schwefel Function

Algorithm 1 2 3 4 5 6 7 8 9 10
Ave-

rage

SA

6713

.764

392

729

4.8

69

661

8.2

09

606

8.8

31

570

9.9

43

731

2.2

4

639

9.4

3

606

4.2

93

677

4.7

84

836

0.5

07

6731

.687

029

GA 0 0 0 0 0

355

3.1

5

0 0 0 0

355.

3150

422

GASA1 0 0 0 0 0 0 0 0 0 0 0

GASA2 0 0 0 0 0 0

355

3.1

5

355

3.1

5

0 0

710.

6300

844

GASA3 0 0 0 0 0 0 0

379

3.0

61

0 0

379.

3061

221

