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Abstract. Fossil ostracods have been widely used for
Quaternary paleoenvironmental reconstructions, especially
in marginal marine environments (e.g., for water depth,
temperature, salinity, oxygen levels, pollution). But our
knowledge of indicator species autoecology, the base of
paleoenvironmental reconstructions, remains limited and
commonly lacks robust statistical support and comprehen-
sive comparison with environmental data. We analyzed
marginal marine ostracod taxa at 52 sites in Hong Kong
for which comprehensive environmental data are available.
We applied linear regression models to reveal relationships
between species distribution and environmental factors
for 18 common taxa (mainly species, a few genera) in
our Hong Kong dataset and identified indicator species of
environmental parameters. For example, Sinocytheridea
impressa, a widely distributed euryhaline species throughout
the East and South China Sea and the Indo-Pacific, indicates
eutrophication and bottom-water hypoxia. Neomonoceratina
delicata, a widely known species from nearshore and
estuarine environments in the East and South China Sea and
the Indo-Pacific, indicates heavy metal pollution and in-
creased turbidity. The 18 taxa used for this study are widely
distributed geographically and divided into the following
groups: widespread (throughout the northwestern Pacific and
Indo-Pacific regions), temperate (South China Sea to Russia
(Sea of Japan coast) and Japan), subtropical (Indo-Pacific to
the East China Sea), tropical (Indo-Pacific and South China
Sea), and globally distributed. With statistical support from
ecological modeling and comprehensive environmental data,
these results provide a robust baseline for ostracod-based
Quaternary–Anthropocene paleoenvironmental reconstruc-

tions in the tropical–extratropical northwestern Pacific and
Indo-Pacific.

Highlights.

1. We provide a robust baseline for ostracod-based (mi-
croscopic Arthropods) paleoenvironmental reconstruc-
tions from Quaternary and Anthropocene marginal ma-
rine sediments.

2. The studied species have wide distributions over the
tropics and extratropics of the northwestern Pacific and
Indo-Pacific.

3. Ecological modeling has established ostracod species as
reliable indicators for paleoenvironmental reconstruc-
tions.

1 Introduction

Because of their small size, high abundance, and excel-
lent fossil record, fossil ostracods (microcrustaceans) have
been widely used to reconstruct Quaternary environmen-
tal conditions including water depth, salinity, temperature,
oxygen, and pollution, especially in marginal marine sedi-
ments (Boomer and Eisenhauer, 2002; Cronin, 2015; Frenzel
and Boomer, 2005; Horne et al., 2012; Ruiz et al., 2005).
In the northwestern Pacific and Indo-Pacific there are nu-
merous deltas (Woodroffe et al., 2006) hosting accumu-
lated Holocene marine sediments. Many studies have recon-
structed the depositional environments of these sediments
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Figure 1. Locality map showing the 52 sampling sites across Hong Kong, including 41 open water sites (blue dots) and 11 typhoon shelter
sites (red open dots). From west to east, DS: Deep Bay; NS: northwestern waters; SS: southern waters; VS: Victoria Harbour; ES: eastern
buffer; JS: Junk Bay; TS: Tolo Harbour; PS: Port Shelter; MS: Mirs Bay.

(Alberti et al., 2013; Dong et al., 2012; Irizuki et al., 2015b;
Tanaka et al., 2011; Yasuhara and Seto, 2006; Yasuhara et
al., 2005; Zhou et al., 2015; Wang et al., 2018). Due to
high sedimentation rates ( > 1 cm year−1), fossil ostracods
from these sediments allow for the high-resolution recon-
struction of human-induced environmental changes (pollu-
tion, eutrophication, bottom oxygen depletion) over the past
century (Irizuki et al., 2011, 2015a, 2018; Yasuhara et al.,
2003, 2007).

Many have evaluated the autoecology of ostracod indica-
tor species as the basis for paleoenvironmental reconstruc-
tions (Hazel, 1988; Irizuki et al., 2003; Ozawa et al., 2004;
Stepanova et al., 2003; Wang et al., 1988; Yasuhara and Seto,
2006; Zhao, 1984; Zhao and Wang, 1988a, b). Yet these stud-
ies tend to focus on only one or a few targeted environmental
factor(s) and lack rigorous statistical evaluation, particularly
statistical modeling, a common approach in contemporary
ecology. This is probably due to the fact that comprehensive
environmental datasets are often unavailable and an ecolog-
ical modeling approach (especially regression modeling and
model selection) has not been common in this field of mi-
cropaleontology.

Hong Kong constitutes an ideal location for a marine eco-
logical modeling approach in the northwestern Pacific and
Indo-Pacific regions because of an extensive and intensive
marine environmental monitoring program and a subtropi-
cal location where tropical and temperate species coexist.
This program provides robust datasets for ecological mod-
eling, and the subtropical location allows for the investi-
gation of species with different latitudinal and geographi-

cal distributions. We employed regression modeling of Hong
Kong shallow-marine ostracod species to show statistical re-
lationships between species abundance, distribution, and en-
vironmental factors. This study allows for the autoecology
and statistical evaluation of common tropical and extratropi-
cal species, providing a baseline for ostracod-based shallow-
marine paleoenvironmental reconstructions of the northwest-
ern Pacific and Indo-Pacific regions.

2 Study area

Hong Kong is situated at the southeastern corner of the
Pearl River (Zhujiang) Delta and has an area of 2500 km2

(Fig. 1) at 22◦12.021′ to 22◦33.817′ N latitude, 113◦53.388′

to 114◦26.920′ E longitude. It is an ideal location to study
natural and/or anthropogenic impacts on benthic communi-
ties due to its complex hydrology and long history of hu-
man influence. Western Hong Kong is affected by input from
the Pearl River, particularly during the summer heavy rain-
fall (Morton and Wu, 1975) when surface water salinity is
strongly influenced by rainfall. Eastern Hong Kong waters
are mainly marine and derived from the South China Sea.
As one of the most urbanized coastal areas in the world, hu-
man activities including rapid industrialization, sewage dis-
charge, trawling, dredging, and land reclamation have led to
a deteriorated marine benthic ecosystem (Blackmore, 1998;
Hodgkiss and Yim, 1995; Hong et al., 2017; Hu et al., 2008;
Morton, 1996; Morton and Blackmore, 2001; Owen and
Sandhu, 2000; Shin, 2011; Tanner et al., 2000).
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Figure 2. Spatial distribution of environmental parameters in Hong Kong. Mean surface water chlorophyll a concentration; water depth;
summer (June to September) bottom-water dissolved oxygen content; mean bottom-water salinity; mean turbidity; mean summer (June to
September) bottom-water temperature; mean winter (November to February) bottom-water temperature; and mean mud content. All are
averaged values of the data obtained during 1986–2013 (Table 1).
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Table 1. Summary of marine water–sediment parameters.

Parameter (abbreviation) Unit Sampling depth–material Season

Chlorophyll a (Chl) µg L−1 Surface water All year
Water depth (D) m All year
Dissolved oxygen (DO) mg L−1 Bottom water Summer1

Mud content (MD) % w/w (< 63 µm) Bottom sediment All year
Salinity (Sal) Bottom water All year
Turbidity (Tur) NTU Bottom water All year
Summer temperature (ST) ◦C Bottom water Summer1

Winter temperature (WT) ◦C Bottom water Winter2

Copper (Cu) mg kg−1 Bottom sediment All year
Lead (Pb) mg kg−1 Bottom sediment All year
Zinc (Zn) mg kg−1 Bottom sediment All year

1 Summer: June, July, August, and September. 2 Winter: November, December, January, and February.

3 Materials and methods

3.1 Samples and laboratory procedure

In January and July 2011 we used a Van Veen Grab to
collect 100 mL of sediment from the uppermost centimeter
of the seafloor from 52 sites in Hong Kong marine waters
(Fig. 1; Supplement S1), 41 of which are in open waters
and 11 in typhoon shelter sites. Typhoon shelters are semi-
enclosed areas of water designed to protect moored vessels in
extreme weather (Environmental Protection Department of
Hong Kong, 2011). All sites are included in the Hong Kong
EPD marine water and sediment quality monitoring program,
which has been conducted monthly (for water) and biannu-
ally since 1986 (for sediment), providing comprehensive en-
vironmental data for all stations (see below).

Sediments were wet-sieved over a 63 µm mesh sieve and
air-dried or oven-dried at 40 ◦C. The residue was dry-sieved
over a 150 µm mesh sieve, and ostracod specimens larger
than 150 µm were picked; smaller individuals are mostly
early instar juveniles that are often not preserved (because
their shells are usually thin and delicate) or difficult to iden-
tify (see Yasuhara et al., 2009, 2017, for more details). In
samples containing fewer than 200 specimens, we picked
all individuals. If there were more than 200 specimens, we
picked ostracods from a split. We identified each counted
specimen to species level when possible. We considered ei-
ther an entire carapace or a single valve as one individual for
counting.

3.2 Environmental variables

We selected parameters from the EPD monitoring program
(Table 1) for our regression modeling (see below), includ-
ing surface productivity (chlorophyll a, Chl; Fig. 2), wa-
ter depth (D; Fig. 2), bottom-water dissolved oxygen (DO;
Fig. 2), bottom-water salinity (Sal; Fig. 2), turbidity (Tur;
Fig. 2), summer bottom-water temperature (ST – June to

September average; Fig. 2), winter bottom-water temperature
(WT – November to Feburary average; Fig. 2), mud content
(MD; Fig. 2), and heavy metal concentration (Cu, Zn, and
Pb; Fig. 3). These parameters are known to control ostra-
cod faunal properties (Cronin, 2015; Cronin and Vann, 2003;
Hazel, 1988; Ikeya and Shiozaki, 1993; Irizuki et al., 2005,
2015a, 2018; Ruiz et al., 2005; Yasuhara et al., 2007, 2012b).
We used averages over the entire monitoring period (1986–
2011) because the ostracods in this study were mostly dead
shells, and thus the samples should be considered time aver-
aged. Bottom-water DO is the average of the summer season
(June–September) due to the likely importance of summer
bottom-water oxygen depletion.

4 Regression modeling

Multiple linear regression modeling was used to determine
the relationship between common ostracod species (rela-
tive abundance of each species) and environmental param-
eters (Supplement S2). All environmental parameters were
log-transformed and zero centered. Salinity outliers (salin-
ity < 25: DS2 and DS3) and samples with low abundance
(< 50 specimens: ES5, MS7, VS21, VS5, and VS6) were re-
moved from the models.

The best-fitting models were selected based on Akaike’s
information criterion (AIC) for small sample size, in which
the lower score indicates the better model support consid-
ering both goodness-of-fit and model complexity (Anderson
and Burnham, 2002). Akaike weights were used to summa-
rize proportional support for all candidate models (Anderson
et al., 2000) (Table 2). We considered parameter estimates
averaged over models proportional to the support that each
model received (Anderson et al., 2000) (Table 3). This ap-
proach accounts for the uncertainty in model selection and
thus leads to appropriately broader confidence intervals than
obtained by relying only on the single best-supported model.
The relative importance of various predictor variables was
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Figure 3. Spatial distribution of environmental parameters in Hong Kong. Mean copper (Cu) concentration, mean lead (Pb) concentration,
and mean zinc (Zn) concentration in surface sediments. All are averaged values of the data obtained during 1986–2013 (Table 1).

measured by the sum of the Akaike weights of models that
included the variables in question (Burnham and Anderson,
2002).

We explored linear dependencies by computing variance
inflation factors (VIFs) (Legendre and Legendre, 1998) and
pairwise correlations between predictor variables to assess
whether multicollinearity was likely to influence regression
results (Yasuhara et al., 2012b). The degree of freedom is
more than one for the geographic region variable (see be-
low), and thus we computed generalized variance inflation
factors (GVIFs). For continuous variables, GVIF (Table 4) is
the same as VIF, but for categorical variables, GVIF has de-
grees of freedom (DoF) equal to the number of coefficients
associated with it (Hendrickx et al., 2004). Thus, we used
GVIF1/2DoF to make GVIF values comparable among those
with different DoF. VIF > 20 is usually indicative of high
collinearity (Legendre and Legendre, 1998). Thus we cal-
culated an equivalent threshold of 4.47 (equal to

√
20) for

GVIF1/2DoF to assess conlinearity. Also, adjusted R2 > 0.8
indicates a strong correlation of variables (Hoffman, 2015).
In all datasets, summer temperature (ST) and copper (Cu)
were highly correlated (R2

= 0.8217), and the GVIFs of ST
and Cu are > 20, indicating that these correlations may influ-
ence regression results. Thus, we re-ran the linear regression

modeling without ST and Cu. The new GVIFs of all variables
were under 4.47 (Table 4).

We considered the degree of spatial autocorrelation in
model residuals by the calculation of Moran’s I index for
the five best models. The neighborhood size was set as 2, 5,
10, 20, and 50 km. We found significant spatial autocorrela-
tion in model residuals for many cases, and thus we forced
the geographic region variable (R) (water control zones de-
fined by EPD) to be included in all models. After this treat-
ment, spatial autocorrelation was detected only in a few mod-
els for Propontocypris spp., Stigmatocythere roesmani, and
Hemikrithe orientalis.

The multiple linear regression model analyses were imple-
mented in R programming language (R Core Team, 2016).
We used “MU MIN ” (Bartoń, 2013) for model averaging and
“SPDEP” (Bivand and Piras, 2015) to measure spatial auto-
correlation.

5 Results and discussion

The comprehensive ostracod dataset for the 52 sites and
the environmental variables enabled us to elucidate distri-
bution patterns of common ostracod taxa and their related
environmental factor(s). We identified 151 species belong-
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590 Y. Hong et al.: Baseline for ostracod-based paleoenvironmental reconstructions

Table 2. Best three regression models of the relative abundance of common species, including Pistocythereis bradyi, Bicornucythere bisanen-
sis s.l., Nipponocythere bicarinata, Spinileberis quadriaculeata, Phlyctocythere japonica, Loxoconcha epeterseni, Sinocytheridea impressa,
Neomonoceratina delicata, Keijella kloempritensis, Neosinocythere elongata, Stigmatocythere roesmani, Hemicytheridea reticulata, Loxo-
concha malayensis, Alocopocythere goujoni, Hemikrithe orientalis, Propontocypris spp., Neonesidea spp., and Xestoleberis spp. The table
shows the coefficient of each term, adjusted R2, the Akaike information criterion corrected for small sample size (AIC), and the Akaike
weight (AW). Bold denotes significance at P < 0.05. Overall, P is < 0.05 in all models. R: region. Other abbreviations are found in Table 1.

Model Chl D DO MD Sal Tur WT Pb Zn R R2 AIC AW

Pistocythereis bradyi

1 −0.12 2.67 −0.21 −0.06 0.61 −163.64 0.52
2 −0.13 2.87 0.04 −0.20 −0.05 0.61 −159.79 0.08
3 −0.12 0.07 2.83 −0.21 −0.07 0.60 −159.42 0.06

Bicornucythere bisanensis s.l.

1 −0.09 −0.23 0.02 0.60 −137.80 0.12
2 −0.08 −0.01 0.56 −136.77 0.07
3 −0.29 0.18 0.00 0.58 −136.77 0.05

Nipponocythere bicarinata

1 −0.07 −0.12 0.03 0.43 −200.57 0.11
2 −0.09 0.03 0.39 −200.38 0.10
3 −0.09 −0.03 −0.16 0.04 0.45 −199.30 0.06

Spinileberis quadriaculeata

1 0.06 −0.09 −0.04 0.63 −183.88 0.10
2 −0.05 0.02 0.60 −182.94 0.06
3 0.08 −0.09 −0.75 −0.04 0.65 −182.66 0.05

Phlyctocythere japonica

1 0.04 0.00 0.28 −238.60 0.19
2 0.03 0.33 −0.02 0.30 −237.01 0.09
3 0.03 −0.02 0.00 0.27 −235.62 0.04

Loxoconcha epeterseni

1 0.03 −0.33 −0.03 0.01 0.49 −288.61 0.11
2 0.02 0.04 −0.04 −0.34 −0.04 0.00 0.56 −287.76 0.07
3 0.02 0.04 −0.34 −0.04 0.00 0.51 −287.31 0.06

Sinocytheridea impressa

1 0.33 −1.47 0.75 −9.13 0.34 0.55 −37.29 0.27
2 0.41 −1.48 −8.75 0.37 0.50 −35.24 0.10
3 −1.12 0.94 −10.30 0.44 0.49 −34.78 0.08

Neomonoceratina delicata

1 3.77 0.34 0.41 −0.13 0.48 −82.57 0.29
2 0.43 5.02 0.31 0.39 −0.20 0.50 −81.21 0.15
3 3.47 0.33 −0.20 0.55 −0.12 0.48 −79.32 0.06

Keijella kloempritensis

1 0.06 −0.06 −0.02 0.56 −202.12 0.12
2 0.08 −0.02 0.53 −201.51 0.09
3 0.06 0.09 −0.08 −0.02 0.58 −200.86 0.06
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Table 2. Continued.

Model Chl D DO MD Sal Tur WT Pb Zn R R2 AIC AW

Neosinocythere elongata

1 −0.02 0.09 −0.03 0.76 −244.70 0.09
2 −0.06 0.08 −0.03 0.76 −244.42 0.08
3 0.09 −0.03 0.74 −244.15 0.07

Stigmatocythere roesmani

1 −0.08 0.00 0.23 −225.23 0.07
2 0.36 −0.07 −0.02 0.25 −224.06 0.04
3 0.10 0.67 −0.07 −0.03 0.30 −224.03 0.04

Hemicytheridea reticulata

1 −0.03 −0.04 0.01 0.23 −270.79 0.14
2 0.02 −0.02 −0.04 0.01 0.26 −269.44 0.07
3 0.03 −0.03 0.00 0.19 −268.64 0.05

Loxoconcha malayensis

1 −0.03 −0.14 −0.12 0.03 0.55 −229.55 0.10
2 0.04 −0.13 −0.12 0.02 0.55 −229.42 0.09
3 −0.04 −0.14 −0.10 −0.04 0.03 0.57 −228.47 0.06

Alocopocythere goujoni

1 0.21 −0.04 0.68 −331.97 0.09
2 −0.01 0.28 −0.01 −0.04 0.71 −330.52 0.05
3 −0.01 0.27 −0.02 −0.04 0.71 −330.45 0.04

Hemikrithe orientalis

1 0.03 0.46 0.00 0.19 −249.44 0.11
2 0.03 0.07 0.00 0.18 −248.67 0.07
3 0.04 0.06 0.42 0.00 0.23 −248.60 0.07

Propontocypris spp.

1 −0.28 0.46 0.04 0.20 −72.47 0.15
2 −0.24 0.07 0.13 −71.74 0.10
3 −0.24 0.49 −2.46 0.02 0.22 −70.76 0.06

Neonesidea spp.

1 −0.12 −0.25 0.19 0.05 0.28 −149.00 0.09
2 −0.11 0.33 −0.24 −1.13 0.20 0.05 0.31 −147.86 0.05
3 0.21 0.02 0.08 −147.40 0.04

Xestoleberis spp.

1 0.04 0.15 −0.11 −0.08 0.05 −0.02 0.62 −225.55 0.09
2 0.03 0.15 −0.09 −0.09 −0.02 0.59 −225.29 0.08
3 −0.09 −0.06 0.00 0.52 −224.60 0.06

ing to 76 genera (Supplement S1). Among them, 18 common
taxa (mainly species, a few genera) of Pistocythereis bradyi,
Bicornucythere bisanensis s.l., Nipponocythere bicarinata,
Spinileberis quadriaculeata, Phlyctocythere japonica, Lox-
oconcha epeterseni, Sinocytheridea impressa, Neomono-
ceratina delicata, Keijella kloempritensis, Neosinocythere
elongata, Stigmatocythere roesmani, Hemicytheridea retic-

ulata Loxoconcha malayensis, Alocopocythere goujoni,
Hemikrithe orientalis, Propontocypris spp., Neonesidea spp.,
and Xestoleberis spp. (Supplement S2) were used for regres-
sion modeling, and their relative abundances (to the total os-
tracod abundance in a sample) show significant relations to
environmental parameters. The best three regression models
are presented in Table 2 and the model-averaged parameter

www.biogeosciences.net/16/585/2019/ Biogeosciences, 16, 585–604, 2019
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Table 3. Model-averaged parameter estimates and CIs of the relative abundance for common species including Pistocythereis bradyi,
Bicornucythere bisanensis s.l., Nipponocythere bicarinata, Spinileberis quadriaculeata, Phlyctocythere japonica, Loxoconcha epeterseni,
Sinocytheridea impressa, Neomonoceratina delicata, Keijella kloempritensis, Neosinocythere elongata, Stigmatocythere roesmani, Hemi-
cytheridea reticulata Loxoconcha malayensis, Alocopocythere goujoni, Hemikrithe orientalis, Propontocypris spp., Neonesidea spp., and
Xestoleberis spp. CIs, confidence intervals; RI, relative importance (the sum of the Akaike weights of models that include the variable in
question; see Materials and Methods); R, region. Other abbreviations are found in Table 1. Bold denotes CIs that exclude zero. For R,
coefficient, lower CI, and upper CI values shown are averages of those for geographic regions.

Term RI Coefficient Lower CI Upper CI Term RI Coefficient Lower CI Upper CI

Pistocythereis bradyi Bicornucythere bisanensis s.l.

R 1.00 −0.06 −0.15 0.04 R 1.00 0.01 −0.11 0.12
Sal 1.00 2.71 1.53 3.88 MD 0.63 −0.26 −0.52 0.00
D 1.00 −0.12 −0.19 −0.06 D 0.62 −0.08 −0.16 0.00
Pb 0.97 −0.21 −0.32 −0.10 Pb 0.38 0.14 −0.05 0.33
Tur 0.12 0.04 −0.07 0.15 DO 0.20 0.17 −0.15 0.48
Zn 0.11 −0.05 −0.23 0.13 Chl 0.19 0.06 −0.07 0.19
DO 0.10 0.06 −0.18 0.31 Tur 0.19 0.07 −0.08 0.22
WT 0.10 0.33 −0.98 1.64 Zn 0.16 −0.01 −0.28 0.25
Chl 0.09 0.02 −0.08 0.11 Sal 0.12 −0.02 −1.86 1.82
MD 0.08 −0.01 −0.20 0.18 WT 0.10 0.06 −1.80 1.92

Nipponocythere bicarinata Spinileberis quadriaculeata

R 1.00 0.02 −0.04 0.09 R −0.01 −0.10 0.07
Chl 0.92 −0.08 −0.14 −0.02 Tur 0.66 −0.09 −0.17 0.00
DO 0.50 −0.14 −0.30 0.02 Chl 0.54 0.06 0.00 0.13
D 0.30 −0.03 −0.08 0.02 D 0.45 −0.05 −0.10 0.01
WT 0.25 −0.03 −0.08 0.02 WT 0.32 −0.76 −1.82 0.31
Sal 0.24 0.51 −0.35 1.36 DO 0.19 0.10 −0.10 0.30
Tur 0.19 −0.04 −0.11 0.04 MD 0.17 −0.07 −0.23 0.09
Zn 0.18 −0.04 −0.12 0.04 Pb 0.17 −0.05 −0.16 0.07
Pb 0.13 −0.03 −0.11 0.06 Zn 0.14 0.03 −0.09 0.15
MD 0.10 0.00 −0.13 0.13 Sal 0.13 0.11 −1.03 1.26

Phlyctocythere japonica Loxoconcha epeterseni

R 1.00 −0.01 −0.05 0.03 R 1.00 0.00 −0.02 0.03
D 0.80 0.03 0.01 0.06 D 0.94 0.03 0.00 0.05
Sal 0.42 0.46 −0.10 1.02 Tur 0.76 −0.03 −0.06 0.00
Pb 0.21 −0.03 −0.08 0.03 Sal 0.53 −0.30 −0.62 0.02
Zn 0.20 −0.02 −0.07 0.03 MD 0.38 −0.04 −0.08 0.01
WT 0.15 0.22 −0.38 0.81 Chl 0.30 0.02 −0.01 0.04
DO 0.14 0.03 −0.08 0.15 DO 0.26 0.04 −0.02 0.10
Tur 0.12 0.00 −0.05 0.05 Pb 0.17 0.01 −0.02 0.05
Chl 0.12 0.00 −0.04 0.05 WT 0.13 −0.13 −0.48 0.22
MD 0.11 0.00 −0.09 0.08 Zn 0.12 0.01 −0.03 0.04

Sinocytheridea impressa Neomonoceratina delicata

R 1.00 0.36 −0.09 0.81 R 1.00 −0.15 −0.42 0.12
Sal 0.99 −9.26 −14.61 −3.91 Zn 0.94 0.41 0.11 0.70
DO 0.91 −1.42 −2.48 −0.37 Sal 0.93 4.06 1.00 7.13
MD 0.75 0.82 0.07 1.57 Tur 0.84 0.33 0.06 0.59
Chl 0.74 0.82 0.03 0.70 DO 0.33 0.45 −0.17 1.06
WT 0.20 0.82 −2.34 8.89 Pb 0.17 −0.18 −0.67 0.30
Zn 0.13 0.82 −0.68 0.51 MD 0.14 0.25 −0.33 0.84
Tur 0.11 0.82 −0.61 0.30 D 0.11 −0.01 −0.22 0.20
D 0.11 0.82 −0.29 0.41 WT 0.11 −0.86 −4.32 2.60
Pb 0.10 0.82 −0.62 0.46 Chl 0.09 0.00 −0.24 0.23
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Table 3. Continued.

Term RI Coefficient Lower CI Upper CI Term RI Coefficient Lower CI Upper CI

Keijella kloempritensis Neosinocythere elongata

R 1.00 −0.02 −0.09 0.04 R 1.00 −0.03 −0.07 0.00
D 0.86 0.06 0.02 0.11 Tur 1.00 0.08 0.04 0.13
Pb 0.58 −0.08 −0.17 0.01 MD 0.33 −0.05 −0.13 0.02
Sal 0.35 0.68 −0.21 1.58 Chl 0.30 −0.02 −0.05 0.01
MD 0.25 0.08 −0.05 0.21 WT 0.26 −0.33 −0.85 0.18
Tur 0.24 0.05 −0.03 0.14 Zn 0.21 −0.02 −0.06 0.02
Chl 0.22 −0.04 −0.11 0.03 Pb 0.19 −0.02 −0.07 0.02
Zn 0.17 0.02 −0.11 0.14 D 0.12 0.00 −0.03 0.03
WT 0.14 0.33 −0.55 1.22 DO 0.12 −0.02 −0.11 0.07
DO 0.11 0.03 −0.14 0.19 Sal 0.10 0.04 −0.40 0.49

Stigmatocythere roesmani Hemicytheridea reticulata

R 1.00 −0.01 −0.07 0.05 R 1.00 0.01 −0.02 0.03
Sal 0.61 0.62 −0.04 1.27 Pb 0.67 −0.04 −0.07 0.00
Pb 0.61 −0.06 −0.12 0.00 D 0.66 −0.02 −0.04 0.00
Tur 0.37 0.04 −0.01 0.10 Chl 0.49 0.03 0.00 0.05
Zn 0.31 −0.05 −0.11 0.02 WT 0.24 −0.24 −0.64 0.16
DO 0.31 0.09 −0.04 0.22 MD 0.23 −0.03 −0.09 0.02
MD 0.23 −0.06 −0.16 0.04 Zn 0.17 −0.01 −0.06 0.05
Chl 0.19 −0.02 −0.07 0.02 DO 0.13 0.02 −0.05 0.10
WT 0.19 0.35 −0.33 1.02 Tur 0.13 −0.01 −0.05 0.03
D 0.14 −0.01 −0.05 0.04 Sal 0.11 −0.05 −0.43 0.34

Loxoconcha malayensis Alocopocythere goujoni

R 1.00 0.02 −0.02 0.06 R 1.00 −0.03 −0.05 −0.02
DO 0.87 −0.14 −0.25 −0.03 Sal 0.78 0.22 0.03 0.41
MD 0.85 −0.11 −0.20 −0.02 D 0.46 −0.01 −0.02 0.00
D 0.48 −0.03 −0.06 0.00 DO 0.43 −0.03 −0.07 0.01
Chl 0.40 0.03 −0.01 0.08 Pb 0.31 −0.01 −0.03 0.01
Pb 0.29 −0.04 −0.10 0.02 Zn 0.29 −0.01 −0.03 0.01
WT 0.26 0.41 −0.21 1.03 WT 0.24 0.13 −0.08 0.33
Zn 0.20 −0.03 −0.10 0.04 Tur 0.18 0.01 −0.01 0.03
Sal 0.15 −0.26 −0.91 0.39 MD 0.14 −0.01 −0.04 0.02
Tur 0.11 −0.01 −0.07 0.05 Chl 0.11 0.00 −0.01 0.01

Hemikrithe orientalis Propontocypris spp.

R 1.00 0.00 −0.04 0.03 R 1.00 0.05 −0.19 0.30
D 0.77 0.03 0.00 0.05 Chl 0.80 −0.26 −0.47 −0.04
WT 0.46 0.43 −0.07 0.93 MD 0.58 0.50 −0.03 1.03
DO 0.44 0.08 −0.02 0.17 WT 0.29 −2.60 −6.48 1.28
Sal 0.30 0.37 −0.17 0.90 Pb 0.19 −0.18 −0.55 0.20
Pb 0.22 −0.03 −0.08 0.02 Sal 0.17 −1.48 −4.88 1.92
Tur 0.17 0.02 −0.03 0.07 DO 0.15 −0.27 −0.99 0.45
Chl 0.14 −0.01 −0.05 0.03 Zn 0.14 −0.03 −0.48 0.41
Zn 0.11 0.00 −0.05 0.05 D 0.13 0.04 −0.17 0.26
MD 0.10 −0.01 −0.08 0.07 Tur 0.10 0.01 −0.29 0.32
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Table 3. Continued.

Term RI Coefficient Lower CI Upper CI Term RI Coefficient Lower CI Upper CI

Neonesidea spp. Xestoleberis spp.

R 1.00 0.02 −0.09 0.13 R 1.00 −0.01 −0.06 0.05
DO 0.72 0.30 0.02 0.57 Tur 0.77 −0.07 −0.12 −0.01
Zn 0.58 0.15 −0.01 0.31 MD 0.66 −0.10 −0.19 0.00
MD 0.46 −0.23 −0.49 0.03 DO 0.63 0.13 0.00 0.26
Chl 0.42 −0.09 −0.21 0.02 D 0.42 0.03 −0.01 0.07
WT 0.32 −1.13 −2.69 0.42 Pb 0.33 0.04 −0.02 0.11
Tur 0.24 −0.09 −0.22 0.05 Sal 0.27 0.46 −0.24 1.15
D 0.23 0.05 −0.04 0.15 WT 0.19 −0.37 −1.06 0.31
Pb 0.17 0.05 −0.13 0.24 Zn 0.14 0.00 −0.09 0.08
Sal 0.15 −0.60 −2.20 1.01 Chl 0.10 0.00 −0.05 0.05

Table 4. GVIF value for environmental variables. DoF, degrees of
freedom; R, region. Other abbreviations are found in Table 1.

Environmental
variables GVIF DoF GVIF1/2DoF

Chl 7.40 1 2.72
D 6.41 1 2.53
DO 4.49 1 2.12
MD 3.72 1 1.93
Sal 9.43 1 3.07
Tur 6.67 1 2.58
Pb 9.98 1 3.16
Zn 10.05 1 3.17
WT 2.39 1 1.55
R 1266.30 9 1.49

estimates in Table 3. A small percentage of specimens of
phytal genera (e.g., Xestoleberis spp., Neonesidea spp.) were
contained in each sample, which are basically allochthonous
specimens in bottom sediments transported from surround-
ing phytal environments. The value of allochthonous species
to environmental interpretation is limited; however, most
ostracod specimens in each sample are composed of ben-
thic muddy sediment dwellers, which are considered au-
tochthonous.

Ostracods were divided into four groups based on their ge-
ographic distributions: (a) widespread group; (b) temperate
group; (c) subtropical group; (d) tropical group; and (e) glob-
ally distributed group (Fig. 4).

5.1 Widespread group

The widespread group constitutes only one species, Pisto-
cythereis bradyi. Pistocythereis bradyi is widely distributed
throughout the marginal marine environments of Japan, the
East and South China Sea, and the Indo-Pacific (Fig. 4). Rel-
ative abundance of P. bradyi was highly correlated with salin-
ity (positive), water depth (negative), and Pb (negative) (Ta-

bles 2 and 3). This indicates that the species prefers relatively
shallow environments with high salinity (Figs. 2 and 5). In
the Pearl River Delta and shallow South China Sea (Fig. 4),
P. bradyi is dominant along the inner continental shelf at wa-
ter depths < 100 m (mostly common between 10 and 50 m)
and at salinities from 30–40 (Li, 1985; Zhao and Wang, 1990;
Zhao et al., 1986). Pistocythereis bradyi is a typical middle
muddy bay species in Japan (Irizuki et al., 2006; Yasuhara
and Irizuki, 2001; Yasuhara and Seto, 2006), and known from
open bays such as Gamagyang Bay in Korea (Abe, 1988) and
Malacca Strait (Whatley and Zhao, 1988b). In these studies,
P. bradyi prefers relatively high salinity and deeper water in
the inner continental shelf. Our data agree as to the prefer-
ence for high salinity, but are inconsistent with the literature
regarding shallower water depths (Tables 2 and 3). Salinity
may be more important than depth, but the restricted depth
range of our sites (≤ 35 m) may also be a reason for this in-
consistency. Our results indicate that P. bradyi is sensitive to
metal pollution (Tables 2 and 3).

5.2 Temperate group

Five species including Bicornucythere bisanensis s.l., Nip-
ponocythere bicarinata, Spinileberis quadriaculeata, Phlyc-
tocythere japonica, and Loxoconcha epeterseni are dis-
tributed from the Japanese–Russian coast to the South China
Sea.

Bicornucythere bisanensis s.l. is very common in most
samples, the relative abundance of which was significantly
correlated with water depth (negative) (Tables 2 and 3), and
this species prefers shallower environments (Figs. 2 and 5).
In Chinese and Japanese coastal areas, B. bisanensis s.l.
is abundant in brackish water (salinity: 20–30) at depths
less than 10 m (Ikeya and Shiozaki, 1993; Irizuki et al.,
2006; Zhao et al., 1986). Our results confirm this prefer-
ence for shallow depths. In Japan, Bicornucythere bisanen-
sis is tolerant of anthropogenic impacts, especially eutroph-
ication and the resulting bottom-water hypoxia (Irizuki et
al., 2003, 2011, 2015a, 2018; Yasuhara et al., 2003, 2007,
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Figure 4. Geographical distributions of the 18 taxa in the northwestern Pacific and Indo-Pacific regions, including Pistocythereis bradyi,
Bicornucythere bisanensis s.l., Nipponocythere bicarinata, Spinileberis quadriaculeata, Phlyctocythere japonica, Loxoconcha epeterseni,
Sinocytheridea impressa, Neomonoceratina delicata, Keijella kloempritensis, Neosinocythere elongata, Stigmatocythere roesmani, Hemi-
cytheridea reticulata Loxoconcha malayensis, Alocopocythere goujoni, Hemikrithe orientalis, Propontocypris spp., Neonesidea spp., and
Xestoleberis spp. (a) Widespread group; (b) temperate group; (c) subtropical group; (d) tropical group; and (e) globally distributed group.
The following references were used mainly to determine the geographical distributions of the species: Al Jumaily and Al-Sheikhly (1999);
Dewi (1997); Dong et al. (2012); Fauzielly et al. (2013); Gu et al. (2017); Hong et al. (2017); Hou and Gou (2007); Hussain et al. (2004, 2010);
Hussain and Mohan (2000, 2001); Irizuki et al. (2006, 2009); Iwatani et al. (2014); Liu et al. (2013); Li (1985); Mostafawi (1992); Nishath
et al. (2017); Noraswana et al. (2014); Pugliese et al. (2006); Schornikov et al. (2014); Tanaka et al. (2009, 2011); Wang et al. (1988); Wang
and Zhang (1987); Wang and Zhao (1985); Zhao (1984); Zhao and Wang (1988a, b, 1990); Zhao and Whatley (1993); Zhou et al. (2015).
Note that Sinocytheridea impressa is known to be distributed in Japan, but their Japanese distribution is very limited in certain areas of the
southern part of Japan (Iwasaki, 1992; Tanaka et al., 2019). Thus, we did not indicate their Japanese–Russian coast distribution in this figure.
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Figure 5. Spatial distribution of the relative abundance for Pistocythereis bradyi, Bicornucythere bisanensis s.l., Nipponocythere bicarinata,
Spinileberis quadriaculeata, Phlyctocythere japonica, Loxoconcha epeterseni, Sinocytheridea impressa, and Neomonoceratina delicata in
Hong Kong. The scale bar is 200 µm.
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2012a). We did not see a significant relation between rela-
tive abundance and metal concentration, productivity, or dis-
solved oxygen. Possibly, the more dominant presence of S.
impressa and N. delicata, which are neither dominant or dis-
tributed throughout most of Japan, could explain this differ-
ence. These species may have a higher tolerance than B. bisa-
nensis s.l. Another explanation may be that different morpho-
types have different ecological preferences (Abe, 1988), and
only Form A is known to be tolerant to eutrophication and
bottom-water oxygen depletion (Irizuki et al., 2011, 2015a,
2018; Yasuhara and Yamazaki, 2005; Yasuhara et al., 2007).
Form A is less abundant in Hong Kong, and due to the dif-
ficulty of juvenile identification, we did not divide B. bisa-
nensis into morphotypes. Bicornucythere bisanensis s.l. is
widely distributed throughout marginal marine environments
around Japan, Russia (Sea of Japan coast), and the East and
South China Sea (Fig. 4).

The relative abundance of N. bicarinata correlated with
productivity (negative) (Tables 2 and 3). This is a typical
middle bay species in Japan (Irizuki et al., 2006), abundant
on muddy substrates at water depths > 10 m (Yasuhara and
Seto, 2006; Yasuhara et al., 2005). We found N. bicarinata to
be sensitive to eutrophication, preferring lower productivity
(Figs. 2 and 5). This species is known from marginal marine
environments around Japan and the East and South China Sea
(Fig. 4).

The relative abundance of S. quadriaculeata correlated
with productivity (positive) and turbidity (negative) (Tables 2
and 3). This is a typical inner muddy bay species in Japan
(Irizuki et al., 2006), which prefers silty substrates in brack-
ish waters at salinities from 20 to 30 and water depths of
2–7 m (Ikeya and Shiozaki, 1993). This study shows a pref-
erence for waters with higher productivity but relatively low
turbidity (Tables 2 and 3) so that the species is abundant in
Tolo Harbour (higher productivity, lower turbidity) but not
in Deep Bay (higher turbidity) (Figs. 2 and 5). Spinileberis
quadriaculeata is not tolerant to seasonal anoxia or oxygen
depletion (0–1 mg L−1) in Uranouchi Bay, Japan (Irizuki et
al., 2008), but we do not find a significant correlation with
dissolved oxygen content, probably due to the relatively high
bottom-water oxygen content (2.96–6.84 mg L−1) in Hong
Kong (Fig. 2; Supplement S2). Spinileberis quadriaculeata is
widely distributed in marginal marine environments around
Japan, Russia (Sea of Japan coast), and the East and South
China Sea (Fig. 4).

The relative abundance of P. japonica correlated with wa-
ter depth (positive) (Tables 2 and 3). This species is known
from relatively deeper waters (> 40 m) in the East China
Sea (Ishizaki, 1981; Wang et al., 1988). At our sites, it has
its greatest abundance at the deeper southern sites (Fig. 5).
Phlyctocythere japonica is distributed around Japan (Ya-
suhara et al., 2002) and the East and South China Sea (Fig. 4).

Similarly to P. japonica, the relative abundance of L.
epeterseni correlated with water depth (positive) and turbid-
ity (negative) (Tables 2 and 3). It occurs in the southern and

eastern, deeper, and less turbid regions of Hong Kong wa-
ters, but the trend is not very clear (Figs. 2 and 5). This
species is also known from the deeper parts of Osaka Bay
(Yasuhara and Irizuki, 2001) and marginal marine environ-
ments around Japan (Ishizaki, 1968), the East China Sea
(Hou et al., 1982), and the South China Sea (Cao, 1998)
(Fig. 4). This species is reported as Loxoconcha modesta
in Hou and Gou (2007) and has also been misidentified as
Loxoconcha viva and Loxoconcha sinensis (Hou and Gou,
2007). Ishizaki (1968) described Loxoconcha laeta and Lox-
oconcha modesta, but these are the females and males of
the same species (Ikeya et al., 2003). Ishizaki (1981) gave
the new species names Loxoconcha epeterseni and Loxo-
concha tosamodesta for Loxoconcha laeta and Loxocon-
cha modesta, respectively, because these names were ju-
nior homonyms. Since Loxoconcha laeta (epeterseni) ap-
pears earlier than Loxoconcha modesta (tosamodesta) in the
original description (Ishizaki, 1968), we use the name Lox-
oconcha epeterseni for this species (see, e.g., Ikeya et al.,
2003).

5.3 Subtropical group

Six species including Sinocytheridea impressa, Neomono-
ceratina delicata, Keijella kloempritensis, Neosinocythere
elongata, Stigmatocythere roesmani, and Hemicytheridea
reticulata are reported from the East China Sea to the Indo-
Pacific area.

Sinocytheridea impressa (Sinocytheridea latiovata; see
Whatley and Zhao, 1988a) is the most dominant species in
this study, the relative abundance of which is significantly
correlated with salinity (negative), dissolved oxygen (nega-
tive), mud content (positive), and productivity (positive) (Ta-
bles 2 and 3). This species is noticeably dominant in areas
characterized by a muddy bottom including northern Mirs
Bay, Port Shelter, and coastal southern waters (Fig. 5). It is
also abundant in Tolo Harbour, an area known for its summer
hypoxia and eutrophication (Hu et al., 2001; Sin and Chau,
1992). These results are consistent with previous studies in-
dicating that S. impressa is dominant in low-salinity, nutrient-
rich, and turbid estuaries (Irizuki et al., 2005; Tanaka et al.,
2011), but we did not see a significant relation with turbid-
ity (Tables 2 and 3). Sinocytheridea impressa is known as
a euryhaline species widely distributed throughout the East
and South China Sea (abundant in water depths of < 20 m;
Whatley and Zhao, 1988a) and the Indo-Pacific (Fig. 4).

Neomonoceratina delicata (Neomonoceratina crispata;
see Hou and Gou, 2007) is very common in most of the
samples, and the relative abundance significantly correlates
with Zn (positive), salinity (positive), and turbidity (positive)
(Tables 2 and 3). Neomonoceratina delicata is a nearshore
species abundant at depths less than 30 m at relatively high
salinities (> 30; Zhao and Wang, 1988b). It prefers the
higher-salinity waters in Hong Kong (Figs. 2 and 5; Tables 2
and 3) and in view of its positive correlation with Zn and
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Figure 6. Spatial distribution of the relative abundance for Keijella kloempritensis, Neosinocythere elongata, Stigmatocythere roesmani,
Hemicytheridea reticulata Loxoconcha malayensis, Alocopocythere goujoni, Hemikrithe orientalis, and Propontocypris spp. in Hong Kong.
The scale bar is 200 µm.
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turbidity, is likely tolerant to human-induced environmental
stress such as pollution and eutrophication. This species is
widely known from nearshore and estuarine environments in
the East and South China Sea and the Indo-Pacific (Fig. 4).

The relative abundance of K. kloempritensis correlated
only with water depth (positive) (Fig. 6; Tables 2 and 3).
Keijella kloempritensis is widely known from the tropical
Indo-Pacific region and abundant along the inner continental
shelf of the South and East China Sea (Fig. 4) at water depths
ranging from 20 to 50 m and salinity close to normal marine
(Zhao and Wang, 1990). Our modeling results are consistent
with this, showing a preference for the relatively deeper wa-
ters in our study (Tables 2 and 3). Thus, this species is prob-
ably useful for reconstructing past sea-level changes in the
broad tropical and subtropical Indo-Pacific and northwestern
Pacific regions as a deeper water indicator.

The relative abundance of N. elongata correlated only with
turbidity (positive) (Tables 2 and 3). This species occurs
along the entire coast of China (Fig. 4) in marginal marine
environments, especially estuarine environments shallower
than 20 m (Dong et al., 2012; Hou and Gou, 2007; Liu et al.,
2013, 2017; Zhao and Whatley, 1993) (Fig. 4), and is known
from the Indo-Pacific region. Our modeling results and pre-
vious studies consistently indicate that N. elongata prefers
shallow, turbid waters like Deep Bay and the Pearl River Es-
tuary (Figs. 2 and 6).

The relative abundance of S. roesmani correlated with Pb
(negative) (Tables 2 and 3), and thus this species is sensi-
tive to metal pollution (but note the significant autocorre-
lation with the modeling result) and absent in areas with
high metal concentrations, e.g., Tolo and Victoria Harbour
(Figs. 3 and 6). The relative abundance of H. reticulata also
correlated with Pb (negative) and water depth (negative) (Ta-
bles 2 and 3). This species is abundant in Tolo Harbour and
the inner part of Mirs Bay (Fig. 6) at shallow depths and
is also consistently found in very shallow waters from the
Indo-Pacific (Zhao and Whatley, 1989). Their metal pollu-
tion sensitivity is contradictory because they occur in Tolo
and Victora Harbour, both polluted regions of Hong Kong,
and further research is needed to better understand this result
(Figs. 3 and 6). Both of these species occur in the East and
South China Sea and the Indo-Pacific region (Fig. 4).

5.4 Tropical group

The three species Loxoconcha malayensis, Alocopocythere
goujoni, and Hemikrithe orientalis are distributed from the
South China Sea to the Indo-Pacific.

The relative abundance of L. malayensis correlated with
dissolved oxygen (negative) and mud content (negative) (Ta-
bles 2 and 3). It is a typical tropical species known from the
Indo-Pacific and the South China Sea (Fig. 4). We did not
find a correlation with temperature, likely due to the small
range of variation of bottom-water temperatures in Hong
Kong (winter temperature: 19.10–21.49 ◦C). This species

prefers coarse sediments and is resistant to low oxygen con-
tent (Table 2 and 3), as seen by its abundance in Victoria
Harbour (Figs. 2 and 6).

The relative abundance of both A. goujoni and H. ori-
entalis correlated with natural factors only. Alocopocythere
goujoni correlated with salinity (positive) (Tables 2 and 3)
and occurs not only in Mirs Bay where the salinity is higher,
but also in the Deep Bay and northwestern waters where the
salinity is lower than in other areas (Figs. 2 and 6). The
Deep Bay and northwestern waters are shallow and have
relatively low oxygen content. The modeling result of this
species shows a marginally insignificant but negative rela-
tionship to oxygen content and water depth with moderately
high relative importance (Table 3). We explain this inconsis-
tency by considering their preference for higher salinity and
shallow water depths, and also their resistance to low oxygen
conditions, but further research is needed to know their au-
toecology with better confidence. The relative abundance of
H. orientalis correlated with water depth (positive) (Tables 2
and 3; but note the significant autocorrelation with the mod-
eling result of this species), and it is more abundant in deeper
waters including southern Mirs Bay (Fig. 6). It is known from
depths of 20–50 m in the South China Sea (Zhao and Wang,
1988a) and reported from tropical Indo-Pacific marginal ma-
rine environments (Fig. 4). Our regression modeling consis-
tently shows a positive relationship between relative abun-
dance and winter temperatures with moderately high relative
importance, although the correlation is marginally insignifi-
cant (Tables 2 and 3).

5.5 Globally distributed group

Propontocypris is known as a cosmopolitan genus. The rel-
ative abundance of Propontocypris spp. significantly corre-
lated with productivity (negative) (Tables 2 and 3). This neg-
ative correlation with productivity (but note a significant au-
tocorrelation with the modeling result of this genus) indi-
cates that the genus prefers less eutrophic waters (Fig. 6).
Propontocypris is a good swimmer (Maddocks, 1969) and
thus may have an advantage in obtaining food in relatively
food-limited environments.

Phytal genera including Neonesidea spp. and Xestoleberis
spp. have a global distribution and are correlated with various
environmental factors. The relative abundance of Neonesidea
spp. correlated with dissolved oxygen (positive), as expected
for a phytal species (Smith and Kamiya, 2002; Yamada,
2007) (Tables 2 and 3; Fig. 7). Similarly, phytal (Irizuki et
al., 2008; Sato and Kamiya, 2007; Yasuhara et al., 2002)
Xestoleberis spp. correlated with dissolved oxygen (posi-
tive), turbidity (negative), and mud content (negative) (Ta-
ble 2 and 3; Fig. 7). This taxon’s habitat preference, includ-
ing clear water, coarse sediment, and high oxygen content, is
reflected in our modeling. As mentioned above, the value of
allochthonous phytal species to environmental interpretation
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Figure 7. Spatial distribution of the relative abundance for Neonesidea spp. and Xestoleberis spp. in Hong Kong. The scale bar is 200 µm.

Table 5. Summary of autoecology for common ostracod taxa. Chl: chlorophyll a; D: water depth; DO: dissolved oxygen; MD: mud content;
Sal: salinity; Tur: turbidity; WT: winter temperature; Pb: lead; Zn: zinc; R: region. The + and − marks indicate significant positive and
negative correlations, respectively.

Taxa Chl D DO MD Sal Tur WT Pb Zn R

Pistocythereis bradyi − + −

Bicornucythere bisanensis s.l. −

Nipponocythere bicarinata −

Spinileberis quadriaculeata + −

Phlyctocythere japonica +

Loxoconcha epeterseni + −

Sinocytheridea impressa + − + −

Neomonoceratina delicata + + +

Keijella kloempritensis +

Neosinocythere elongata +

Stigmatocythere roesmani −

Hemicytheridea reticulata − −

Loxoconcha malayensis − −

Alocopocythere goujoni +

Hemikrithe orientalis +

Propontocypris spp. −

Neonesidea spp. +

Xestoleberis spp. + − −

is limited, but they broadly reflect adjacent phytal environ-
ments.

6 Summary

Benthic ostracods from Hong Kong marginal marine wa-
ters studied here include widespread (i.e., one species dis-
tributed throughout the northwestern Pacific–Indo-Pacific re-
gion), temperate (i.e., five species distributed from the South
China Sea to Japan and Russia), subtropical (i.e., six species
distributed from the Indo-Pacific to the East China Sea), and
tropical (i.e., three species distributed in the Indo-Pacific and
South China Sea) species and three globally distributed gen-
era (Fig. 4). We provide a robust baseline of the autoecology
for these common ostracod taxa based on rigorous statistical

modeling using comprehensive environmental data. We es-
tablished reliable indicator taxa for water depth, mud content,
salinity, turbidity, dissolved oxygen, heavy metal pollution
(Pb and Zn), and eutrophication (chlorophyll a) (Table 5).
Thus, our results are applicable for future ostracod-based pa-
leoenvironmental studies in a wide range of localities from
the tropics to the extratropics and from the Indian Ocean to
the northwestern Pacific. We established pollution and eu-
trophication indicator species in tropical environments for
the first time. Anthropocene paleoenvironmental and paleoe-
cological studies in the tropics are urgently needed because
(1) the tropics are seriously under-studied (Wilkinson et al.,
2014; Yasuhara et al., 2012a), (2) tropical environments and
ecosystems are vulnerable and sensitive to human influences
(Jackson et al., 2001; Pandolfi et al., 2003), and (3) Indo-
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Pacific tropical environments have been seriously degraded
by human activity in rapidly developing countries (Bellwood
et al., 2004; Jackson, 2008; Knowlton and Jackson, 2008).
Our results provide useful and reliable tools for tropical An-
thropocene research in the broad Indo-Pacific region.
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