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Abstract. A finite group G has uniform spread k if there exists a fixed conjugacy class C of elements

in G with the property that for any k nontrivial elements s1, s2, . . . , sk in G there exists y ∈ C such

that G = ⟨si, y⟩ for i = 1, 2, . . . , k. Further, the exact uniform spread of G is the largest k such that

G has the uniform spread k. In this paper we give upper bounds on the exact uniform spreads of

thirteen sporadic simple groups.

1. Introduction

It is well-known that every finite simple group can be generated by two suitable elements [2, 17, 18].

In this case the group is called 2-generated. Binder showed that for any two non-trivial elements

x1 and x2 of the symmetric group Sn there exists an element y such that Sn = ⟨x1, y⟩ = ⟨x2, y⟩ [3].
From this Brenner and Wiegold made the following definition in [6].

Definition 1.1. Let r be any positive integer. A finite non-abelian group G is said to have spread

r, if for every set S = {s1, s2, . . . , sr} of distinct non-trivial elements of G, there exists an element

y ∈ G such that G = ⟨si, y⟩ for i = 1, 2, . . . , r. In this case y is called the mate of S. G has exact

spread r if it has spread r but not r + 1 and this is denoted by s(G) = r.

The stronger notion of uniform spread was introduced in [14].
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Definition 1.2. A finite group G has uniform spread k if there exists a fixed conjugacy class C of

elements in G with the property that for every set S = {s1, s2, . . . , sk} of distinct non-trivial elements

of G there exists y ∈ C such that G = ⟨si, y⟩ for i = 1, 2, . . . , k. Further, the exact uniform spread of

G, denoted by u(G), is the largest k such that G has the uniform spread k.

The following lemma gives an equivalent definition of spread, was presented by Bradley and Moori

in [5], such that is useful for computational purposes.

Lemma 1.3. [5, Lemma 1.1] A finite non-abelian group G has spread r, if for every set S =

{s1, s2, . . . , sr} of distinct elements of prime order in G, there exists an element y ∈ G such that

G = ⟨si, y⟩ for i = 1, 2, . . . , r.

The following is a version of Lemma 1.3 adapted to uniform spreads.

Lemma 1.4. A finite group G has uniform spread k if there exists a fixed conjugacy class C in G

such that for every set S = {s1, s2, . . . , sk} of distinct elements of prime order in G, there exists an

element y ∈ C such that G = ⟨si, y⟩ for i = 1, 2, . . . , k.

Proof. Let S = {s1, s2, . . . , sk} be any set of distinct non-trivial elements of G. Then there exist

positive integers mi for i = 1, 2, . . . , k such that smi
i = xi and order of xi for i = 1, 2, . . . , k is prime.

Thus by assumption there exists y ∈ C such that G = ⟨xi, y⟩ = ⟨smi
i , y⟩ ⊆ ⟨si, y⟩ ⊆ G. Therefore

G = ⟨si, y⟩ for all i = 1, 2, . . . , k. □

Clearly u(G) ≤ s(G), and in general these numbers are distinct. The exact spread and uniform

spread of finite simple groups has been studied in [3, 6, 7, 9, 15, 16]. The exact spread of only two

sporadic simple groups have been determined. For the remaining twenty four sporadic simple groups,

bounds of the exact spread are known [4, 5, 7, 11, 13, 21]. In [4, 21] it was proved that s(M11) = 3

and Fairbairn has shown that s(M23) = 8064 [12].

In this paper we give upper bounds on the exact uniform spreads of thirteen sporadic simple

groups. First we give some lemmas that present upper bounds and then offer three algorithms to

calculate these upper bounds of the exact uniform spread.

For information on the sporadic simple groups and their maximal subgroups we use Atlas [10]. All

calculations were done with the aid of GAP [19] and Magma [8].

The rest of the paper is organized as follows: in Section 2, we give some preliminary results. Three

algorithms to calculate upper bounds of the exact uniform spread are offered in Section 3, and in

Section 4 we prove our Main Theorem.

2. Preliminaries

Let G be a finite group and let M be a maximal subgroup of G. As is standard we write MG for

the maximal subgroups of G that are conjugate to M and M for the set of all maximal subgroups
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of G. We write cl(G) for the collection of all conjugacy classes of elements of G and clp(G) for the

collection of all conjugacy classes of elements of G of prime order. We write nX for a conjugacy class

of elements in G of order n which n >1. For a conjugacy class nX we define supp(nX) = {M |M ∈
M and M ∩ nX ̸= ∅}.

From Definition 1.2, it is clear that if y is a mate for the set S = {s1, s2, . . . , sk}, then no maximal

subgroup contains both y and si for i = 1, 2, . . . , k. We use this property in the following definitions.

Definition 2.1. Let G be a finite group and let M be a maximal subgroup of G. Let S be a set of

elements from a conjugacy class nX. When M ∩ nX ̸= ∅ we say that S supports MG if M ′ ∩ S ̸= ∅
for every M ′ ∈ MG. In this case we define supportnX(M) for the size of the smallest S that supports

MG.

From the Definition 2.1 it is clear that if M ∩ nX ̸= ∅ then supportnX(M) ≤ |MG|.
Consider a conjugacy class nY of elements in G. There exists a conjugacy class mX ∈ clp(G) such

that supp(mX) ∩ supp(nY ) ̸= ∅. We use this fact in the following definition.

Definition 2.2. Let G be a finite group and mX and nY be two conjugacy classes of elements of G

such that mX ∈ clp(G) and supp(mX) ∩ supp(nY ) ̸= ∅. We define,

support(mX,nY ) = min{supportmX(M)|M ∈ M and M ∈ supp(mX) ∩ supp(nY )}.

Lemma 2.3. Let G be a finite group and mX and nY be two conjugacy classes of elements of G

such that mX ∈ clp(G) and supp(mX) ∩ supp(nY ) ̸= ∅. Consider a set S of elements of the class

mX. Let umX,nY (G) be the largest integer such that any set S of this size has a mate from the class

nY . Then we have,

u(G)≤max{min{umX,nY (G)|mX∈clp(G) and supp(mX)∩supp(nY ) ̸=∅}|nY ∈cl(G)}.

Proof. For a given conjugacy class nY consider umX,nY (G) for each mX ∈ clp(G) where supp(mX)∩
supp(nY ) ̸= ∅. The minimum of all these is then an upper bound on the size of a set that can have

a mate from the class nY . The maximum of these values, when nY goes through all classes of G, is

then an upper bound on u(G). □

Lemma 2.4. Let G be a finite group. Then,

u(G) ≤ max{min{support(mX,nY )|mX ∈ clp(G) and supp(mX)∩supp(nY ) ̸= ∅}|nY ∈ cl(G)}−1.

Proof. Consider a conjugacy class nY of elements in G. There is a conjugacy class cX ∈ clp(G)

such that support(cX, nY ) = min{support(mX,nY )|mX ∈ clp(G) and supp(mX) ∩ supp(nY ) ̸= ∅}.
From the Definition 2.2 there exists a set S of elements from the class cX of size support(cX, nY )

such that has not any mate from the class nY . Therefore ucX,nY (G) ≤ support(cX, nY ) − 1. Then

the result is concluded from Lemma 2.3. □
http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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Lemma 2.5. Let M be a maximal subgroup of G and nX be a conjugacy class of elements of G such

that M ∩ nX ̸= ∅. If each element of the class nX is inside a unique subgroup of class MG then

supportnX(M) = |MG|.

Proof. From the Definition 2.1 we have supportnX(M) ≤ |MG|. Let S be a set of elements from the

class nX such that supports MG. Let |S| < |MG|. Each element of S is inside a unique subgroup of

MG. Therefore S has non-empty intersection with at most |S| subgroups of MG. Then S does not

support MG that is contradiction. □

In Table 1 bounds on the exact spread of thirteen sporadic simple groups are presented. The lower

bounds were proved in [7] except for M23 whose lower bound was proved in [12]. The upper bounds

were proved in [11] except for Fi22 and M23 whose upper bounds were proved in [4]. According to

the fact that u(G) ≤ s(G) for any group G in general, upper bounds presented in Table 1 also are

upper bounds on the exact uniform spread. The lower bounds given here are lower bounds on s(G)

and are therefore not necessarily lower bounds on u(G).

Table 1. Bounds on the exact spread of thirteen sporadic simple groups.

G Upper bound G Upper bound

Lower bound Lower bound

M23 8064 Ly 1296826874

8064 35049375

Ru 1252799 Th 976841774

2880 133997

O′N 2857238 Fi23 31670

3072 911

Co2 1024649 Co1 46621574

270 3671

Fi22 186 J4 47766599363

13 1647124116

HN 74064374 Fi′24 7819305288794

8593 269631216855

M 5791748068511982636944259374

3385007637938037777290624

In our Main Theorem we present upper bounds on the exact uniform spreads for thirteen sporadic

simple groups. These results are presented in Table 2.

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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Table 2. Upper bounds on the exact uniform spreads of twelve sporadic simple groups.

G Upper bound

M12 7

J1 132

M22 25

J2 11

HS 32

J3 458

M24 32

McL 277

He 653

Suz 373

Co3 1539

B 3843461129719173164826623999999

Main Theorem. If G is one of the groups M12, J1, M22, J2, HS, J3, M24, McL, He, Suz, Co3

or B, then the exact uniform spread u(G) is bounded above by the numbers given in Table 2 and

u(M11) = 3.

3. Three Algorithms

Let G be a finite group and Mi for i ∈ I be some maximal subgroups of G, such that (∪i∈IMi) ∩
nY ̸= ∅ which nY goes through all classes of G. According to Lemma 2.4 if we can determine

supportmX(Mi) for i ∈ I and each mX ∈ clp(G) that Mi ∈ supp(mX), then

u(G) ≤ max{min{supportmX(Mi)|mX ∈ clp(G) andMi ∈ supp(mX)}|i ∈ I} − 1.

In this section for a maximal subgroup M and mX ∈ clp(G) which m ∈ supp(mX) we present

three algorithms to compute upper bounds for supportmX(M). The problem of computing upper

bounds of supportmX(M) can be interpreted in terms of intersection graphs.

Let mX = {x1, x2, . . . , xk}. Each x ∈ mX is inside h conjugates of M . We denote by Mxi the set

of all conjugates of M containing xi for i = 1, 2, . . . , k. Each two Mxi and Mxj for 1 ≤ i, j ≤ k, can be

disjoint or have intersection of different size. It is clear that ∪k
i=1Mxi = MG. Now we consider graph

Γ = (V,E) such that V , the set of vertices, is Mxi for i = 1, 2, . . . , k. Two vertices Mxi and Mxj are

adjacent if Mxi ∩Mxj ̸= ∅. The graph Γ is called the intersection graph of G defined by M and mX.

Note that it is vertex transitive and is therefore regular. If supportmX(M) = t then there exists

a set I of size t such that ∪i∈IMxi = MG. Therefore determining supportmX(M) is equivalent to

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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finding a set S, consisting of vertices of Γ, of minimum size such that union of its members contains

all conjugates of M .

In the following algorithms, let G be a finite group and mX and cY be two conjugacy classes

of elements of G such that mX ∈ clp(G). Also suppose M is a maximal subgroup of G that

has intersection with mX and n = |MG|. With Algorithm-1 we can obtain an upper bound for

supportmX(M).

Algorithm-1:

Input: group G, maximal subgroup M and conjugacy class mX ∈ clp(G)

Output: an upper bound for supportmX(M)

Step 1. Construct graph Γ = (V,E) from G, M and mX. Set min = n.

Repeat for each vertex Mx of V :

Step 2. Find a maximum independent set S of Γ containing Mx. Then set L = |S| and N =

∪My∈SMy. If |N | = n then go to Step 4.

Step 3. Select a vertex Mz such that |N ∩Mz| is of minimum size. Then set N ′ := N ∪Mz and add

one to L. If |N ′| = n then go to Step 4, else replace N with N ′ and go to Step 3.

Step 4. If L < min then min = L, else continue.

End repeat.

Step 5. Return min.

If the maximal subgroup M contains elements of a class cY then min, the output of Algorithm-1,

is an upper bound of umX,cY (G). If each element of the class cY is in more than one conjugate of

M then by a few changes in Algorithm-1 we can obtain better upper bound for umX,cY (G).

Algorithm-2:

Input: group G, maximal subgroup M , conjugacy classes mX ∈ clp(G) and cY

Output: an upper bound for umX,cY (G)

Step 1. Construct graph Γ = (V,E) from G, M and mX. Set min = n.

Repeat for each vertex Mx of V :

Step 2. Find a maximum independent set S of Γ containing Mx. Then set L = |S| and N =

∪My∈SMy. Also set T to be the union of elements of the class cY in conjugates of M contained in

the set N . If |N | = n or |T | = |cY | then go to Step 4.

Step 3. Select a vertex Mz such that |N ∩Mz| is of minimum size. Then set N ′ := N ∪Mz and add

one to L. Also add to T , elements of the class cY in conjugates of M that are in Mz. If |N ′| = n or

|T | = |cY | then go to Step 4, else replace N with N ′ and go to Step 3.

Step 4. If L < min then min = L, else continue.

End repeat.

Step 5. Return min.

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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In the following algorithm let M1 and M2 be two maximal subgroups from different conjugacy

classes such that have intersection with mX and cY and |MG
1 | = n. In Algorithm-3 by considering

two conjugacy classes of maximal subgroups we can obtain better upper bound for umX,cY (G).

Algorithm-3:

Input: group G, maximal subgroups M1 and M2, conjugacy classes mX ∈ clp(G) and cY

Output: an upper bound for umX,cY (G)

Step 1. Construct graph Γ = (V,E) from G, M1 and mX. Set min = n.

Repeat for each vertex M1x of V :

Step 2. Find a maximum independent set S of Γ containing M1x. Then set L = |S| and N =

∪M1 y∈SM1 y. Also set T to be the union of elements of the class cY in conjugates of M1 contained

in N and in conjugates of M2 that contain element x. If |N | = n or |T | = |cY | then go to Step 4.

Step 3. Select a vertex M1 z such that |N ∩M1 z| is of minimum size. Then set N ′ := N ∪M1 z and

add one to L. Also add to T , elements of the class cY in conjugates of M1 that are in M1 z and in

conjugates of M2 that have element z. If |N ′| = n or |T | = |cY | then go to Step 4, else replace N

with N ′ and go to Step 3.

Step 4. If L < min then min = L, else continue.

End repeat.

Step 5. Return min.

We can extend Algorithm-3 for any number of maximal subgroups from different conjugacy classes

that intersect both mX and cY . Since Algorithm-2 and Algorithm-3 use large amounts of memory,

we often use Algorithm-1 to find upper bounds in the proof of our Main Theorem. Therefore we give

an implementation of Algorithm-1 in Appendix A.

4. Proof Of The Main Theorem

In this section we prove our Main Theorem. Therefore we consider the groups presented in Table

2, individually. For some sporadic simple groups for which we use Algorithm-3, the obtained bounds

are given in some tables. In these tables upper bound for one of u2A,nY (G) or u2B,nY (G) or u3A,nY (G)

for each conjugacy class nY , which is minimum, was computed and are presented. We use “-” in

tables when corresponding umX,nY (G) was not computed. In keeping with Atlas notation we will

write 5AB to indicate the conjugacy classes 5A and 5B and similarly for other classes.

Our method does not work for sporadic simple groups presented in Table 1. Because for using

algorithms of Section 3, we must construct some graphs. For a finite group G size of these graphs are

depended on size of conjugacy classes of elements and conjugacy classes of maximal subgroups of G.

Constructing these graphs for sporadic simple groups presented in Table 1 are not computationally

possible yet.

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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4.1. Mathieu sporadic group M11. Bradley and Holmes in [4] proved that s(M11) =3. They really

just proved that any set of three elements has a mate from class 11A, in other words 3 ≤ u(M11)

which combined with the fact that u(M11) ≤ s(M11) tells us that u(M11) = 3. Thus we have the

following proposition.

Proposition 4.1. u(M11)=3.

4.2. Mathieu sporadic group M12. GroupM12 has eleven conjugacy classes of maximal subgroups

and fifteen conjugacy classes of elements. GroupM12 has two conjugacy classes of maximal subgroups

isomorphic to M11. These two conjugacy classes have intersection with all conjugacy classes of

elements except 2A, 3B, 6A and 10A. With Algorithm-1 we found support2B(M11)≤3 for two

conjugacy classes of M11. For the remaining conjugacy classes 2A, 3B, 6A and 10A we have:

- With Algorithm-3 and conjugacy classes of two maximal subgroups M10:2 we found u2B,2A(M12)<3.

- With Algorithm-3 and conjugacy classes of maximal subgroups L2(11), 2×S5 and 42:D12 we found

u2A,3B(M12)<3.

- With Algorithm-3 and conjugacy classes of maximal subgroups L2(11), 2×S5, 4
2:D12 and A4×S3

we found u2A,6A(M12)<8.

- With Algorithm-3 and conjugacy classes of maximal subgroups M10:2, M10:2 and 2×S5 we found

u2B,10A(M12)<8.

The results are presented in Table 3.

Table 3. An upper bound for u(M12).

nY 2AB, 3A, 4AB, 5A, 6B, 8AB, 11AB 3B 6A 10A

u2B,nY (M12) < 3 - - 8

u2A,nY (M12) < - 3 8 -

For the sake of completeness, we give below some sets of elements that satisfy the conditions of

Table 3. Consider the permutation representation of M12 on 12 points with standard generators from

[1],

a = (1, 4)(3, 10)(5, 11)(6, 12) , b = (1, 8, 9)(2, 3, 4)(5, 12, 11)(6, 10, 7).

In Table 4 we give three elements from conjugacy class 2B that do not have a mate from conjugacy

classes 2AB, 3AB, 4AB, 5A, 6B, 8AB and 11AB.

Table 4. Three elements of the class 2B.

1 (1, 2)(3, 7)(5, 8)(6, 12)

2 (1, 2)(3, 7)(4, 10)(9, 11)

3 (4, 10)(5, 8)(6, 12)(9, 11)

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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In Table 5 we give eight elements from conjugacy class 2B that do not have a mate from conjugacy

class 10A.

Table 5. Eight elements of the class 2B.

1 (1, 3)(2, 7)(5, 8)(9, 11)

2 (1, 6)(4, 11)(5, 12)(7, 10)

3 (2, 10)(3, 6)(4, 9)(8, 12)

4 (2, 4)(3, 12)(5, 6)(10, 11)

5 (1, 4)(3, 11)(5, 10)(7, 8)

6 (1, 9)(2, 5)(3, 4)(8, 10)

7 (1, 10)(2, 6)(4, 8)(11, 12)

8 (1, 12)(2, 11)(3, 5)(4, 7)

In Table 6 we give eight elements from conjugacy class 2A that do not have a mate from conjugacy

class 6A.

Table 6. Eight elements of the class 2A.

1 (1, 2)(3, 12)(4, 6)(5, 10)(7, 8)(9, 11)

2 (1, 2)(3, 7)(4, 8)(5, 10)(6, 11)(9, 12)

3 (1, 2)(3, 4)(5, 10)(6, 12)(7, 9)(8, 11)

4 (1, 2)(3, 11)(4, 9)(5, 10)(6, 7)(8, 12)

5 (1, 2)(3, 12)(4, 10)(5, 7)(6, 11)(8, 9)

6 (1, 2)(3, 7)(4, 6)(5, 11)(8, 9)(10, 12)

7 (1, 2)(3, 11)(4, 5)(6, 12)(7, 10)(8, 9)

8 (1, 2)(3, 4)(5, 12)(6, 7)(8, 9)(10, 11)

Proposition 4.2. u(M12) ≤7.

Proof. Applying Lemma 2.3 to the information in Table 3 implies the result. □

The proofs of all subsequent propositions are similar to the above, so we omit them.

4.3. Janko sporadic group J1. We know that J1 has seven conjugacy classes of maximal subgroups

and fifteen conjugacy classes of elements. Conjugacy classes of maximal subgroups L2(11), 2×A5, 19:6

and D6×D10 have intersection with all conjugacy classes of elements except 7A. Conjugacy classes

of maximal subgroups 23:7:3 and 7:6 have intersection with 7A. We use Algorithm-1 to compute an

upper bound for support2A(M) for M∈{L2(11), 2×A5, 19:6, D6×D10} and Algorithm-3 to compute

an upper bound for u3A,7A(J1) with maximal subgroups 23:7:3 and 7:6. Computed bounds are

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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support2A(L2(11))≤33, support2A(2×A5)≤91, support2A(19:6)≤127, support2A(D6×D10)≤133 and

u3A,7A(J1)<125.

The results are presented in Table 7.

Table 7. An upper bound for u(J1).

nY 2A, 3A, 5AB, 6A, 11A 7A 10AB 15AB 19ABC

u2A,nY (J1) < 33 - 91 133 127

u3A,nY (J1) < - 125 - - -

Proposition 4.3. u(J1) ≤132.

4.4. Mathieu sporadic group M22. Group M22 has eight conjugacy classes of maximal subgroups

and twelve conjugacy classes of elements. Conjugacy classes of maximal subgroups L3(4), 2
4×A6

and L2(11) have intersection with all conjugacy classes of elements. With Algorithm-1 we found

support2A(L3(4))≤5, support2A(2
4 × A6)≤7 and support2A(L2(11))≤26, By Lemma 2.4, an upper

bound of u(M22) is 25.

Proposition 4.4. u(M22) ≤25.

4.5. Hall-Janko sporadic group J2. We know that J2 has nine conjugacy classes of maximal

subgroups and twenty one conjugacy classes of elements. Conjugacy classes of maximal subgroups

U3(3) and 3.PGL2(9) have intersection with all conjugacy classes of elements except 5CD, 6B and

10CD. With Algorithm-1 we found support2A(U3(3))≤5 and support2A(3.PGL2(9))≤9. For the

remaining conjugacy classes 5CD, 6B and 10CD we have:

- With Algorithm-3 and conjugacy classes of maximal subgroups 21+4:A5 and A5×D10 we found

u3A,5D(J2)<4 and u3A,5C(J2)<4.

- With Algorithm-3 and conjugacy classes of maximal subgroups 22+4:(3×S3), A4×A5, L3(2):2 and

52:D12 we found u2A,6B(J2)<12.

- With Algorithm-3 and conjugacy classes of maximal subgroups 21+4:A5 and A5×D10 we found

u3A,10D(J2)<12 and u3A,10C(J2)<12.

The results are presented in Table 8

http://dx.doi.org/10.22108/ijgt.2018.111238.1478
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Table 8. An upper bound for u(J2).

nY 2A, 3AB, 4A, 6A, 7A, 8A, 12A 2B, 5AB, 10AB, 15AB 5CD 6B 10CD

u2A,nY (J2) < 5 9 - 12 -

u3A,nY (J2) < - - 4 - 12

Proposition 4.5. u(J2) ≤11.

Bradley and Holmes in [4] proved that s(J2)≤24. Since the upper bounds of s(J2) and u(J2)

differed by a significant margin we conjecture that u(J2)<s(J2). Therefore we give below some sets

of elements that satisfy the conditions of Table 8. Consider the permutation representation of J2 on

100 points with standard generators a and b in [1]. Define x = ab and y = ab−1.

In Table 9 we give five elements from conjugacy class 2A that do not have a mate from conjugacy

classes 2A, 3AB, 4A, 6A, 7A, 8A and 12A.

Table 9. Five elements of the class 2A.

1 by(yx)4y2((xy)2yx)2

2 by2x2((yx)2y)2x(xy)2(yx2)2a

3 x(xy)3(xy2x)4yx2a

4 b−1x(yxy)2x(xy)4x(xy)2yx2yx

5 x−3b((yx)2y)2yx2ya

In Table 10 we give nine elements from conjugacy class 2A that do not have a mate from conjugacy

classes 2B, 5AB, 10AB and 15AB.

Table 10. Nine elements of the class 2A.

1 ((xy)3x2y)2yx(xy)2a

2 ((ba)2x−1)2(b−1xa)2b((yx)2y)2x2y2xa

3 b−1xy2x(xy)4x2yx2

4 b(x(xy)2)2x2yx2

5 b(xy)2x(yx2y)4xyx2

6 (yx2y)2xy((xy)2x)2a

7 b−1(yx)2(yxy)2((yx)2x)2y(yx2)2a

8 by2xy(y(xyx)2yx)2y2x

9 b(xy)2y((xy)2yx)2(xy2)2xyx2

In Table 11 we give twelve elements from conjugacy class 2A that do not have a mate from

conjugacy classes 6B. In Table 12 we give four elements from conjugacy class 3A that do not have
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Table 11. Twelve elements of the class 2A.

1 (b−1((xy)2x)2ya)2

2 (bya)2(ba)2b−1((yx)2y2x)2xy

3 (xy(yx)2)2y(yx)4y2xa

4 byxy(xy2x)4(yx)2ya

5 b−1(yx)4y2xy(yx2y2x)2yxa

6 b−1(yx)2xy((yx)2y2x)2x2

7 byx(xy2)2x(yx(xy)2)2x(xy)2a

8 (ba)2x−2b(xy2xy)2(xy)3

9 ((bya)2ba)3

10 b−1x(xy)5x3

11 bx(xy2xy)2xy2x2y

12 bx(yx2y)2xy((xy)2x)2y2

Table 12. Four elements of the class 3A.

1 (xy)2yx(xy)3x2y2a

2 y(yx)4xy2x2yxa

3 (yxy)2(xy)2(yx2)2a

4 b−1(yx)2((yx)2y)2yxy2

a mate from conjugacy classes 5CD.

In Table 13 we give twelve elements from conjugacy class 3A that do not have a mate from

conjugacy classes 10CD.

Table 13. Twelve elements of the class 3A.

1 b−1(yx)3y(yxy2x)2x2

2 y(yx)4xy2x2yxa

3 yxy(xy2x)3yxya

4 (y(yx)2)2

5 ((bya)2x−1)2

6 ((ba)2x−1)2by(yx)3xy2

7 x((yx)2y)2yx2y2xya

8 y(xyx)2y2xy(xyx)2a

9 x−2(ba)2b−1x(yxy)2x2yx2

10 y((xy)2x)2xy2x2yxa

11 x(yx2y)2(xy)3ya

12 (xyx)2(yxy)2x(xy)2a
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4.6. Higman-Sims sporadic group HS. We know that HS has twelve conjugacy classes of max-

imal subgroups and twenty four conjugacy classes of elements. Conjugacy classes of maximal sub-

groups M22, U3(5):2 and S8 have intersection with all conjugacy classes of elements. We found

support2A(S8)≤33, support2A(U3(5):2)≤11 and support2A(M22)≤5 with Algorithm-1. By Lemma

2.4, an upper bound of u(HS) is 32. So, we have the following proposition.

Proposition 4.6. u(HS) ≤32.

4.7. Janko sporadic group J3. Group J3 has nine conjugacy classes of maximal subgroups and

twenty one conjugacy classes of elements. Conjugacy classes of maximal subgroups L2(16):2, L2(19),

and (3×A6):2 have intersection with all conjugacy classes of elements. With Algorithm-1 we found

support2A(L2(16):2)≤83, support2A(L2(19))≤375 and support2A(3×A6):2)≤459. By Lemma 2.4, an

upper bound of u(J3) is 458. Therefore the following proposition is concluded.

Proposition 4.7. u(J3) ≤458.

4.8. Mathieu sporadic group M24. Group M24 has nine conjugacy classes of maximal subgroups

and twenty six conjugacy classes of elements. Conjugacy classes of maximal subgroups M23, M22:2,

24:A8, M12:2 and L3(4):S3 have intersection with all conjugacy classes of elements. By Algorithm-

1 support2A(M23)≤3, support2A(M22:2)≤13, support2A(2
4:A8)≤16, support2A(M12 : 2) ≤ 27 and

support2A(L3(4) : S3) ≤ 33 were calculated. By Lemma 2.4, an upper bound of u(M24) is 32. So, we

have the following proposition.

Proposition 4.8. u(M24) ≤32.

4.9. McLaughlin sporadic group McL. We know that McL has twelve conjugacy classes of max-

imal subgroups and twenty four conjugacy classes of elements. Conjugacy classes of maximal sub-

groups U4(3), M22, U3(5), L3(4):2 and 2.A8 have intersection with all conjugacy classes of elements.

With Algorithm-1 we found support2A(U4(3))≤13, support2A(M22) ≤46, support2A(U3(5)) ≤107,

support2A(L3(4) : 2) ≤160 and support2A(2.A8) ≤278. By Lemma 2.4, an upper bound of u(McL)

is 277. Therefore the following proposition is concluded.

Proposition 4.9. u(McL) ≤277.

4.10. Held sporadic group He. We know that He has eleven conjugacy classes of maximal sub-

groups and thirty three conjugacy classes of elements. Conjugacy classes of maximal subgroups

S4(4):2, 2
2.L3(4).S3, 2

6:3.S6, 2
1+6.L3(2) and 3.S7 have intersection with all conjugacy classes of ele-

ments. With Algorithm-1 we found support2A(S4(4):2)≤23, support2A(2
2.L3(4).S3)≤46, support2A(2

6:3.S6)≤147,

support2A(2
1+6.L3(2))≤654 and support2A(3.S7)≤642. By Lemma 2.4, an upper bound of u(He) is

653. Therefore the following proposition is concluded.

Proposition 4.10. u(He) ≤653.
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4.11. Suzuki sporadic group Suz. Group Suz has seventeen conjugacy classes of maximal sub-

groups and forty three conjugacy classes of elements. Conjugacy classes of maximal subgroups G2(4),

3.U4(3):2, U5(2), 2
1+6.U4(2) and J2:2 have intersection with all conjugacy classes of elements of Suz.

By Algorithm-1 we found support3A(G2(4))≤11, support2A(3.U4(3):2)≤ 150, support2A(U5(2)) ≤ 69,

support3A(2
1+6.U4(2))≤204 and support3A(J2:2)≤374. By Lemma 2.4, an upper bound of u(Suz) is

373. So, we have the following proposition.

Proposition 4.11. u(Suz) ≤373.

4.12. Conway sporadic group Co3. We know that Co3 has fourteen conjugacy classes of maximal

subgroups and forty two conjugacy classes of elements. Conjugacy classes of maximal subgroups

McL:2, HS, M23, 3
5:(2×M11) and U3(5):S3 have intersection with all conjugacy classes of elements of

Co3. By Algorithm-1 we found support2A(McL:2)≤12, support2A(HS) ≤79, support2A(M23) ≤160,

support2A(3
5:(2×M11))≤456 and support2A(U3(5):S3)≤1540. By Lemma 2.4, an upper bound of

u(Co3) is 1539. Therefore the following proposition is concluded.

Proposition 4.12. u(Co3) ≤1539.

4.13. Baby Monster sporadic group B. Group B has thirty conjugacy classes of maximal sub-

groups [20] and one hundred eighty four conjugacy classes of elements. Let M is a maximal subgroup

of B and nX ∈ clp(B). It is clear that if M ∩ nX ̸= ∅ then supportnX(M) ≤ |MB|. Therefore

by Lemma 2.4, u(B) is less than the index of maximal subgroup of minimum order of B. Maximal

subgroup 47:23 of B has minimum order among all maximal subgroups. This subgroup has index

3843461129719173164826624000000. Then the following proposition is concluded.

Proposition 4.13. u(B) ≤3843461129719173164826623999999.

We are now ready to prove our Main Theorem.

Main Theorem. If G is one of the groups M12, J1, M22, J2, HS, J3, M24, McL, He, Suz, Co3

or B, then the exact uniform spread u(G) is bounded above by the numbers given in Table 2 and

u(M11) = 3.

Proof. The proof follows from Propositions 4.1 to 4.13. □
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Appendix A

In the following we present a Magma [8] implementation of Algorithm-1. This code computes an

upper bound of support2A(3.PGL2(9)) in the group J2. By choosing proper values for “f”, “m” and
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“size mX” and loading groups presented in Table 2 one can check the results of Section 4. For groups

J3, McL, He, Suz and Co3, Magma can not compute maximal subgroups. In these cases we loaded

the group and its maximal subgroupM from [1] and omitted the lines “mG:=MaximalSubgroups(G)”

and “M:=mG[f]` subgroup” from code.

In the following code “f” is the number corresponding to subgroup M in maximal subgroups of

G in Magma ordering. “m” is order of an element of conjugacy class mX. “size mX” is size of

conjugacy class mX.

We used Magma version 2.10 [8].

f:=6;

m:=2;

size mX:=315;

load j2;

mG:=MaximalSubgroups(G);

M:=mG[f]` subgroup;

G1:=CosetImage(G,M);

cG1:=ConjugacyClasses(G1);

n:=Index(G,M);

for i in [1..#cG1] do

if cG1[i,1] eq m and cG1[i,2] eq size mX then

gX:=cG1[i,3];

break;

end if;

end for;

v:=Fix(gX)^ G1;

v:=Set(v);

v:=SetToIndexedSet(v);

min:=n;

bound:=#Fix(gX);

for k in [1..#v] do

best:=bound;

t:=0;

L:=1;

N:={};
range:=[1..#v];

Exclude(∼range,k);
N:=N join v[k];

while t ne n do
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for i in range do

r:=#(v[i] meet N);

if r le best then

best :=r;

temp:=i;

end if;

end for;

N:=N join v[temp];

L:=L+1;

Exclude(∼range,temp);
if L gt min then

break;

end if;

best:=bound;

t:=#N;

end while;

if L lt min then

min:=L;

print ‘‘Temporary upper bound is =’’, min;

end if;

end for;

print ‘‘Upper bound is=’’, min;
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