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Abstract. The optimization problems on real-world usually have non-

linear characteristics. Solving non-linear problems is time-consuming. 

Thus heuristic approaches usually are being used to speed up the 

solution’s searching. Among of the heuristic-based algorithms, Genetic 

Algorithm (GA) and Simulated Annealing (SA) are two among most 

popular. The GA is powerful to get a nearly optimal solution on the broad 

searching area while SA is useful to looking for a solution in the narrow 

searching area. This study is comparing performance between GA, SA, 

and three types of Hybrid GA-SA to solve some non-linear optimization 

cases. The study shows that Hybrid GA-SA can enhance GA and SA to 

provide a better result. 

1   Introduction 

In recent years, Evolutionary Algorithm (EA) has already become an important tool 

to solve optimization problem such as multi-objective problems. This kind of problem 

sought to look for an optimal solution or nearest optimal solution to be achieved. 

However, sometimes that solution is hard to obtain if we use a common mathematical 

approach which may lead into local optimum only. To solve this kind of problems, we 

can use a heuristic algorithm such as Genetic Algorithm (GA) [1].  

The genetic algorithm (GA) is a search algorithm that emulates the heredity and 

advancement of biology in a common habitat with the attributes of solid parallels, 

randomness, and self-adaption likelihood. The hypothetical establishments of the GA 

are the Darwinian biological evolution standard and Mendel's heredity hypothesis. The 

GA controls the search procedure utilizing existing data, merging to ideal or acceptable 

solutions by evaluating the fitness of chromosomes and also performing the selection, 

crossover, mutation and other genetic operations [2, 3]. 

Simulated annealing (SA) is a single objective combinatorial improvement 

algorithm utilizing an analogy to the measurable mechanics of tempering in solids. It 

was presented in 1982 by Kirkpatrick et al. [4]. Annealing defines a procedure in 

material science where a solid is warmed to a temperature that grants various atomic 
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adjustments. The solid is then gradually cooled in a controlled procedure until the solid 

crystallizes [5]. It is easy for SA to be modified, one of them is using functions or 

operators that are produced particularly according to the problem which used to 

generate the neighbor solution [6]. 

The SA can adequately escape local optima and meet to the global optima by joining 

a probabilistic hopping property with changing time qualities and an inclination to 

converge to zero in the inquiry procedure. The benefit of the GA and SA is that they 

are not restricted by the coherence or differentiability of the optimization issues. Thus, 

they are reasonable for complicated and nonlinear issues that conventional search 

strategies cannot solve. Nevertheless, the GA has poor nearby pursuit capacity, and the 

SA has low proficiency [7]. 

To overcome the both shortcomings of GA and SA, there are several studies 

proposed the hybrid between GA and SA. Junghans & Darde [5] compare between GA 

and hybrid GA with modified SA (MSA). The SA used in their experiment has been 

modified which control the reduction of the temperature. They found that hybrid GA-

MSA provides higher reliability than GA.  

Another research conducted by Chen & Shahandashti [8] which also compare the 
GA, SA, a hybrid of GA-SA, and MSA. They found that hybrid GA-SA is outperformed 
the GA, SA, and MSA. However, they ensure the fairness through the same total number 
of iterations, which is set to 10,000. This setting will lead to the unfairness as the GA is 
a population-based meta-heuristics algorithm and SA is a non-population-based meta-
heuristics algorithm. 

In this paper, we hybrid the GA-SA with three scenarios, namely hybrid GA-SA, 
hybrid SA-GA, and cyclic GA-SA. The hybrid GA-SA process is to get the best solution 
in GA and use it as the initial population in SA. Otherwise, the hybrid SA-GA process 
is using the result from SA as the initial population for GA. While the cyclic GA-SA 
process is to randomly select the individual for interval 1000 iteration and improved by 
the SA, then processed again using GA. 

2   Heuristic Algorithm 

2.1   Genetic Algorithm (GA)  

Genetic Algorithms (GA) depend on the mechanics of natural selection and natural 

hereditary qualities [3]. The GA works with an initial population of a series of 

variables known as chromosomes which hold the parameters or qualities and the 

measure of population. There are three operators specifically, selection, crossover, 

and mutation to create new population from the old populace. In the selection, an 

arrangement of chromosomes is chosen as initial parents at the generation stage based 

on their fitness. The fittest are given a more prominent chance of survival and also 

greater probability of reproducing more off-springs. The way toward mating is 

executed through the crossover. Mutation, a discretionary change of the genes, is 

actualized to safeguard the differing genetic qualities in the population. Mutation 

occurrence probability can be kept low as it can disturb the best solution [9, 10]. The 

process of GA can be seen in Figure 1. 
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Fig. 1.  The GA process 

The GA will be processed some individuals, and they do crossover among 

individuals then mutate every child, result of the previous crossover. By calculating 

fitness among the children and the parents, the most ‘elite’ individual will be selected 

as new population, replace the old. This new population will be through crossover, 

mutation, and selection again until the stopping criteria met. 

2.2   Simulated Annealing 

Simulated Annealing is a local search algorithm that simulates the melting and 

cooling in metal processing. It has a variable initial temperature that set very high and 

gradually cooling by time to time[11]. Simulated Annealing usually implemented to 

search optimal solution on short range area even it sometimes also performs equally 

or even better than GA in some cases like research conducted by [12] to solve 8-

Queens Problem or research by [13] that is looking for optimal reservoir operation by 

using GA and SA. 

This crystallization frames an assortment of rigid, and, subsequently, mechanically 

enhanced structures. The SA optimization algorithm utilizes a closely resembling 

"controlled cooling" handle for nonphysical optimization issues. In the improvement 
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issue, the adjustment of the low vitality bonds at the warming stages is the fitness 

function of the optimization issue [5]. 

The controlled cooling procedure is the improvement procedure itself. In every 

emphasis step, the temperature is expected to diminish so that a low vitality obligation 

of the molecules is accepted. Inside the emphasis step, the algorithm seeks the 

neighbors of the present solution for a preferred arrangement. The iterative process is 

rehashed until a more proper arrangement is found [5]. The process of SA can be seen 

in Figure 2. 

 

 

Start

Generate random 
solution

Set the initial 
temperature, 

cooling rate, and 
final temperature

Calculate the cost

Generate a random 
neighboring solution

Calculate the new 
solution’s cost

Cost of new 
solution larger 

than cost of new 
solution?

Move to the new 
solution

Calculate the 
acceptance 
probability

Generate random 
value between [0,1]

Acceptance 
probability > 

random value?

Remains to the old 
solutions

Multiplying the 
temperature by the 

cooling rate 

Final temperature 
bound reached?

Yes

No

End

Yes

No

No

Yes

 

Fig. 2.  The SA process 

 

The SA is different from GA. SA have only one solution’s candidate and will be 

looking for its neighbors to achieve an optimum solution. How long SA will be 

searching the optimum solution depends on the temperature. This initial temperature 

will be gradually down over time and after the final temperature bound is being reached, 

the process will be stopped. 
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2.3   Hybrid GA-SA  

A hybrid between GA and SA may reach balanced the power of algorithms to let GA 

explore huge search of space and let SA exploit local search areas. While the standard 

SA typically begins with random initial parameter configuration of parameter settings, 

in the proposed solution, the best solution of the GA is utilized as the initial 

configuration in SA.  

This combination already studied by [14] which proved that Hybrid GA-SA 

outperforms common GA and SA. Another study by [15] shows that GA-SA hybrid 

can solve Permutation Flowshop Scheduling Problem. 

Another research which utilizes local search-based algorithm conducted by [16]. 

The researchers implements hybridization between GA to explore huge search space 

and Variable Neighborhood Search (VNS) to exploit local search areas. They found 

that the hybridization delivers better outcomes comparable with the sequential 

approach. 

For the sake of simplicity, we called this kind of hybridization as GASA1. The 

process of this hybrid method is starting by processing population on GA then 

processing the output of GA in SA to check whether the most optimal solution can be 

found. The process is being shown in Figure 3. 
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Fig. 3.  Hybrid GA-SA process 

 

After processed under GA for some time, 40% best among the last population 

selected to be treated by SA, and after that, we may get the optimum solution. 
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2.4   Hybrid SA-GA 

Almost same with hybrid GA-SA, hybrid SA-GA processing the input on SA first 

before continuing to GA. For the sake of simplicity, we called this kind of 

hybridization as GASA2. The process can be shown in Figure 4. 

 

Start

Generate some 
Initial Solution

Processed each of 
the initials through 

SA

Timeout for SA?

NO

Processed 
Through GA

Timeout?

Select 80% 
best among 

last population 
as GA’s input

YES

Output

Stop

YES

NO

 
Fig. 4.  Hybrid SA-GA process 

 

 To implement this hybrid, firstly we generate some initial population for SA. Then 

each of them will be handled by SA, and when they have been done, they will be GA’s 

initial population and addressed through GA until time allocation expiry.  

2.5   Cyclic GA-SA 

Another type of hybrid GA and SA is Cyclic GA-SA. For the sake of simplicity, we 

called this kind of hybridization as GASA3. This model will consist of some GA-SA 

iteration. On the first iteration, the input will be processed through GA first then some 

of best GA’s output – 10% to be exact – will be processed in SA process. After that 

about 10% of best solution from SA’s first iteration’s will be addressed through GA 

again then the new best solution will be addressed through SA. This process will be 

repeated until stopping criteria is being met. Time allocation is the most important on 

this model. So we are going to test some scenarios based on time allocation later. The 

detailed process of this model can be seen in Figure 5. 

 



 
 
 
 
88 JITeCS Volume 1, Number 2, 2016, pp 82-97 

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

Start

Generate Initial 
Population

Processed through 
GA

Timeout for GA?

NO

Processed 
Through SA

Timeout for SA?

Select 10% 
best among 

last population 
as SA’s input

YES

Output

Stop

YES

NO

Timeout?

NO

YES

GA Turn?
YES

NO

 
 

Fig. 5.  The Proses of Cyclic GA-SA 

 

3   Experimental Result and Discussion 

Besides using real-world problems, some papers also use test function. Test 

functions are artificial issues. It can be utilized to assess the conduct of an algorithm 

in some of the time various and troublesome circumstances [17]. Numerical 

experiments carried out by [18] shows that the evolved EA has better performance 

than the GA. They use unimodal and highly multimodal test function. 

In this study, the comparison between GA, SA, hybrid GA-SA, hybrid SA-GA and 

cyclic GA-SA, to test its robustness and validate its performance is conducted using 

five test functions. There are Sphere, Rosenbrock, Rastrigin, Cosine Mixture, and 

Schwefel function. 
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3.1 Experimental Scenario 

We experiment with GA, SA, and hybridization of both algorithms which are 

GASA1, GASA2, and GASA3. All experimental algorithms were tested using five 

different test function which is described in Table 1. 

Table 1.   Test functions used in this study [19, 20] 

Name Formula Range 

Sphere (F1) 𝑓0(�⃗�) = ∑𝑥𝑖
2

𝑛

𝑖=1

 [−100,100]𝑛 

Rosenbrock 

(F2) 
𝑓1(�⃗�) = ∑(100(𝑥𝑖+1 − 𝑥𝑖

2)2
𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)2) 

[−30,30]𝑛 

Rastrigin (F3) 𝑓2(�⃗�) = ∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1

 [−5.12,5.12]𝑛 

Cosine Mixture 

(F4) 
𝑓5(�⃗�) = ∑𝑥𝑖

2 − 0.1∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 [−1,1]𝑛 

Schwefel (F5) 𝑓6(�⃗�) = 418.9829𝑛 −∑𝑥𝑖sin(√|𝑥𝑖|)

𝑛

𝑖=1

 [−500,500]𝑛 

 

In each testing scenario, we tune the different number of the random rate which is 

ranged between 0.1 and 1 to obtain the minimum value. We use random rate 

parameter to select the number of individual randomly that will be processed in 

GASA1, GASA2, and GASA3. The random rate of 0,1 in GASA1 means that the 

10% of the population in GA will be addressed through SA while the random rate of 

0,2 on GASA2 means that 20% of the number of individual SA will be dealt with 

through GA. While on the GASA3 random rate of 0,1 means only 10 % of the 

population that selected randomly will be put on GA then processed through SA and 

returned to GA. 

For a fair comparison, we test all algorithm in the same environment. GA, SA, 

GASA1, GASA2, and GASA3 were coded in Scala programming language which 

provides both functional and object-oriented paradigm. This experiment uses 

multithreading concept. The first thread is working as a timer to stop the second 

thread that working as optimization process of each algorithm.  

The timer is set to 60 seconds which cause the algorithm process will be terminated 

exactly after 60 seconds. After terminating the process, a necessary procedure in GA 

like selection may not be executed. Thus, we select the lowest value as the best 

individual to be compared with other algorithms. 
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3.2 Result and Discussion 

We conducted a test for 5 seconds and 60 seconds for all of the algorithms in ten 

attempts. The 5 seconds test is to analyze the best random rate for each algorithm in 

each function which will be used to analyze the 60 seconds computation time. The 

best random rate parameter for all hybrid algorithms in 5 seconds is described in 

detail in Table 2 – 4. It shows that on each test function, all hybrid algorithms have a 

different best parameter which is shown in bold type value.  

In GASA1, the best random rate for F2 and F5 is found on 0.4. While for F1 and F3, 

the best random rate is found on 0.5 and 0.6 respectively. For F4, the best random 

rates are 0.4 and 0.9. In GASA2, 0.8 is considered as the best random rate for F1 and 

F2. The best random rate for F4 is 0.1. The best random rates for F3 are 0.1 and 1.0. 

While for F5, the best random rates are 0.2, 0.8, and 0.9. In GASA3, test function of 

F1, F2, and F3 use 0.1 as the best random rate. For F4, 0.6 is found as the best random 

rate. For F5, the best random rates are 0.1 and 0.4. Furthermore, the summary of all 

best random rate is described in Table 5. 

Even though each hybridization algorithm needs different random rate, they share the 

same behavior. In GASA1, about a half random rate is necessary to provide a better 

result. While in GASA2, the high number of random rate produce a better result. In 

GASA3, almost all of test function only need a low number of random rate. 

Table 2.   The GASA1’s random rate result 

Random 

Rate 
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5 

0,1 1,25E-05 13,39431 48,1563 0,138859 1077.940896 

0,2 2,32E-05 13,74637 51,04164 0,311456 734.6215134 

0,3 1,62E-05 5,399684 27,75929 0,314052 1812.562847 

0,4 6,25E-05 0 30,14812 0 355.3150806 

0,5 7,8E-08 399,4428 69,051 0,384212 1089.93686 

0,6 8,87E-05 5,318751 12,93446 0,054739 1800.568659 

0,7 8,99E-07 11,03829 66,66245 0,134115 1089.936377 

0,8 2,18E-05 31906,05 63,40571 0,443705 710.6304082 

0,9 3,73E-05 7,524262 64,0758 0 1089.941013 

1 1,24E-06 45077,52 54,23071 0,182509 1445.252028 

Table 3.   The GASA2’s random rate result 

Random 

Rate 
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5 

0,1 1,78E-05 10,76142 0 -0,00437309 710,6302 

0,2 6,72E-05 10,90107 26,76438 0,157753974 0 

0,3 5,2E-05 6,184537 13,631 0 710,6306 

0,4 0,000104 8,421549 15,72088 0 367,3107 

0,5 0,000458 8,264391 37,60953 0 710,6304 
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0,6 7,75E-06 16,36613 15,02388 0,134492714 355,3151 

Random 

Rate 
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5 

0,7 4,96E-05 13,90743 24,47611 0,069461259 355,3151 

0,8 5,94E-06 5,559561 14,72731 0 0 

0,9 8,43E-05 11,17417 15,22288 0,128197068 0 

1 1,26E-05 11,04685 0 0,212436539 367,3106 

Table 4.   The GASA3’s random rate result 

Random 

Rate 
Cost F1 Cost F2 Cost F3 Cost F4 Cost F5 

0,1 1,55E-06 8,280117 15,83719 -0,11712 0 

0,2 2,44E-05 16,55039 37,31108 -0,33692 734,6213 

0,3 1,71E-05 19,01591 32,74106 0,14891 367,3106 

0,4 1,1E-05 16,44364 35,81847 0,085439 0 

0,5 0,001055 10,92486 63,11316 -0,4553 1421,262 

0,6 1,51E-05 22,19587 18,10899 -0,85856 2487,206 

0,7 0,000246 16,49219 75,64121 -0,31772 1089,937 

0,8 9,06E-05 19,18546 59,49968 0,17845 2143,886 

0,9 0,000659 19,31824 79,2068 -0,04576 1433,256 

1 0,001229 19,23141 32,63476 -0,73595 710,6302 

Table 5.   Best random rate for GASA1, GASA2, and GASA3 

Algorithm 
Best Random Rate 

F1 F2 F3 F4 F5 

GASA1 0.5 0.4 0.6 0.4/0.9 0.4 

GASA2 0.8 0.8 0.1/1.0 0.1 0.2/0.8/0.9 

GASA3 0.1 0.1 0.1 0.6 0.1/0.4 

 

The best random rate for each algorithm in 5 seconds is used to test the best algorithm 

for each function in 60 seconds. The best algorithms for each benchmark functions in 

60 seconds computation time described in detail in Table 6 – 11. It shows that on each 

test function has a different best algorithm with the different best random rate. The 

bold type value denotes the best value and the suffix “_0.1R” denotes random rate.  

In Sphere function, GASA2 with a random rate of 0.8 provide the best result. In 

Rastrigin and Schwefel function, GASA1 with a random rate of 0.5 provide the best 

result. However, in Rosenbrock and Cosine Mixture function, all hybrid algorithms 

fail to provide better result comparing to GA. In this case, GA provides the best result. 
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Table 6.   The Comparison of Algorithms on the Sphere Function 

Algorithm Average Min Max STD 

SA 3.305274217 2.653319125 3.874782956 0.341572122 

GA 1.13414E-06 0 1.12891E-05 3.56812E-06 

GASA1_0.5R 1.97836E-06 0 1.50E-05 4.6456E-06 

GASA2_0.8R 3.53527E-07 0 2.07157E-06 7.40544E-07 

GASA3_0.1R 6.30704E-06 0 4.09383E-05 1.26652E-05 

Min 3.53527E-07 0 2.07157E-06 7.40544E-07 

Table 7.   The Comparison of Algorithms on the Rosenbrock Function 

Algorithm Average Min Max STD 

SA 286.6908975 244.2679184 365.0979707 34.98299215 

GA 19.61130637 0 35.69561389 13.81433565 

GASA1_0.5R 10.64713993 0 27.23886208 13.74909805 

GASA2_0.8R 10.89054876 0 27.74453831 14.06232146 

GASA3_0.1R 10.90110841 0 27.59731668 14.07468841 

Min 10.64713993 0 27.23886208 13.74909805 

Table 8.   The Comparison of Algorithms on the Rastrigin Function 

Algorithm Average Min Max STD 

SA 202.7379348 166.642457 245.4150998 26.69258884 

GA 1.591924382 0 15.91924382 5.03410691 

GASA1_0.5R 2.487388412 0 24.87388412 7.865812807 

GASA2_0.8R 2.885385091 0 28.85385091 9.124388813 

GASA3_0.1R 3.780828343 0 37.80828343 11.95602901 

Min 1.591924382 0 15.91924382 5.03410691 
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Table 9.   The Comparison of Algorithms on the Cosine Mixture Function 

Algorithm Average Min Max STD 

SA 2.749803292 2.414070218 3.237574912 0.240510047 

GA -3 -3 -3 1.71144E-10 

GASA1_0.5R -2.202341837 -2.704431458 -1.66994172 0.369519055 

GASA2_0.8R -2.394082464 -2.852215081 -1.965508857 0.27383257 

GASA3_0.1R -2.32019165 -2.852215702 -1.817725862 0.328245019 

Min -3 -3 -3 1.71144E-10 

Table 10.   The Comparison of Algorithms on the Schwefel Function 

Algorithm Average Min Max STD 

SA 6731.687029 5709.94333 8360.507287 771.8286095 

GA 355.3150422 0 3553.150422 1123.60482 

GASA1_0.5R 0 0 0 0 

GASA2_0.8R 710.6300844 0 3553.150422 1498.13976 

GASA3_0.1R 379.3061221 0 3793.061221 1199.471276 

Min 0 0 0 0 

 

From all tables, it can be concluded that generally, GA, GASA1 with a random rate of 

0.5 and GASA2 with a random rate of 0.8 returned the best random rate for those 

functions. While SA produces the worst result for all function. The standard deviation 

for SA for each function consists of higher value than another algorithm. It shows that 

the result is widely spread which caused the obtained result is bad. The standard 

deviation for the best algorithm for each function consists of lower value which 

caused the obtained result is good. 

4   Conclusion 

This paper presents the three kinds of hybridization of GA and SA. The obtained 

result from 5 benchmark functions shows that hybridizing GA with SA can enhance 

both performances to solve a nonlinear problem. Using cyclic GA-SA process show 

the minimum average value in two benchmark function. We also define the random 
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rate which is sensitive with provided result. In the different case, random rate 

parameter needs to be tuned to obtain the best result. 
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Appendix: The experimental results details 
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