
www.theoryofgroups.ir

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 8 No. 3 (2019), pp. 15-31.
(C) 2019 University of Isfahan

www.ui.ac.ir

UPPER BOUNDS ON THE UNIFORM SPREADS OF THE SPORADIC SIMPLE GROUPS

ALI REZA RAHIMIPOUR* AND YOUSOF FARZANEH

Communicated by Mahmut Kuzucuoğlu

Abstract

A finite group G has uniform spread k if there exists a fixed conjugacy class C of elements in G with the property that for any k nontrivial elements $s_{1}, s_{2}, \ldots, s_{k}$ in G there exists $y \in C$ such that $G=\left\langle s_{i}, y\right\rangle$ for $i=1,2, \ldots, k$. Further, the exact uniform spread of G is the largest k such that G has the uniform spread k. In this paper we give upper bounds on the exact uniform spreads of thirteen sporadic simple groups.

1. Introduction

It is well-known that every finite simple group can be generated by two suitable elements [2, 17, 18]. In this case the group is called 2-generated. Binder showed that for any two non-trivial elements x_{1} and x_{2} of the symmetric group S_{n} there exists an element y such that $S_{n}=\left\langle x_{1}, y\right\rangle=\left\langle x_{2}, y\right\rangle[3]$. From this Brenner and Wiegold made the following definition in [6].

Definition 1.1. Let r be any positive integer. A finite non-abelian group G is said to have spread r, if for every set $S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$ of distinct non-trivial elements of G, there exists an element $y \in G$ such that $G=\left\langle s_{i}, y\right\rangle$ for $i=1,2, \ldots, r$. In this case y is called the mate of S. G has exact spread r if it has spread r but not $r+1$ and this is denoted by $s(G)=r$.

The stronger notion of uniform spread was introduced in [14].

[^0]Definition 1.2. A finite group G has uniform spread k if there exists a fixed conjugacy class C of elements in G with the property that for every set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of distinct non-trivial elements of G there exists $y \in C$ such that $G=\left\langle s_{i}, y\right\rangle$ for $i=1,2, \ldots, k$. Further, the exact uniform spread of G, denoted by $u(G)$, is the largest k such that G has the uniform spread k.

The following lemma gives an equivalent definition of spread, was presented by Bradley and Moori in [5], such that is useful for computational purposes.

Lemma 1.3. [5, Lemma 1.1] A finite non-abelian group G has spread r, if for every set $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$ of distinct elements of prime order in G, there exists an element $y \in G$ such that $G=\left\langle s_{i}, y\right\rangle$ for $i=1,2, \ldots, r$.

The following is a version of Lemma 1.3 adapted to uniform spreads.

Lemma 1.4. A finite group G has uniform spread k if there exists a fixed conjugacy class C in G such that for every set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of distinct elements of prime order in G, there exists an element $y \in C$ such that $G=\left\langle s_{i}, y\right\rangle$ for $i=1,2, \ldots, k$.

Proof. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be any set of distinct non-trivial elements of G. Then there exist positive integers m_{i} for $i=1,2, \ldots, k$ such that $s_{i}^{m_{i}}=x_{i}$ and order of x_{i} for $i=1,2, \ldots, k$ is prime. Thus by assumption there exists $y \in C$ such that $G=\left\langle x_{i}, y\right\rangle=\left\langle s_{i}^{m_{i}}, y\right\rangle \subseteq\left\langle s_{i}, y\right\rangle \subseteq G$. Therefore $G=\left\langle s_{i}, y\right\rangle$ for all $i=1,2, \ldots, k$.

Clearly $u(G) \leq s(G)$, and in general these numbers are distinct. The exact spread and uniform spread of finite simple groups has been studied in $[3,6,7,9,15,16]$. The exact spread of only two sporadic simple groups have been determined. For the remaining twenty four sporadic simple groups, bounds of the exact spread are known $[4,5,7,11,13,21]$. In $[4,21]$ it was proved that $s\left(M_{11}\right)=3$ and Fairbairn has shown that $s\left(M_{23}\right)=8064$ [12].

In this paper we give upper bounds on the exact uniform spreads of thirteen sporadic simple groups. First we give some lemmas that present upper bounds and then offer three algorithms to calculate these upper bounds of the exact uniform spread.

For information on the sporadic simple groups and their maximal subgroups we use Atlas [10]. All calculations were done with the aid of GAP [19] and Magma [8].

The rest of the paper is organized as follows: in Section 2, we give some preliminary results. Three algorithms to calculate upper bounds of the exact uniform spread are offered in Section 3, and in Section 4 we prove our Main Theorem.

2. Preliminaries

Let G be a finite group and let M be a maximal subgroup of G. As is standard we write M^{G} for the maximal subgroups of G that are conjugate to M and \mathcal{M} for the set of all maximal subgroups
of G. We write $\operatorname{cl}(G)$ for the collection of all conjugacy classes of elements of G and $c l_{p}(G)$ for the collection of all conjugacy classes of elements of G of prime order. We write $n X$ for a conjugacy class of elements in G of order n which $n>1$. For a conjugacy class $n X$ we define $\operatorname{supp}(n X)=\{M \mid M \in$ \mathcal{M} and $M \cap n X \neq \emptyset\}$.

From Definition 1.2, it is clear that if y is a mate for the set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, then no maximal subgroup contains both y and s_{i} for $i=1,2, \ldots, k$. We use this property in the following definitions.

Definition 2.1. Let G be a finite group and let M be a maximal subgroup of G. Let S be a set of elements from a conjugacy class $n X$. When $M \cap n X \neq \emptyset$ we say that S supports M^{G} if $M^{\prime} \cap S \neq \emptyset$ for every $M^{\prime} \in M^{G}$. In this case we define support ${ }_{n X}(M)$ for the size of the smallest S that supports M^{G}.

From the Definition 2.1 it is clear that if $M \cap n X \neq \emptyset$ then $\operatorname{support}_{n X}(M) \leq\left|M^{G}\right|$.
Consider a conjugacy class $n Y$ of elements in G. There exists a conjugacy class $m X \in c l_{p}(G)$ such that $\operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset$. We use this fact in the following definition.

Definition 2.2. Let G be a finite group and $m X$ and $n Y$ be two conjugacy classes of elements of G such that $m X \in \operatorname{cl}_{p}(G)$ and $\operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset$. We define,

$$
\operatorname{support}(m X, n Y)=\min \left\{\text { support }_{m X}(M) \mid M \in \mathcal{M} \text { and } M \in \operatorname{supp}(m X) \cap \operatorname{supp}(n Y)\right\} .
$$

Lemma 2.3. Let G be a finite group and $m X$ and $n Y$ be two conjugacy classes of elements of G such that $m X \in \operatorname{cl}_{p}(G)$ and $\operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset$. Consider a set S of elements of the class $m X$. Let $u_{m X, n Y}(G)$ be the largest integer such that any set S of this size has a mate from the class $n Y$. Then we have,

$$
u(G) \leq \max \left\{\min \left\{u_{m X, n Y}(G) \mid m X \in c l_{p}(G) \text { and } \operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset\right\} \mid n Y \in \operatorname{cl}(G)\right\} .
$$

Proof. For a given conjugacy class $n Y$ consider $u_{m X, n Y}(G)$ for each $m X \in \operatorname{cl}(G)$ where $\operatorname{supp}(m X) \cap$ $\operatorname{supp}(n Y) \neq \emptyset$. The minimum of all these is then an upper bound on the size of a set that can have a mate from the class $n Y$. The maximum of these values, when $n Y$ goes through all classes of G, is then an upper bound on $u(G)$.

Lemma 2.4. Let G be a finite group. Then,
$u(G) \leq \max \left\{\min \left\{\operatorname{support}(m X, n Y) \mid m X \in \operatorname{cl}_{p}(G) \operatorname{and} \operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset\right\} \mid n Y \in c l(G)\right\}-1$.
Proof. Consider a conjugacy class $n Y$ of elements in G. There is a conjugacy class $c X \in c l_{p}(G)$ such that $\operatorname{support}(c X, n Y)=\min \left\{\operatorname{support}(m X, n Y) \mid m X \in \operatorname{cl}_{p}(G)\right.$ and $\left.\operatorname{supp}(m X) \cap \operatorname{supp}(n Y) \neq \emptyset\right\}$. From the Definition 2.2 there exists a set S of elements from the class $c X$ of size $\operatorname{support}(c X, n Y)$ such that has not any mate from the class $n Y$. Therefore $u_{c X, n Y}(G) \leq \operatorname{support}(c X, n Y)-1$. Then the result is concluded from Lemma 2.3.

Lemma 2.5. Let M be a maximal subgroup of G and $n X$ be a conjugacy class of elements of G such that $M \cap n X \neq \emptyset$. If each element of the class $n X$ is inside a unique subgroup of class M^{G} then support $_{n X}(M)=\left|M^{G}\right|$.

Proof. From the Definition 2.1 we have $\operatorname{support}_{n X}(M) \leq\left|M^{G}\right|$. Let S be a set of elements from the class $n X$ such that supports M^{G}. Let $|S|<\left|M^{G}\right|$. Each element of S is inside a unique subgroup of M^{G}. Therefore S has non-empty intersection with at most $|S|$ subgroups of M^{G}. Then S does not support M^{G} that is contradiction.

In Table 1 bounds on the exact spread of thirteen sporadic simple groups are presented. The lower bounds were proved in [7] except for M_{23} whose lower bound was proved in [12]. The upper bounds were proved in [11] except for $F i_{22}$ and M_{23} whose upper bounds were proved in [4]. According to the fact that $u(G) \leq s(G)$ for any group G in general, upper bounds presented in Table 1 also are upper bounds on the exact uniform spread. The lower bounds given here are lower bounds on $s(G)$ and are therefore not necessarily lower bounds on $u(G)$.

Table 1. Bounds on the exact spread of thirteen sporadic simple groups.

G	Upper bound Lower bound	G	Upper bound Lower bound
M_{23}	$\begin{array}{\|l\|} \hline 8064 \\ 8064 \end{array}$	Ly	$\begin{aligned} & 1296826874 \\ & 35049375 \end{aligned}$
Ru	$\begin{aligned} & 1252799 \\ & 2880 \end{aligned}$	Th	$\begin{aligned} & 976841774 \\ & 133997 \end{aligned}$
$O^{\prime} N$	$\begin{aligned} & 2857238 \\ & 3072 \end{aligned}$	$F i_{23}$	$\begin{aligned} & 31670 \\ & 911 \end{aligned}$
Co_{2}	$\begin{aligned} & 1024649 \\ & 270 \end{aligned}$	Co_{1}	$\begin{aligned} & 46621574 \\ & 3671 \end{aligned}$
$F i_{22}$	$\begin{array}{\|l} \hline 186 \\ 13 \end{array}$	J_{4}	$\begin{aligned} & 47766599363 \\ & 1647124116 \end{aligned}$
HN	$\begin{aligned} & 74064374 \\ & 8593 \end{aligned}$	$F i_{24}^{\prime}$	$\begin{aligned} & 7819305288794 \\ & 269631216855 \end{aligned}$
\mathbb{M}	5791748068511982636944259374 3385007637938037777290624		

In our Main Theorem we present upper bounds on the exact uniform spreads for thirteen sporadic simple groups. These results are presented in Table 2.

TABLE 2. Upper bounds on the exact uniform spreads of twelve sporadic simple groups.

G	Upper bound
M_{12}	7
J_{1}	132
M_{22}	25
J_{2}	11
$H S$	32
J_{3}	458
M_{24}	32
$M c L$	277
$H e$	653
$S u z$	373
$C o_{3}$	1539
\mathbb{B}	3843461129719173164826623999999

Main Theorem. If G is one of the groups $M_{12}, J_{1}, M_{22}, J_{2}, H S, J_{3}, M_{24}, M c L$, He, Suz, Co or \mathbb{B}, then the exact uniform spread $u(G)$ is bounded above by the numbers given in Table 2 and $u\left(M_{11}\right)=3$.

3. Three Algorithms

Let G be a finite group and M_{i} for $i \in I$ be some maximal subgroups of G, such that $\left(\cup_{i \in I} M_{i}\right) \cap$ $n Y \neq \emptyset$ which $n Y$ goes through all classes of G. According to Lemma 2.4 if we can determine support $_{m X}\left(M_{i}\right)$ for $i \in I$ and each $m X \in \operatorname{cl}_{p}(G)$ that $M_{i} \in \operatorname{supp}(m X)$, then

$$
u(G) \leq \max \left\{\min \left\{\operatorname{support}_{m X}\left(M_{i}\right) \mid m X \in \operatorname{cl}_{p}(G) \text { and } M_{i} \in \operatorname{supp}(m X)\right\} \mid i \in I\right\}-1 .
$$

In this section for a maximal subgroup M and $m X \in c_{p}(G)$ which $m \in \operatorname{supp}(m X)$ we present three algorithms to compute upper bounds for support $_{m X}(M)$. The problem of computing upper bounds of support $m_{X X}(M)$ can be interpreted in terms of intersection graphs.

Let $m X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Each $x \in m X$ is inside h conjugates of M. We denote by $M_{x_{i}}$ the set of all conjugates of M containing x_{i} for $i=1,2, \ldots, k$. Each two $M_{x_{i}}$ and $M_{x_{j}}$ for $1 \leq i, j \leq k$, can be disjoint or have intersection of different size. It is clear that $\cup_{i=1}^{k} M_{x_{i}}=M^{G}$. Now we consider graph $\Gamma=(V, E)$ such that V, the set of vertices, is $M_{x_{i}}$ for $i=1,2, \ldots, k$. Two vertices $M_{x_{i}}$ and $M_{x_{j}}$ are adjacent if $M_{x_{i}} \cap M_{x_{j}} \neq \emptyset$. The graph Γ is called the intersection graph of G defined by M and $m X$. Note that it is vertex transitive and is therefore regular. If support $m_{X}(M)=t$ then there exists a set I of size t such that $\cup_{i \in I} M_{x_{i}}=M^{G}$. Therefore determining $\operatorname{support}_{m X}(M)$ is equivalent to
finding a set S, consisting of vertices of Γ, of minimum size such that union of its members contains all conjugates of M.

In the following algorithms, let G be a finite group and $m X$ and $c Y$ be two conjugacy classes of elements of G such that $m X \in c l_{p}(G)$. Also suppose M is a maximal subgroup of G that has intersection with $m X$ and $n=\left|M^{G}\right|$. With Algorithm-1 we can obtain an upper bound for support $_{m X}(M)$.

Algorithm-1:

Input: group G, maximal subgroup M and conjugacy class $m X \in \operatorname{cl}_{p}(G)$
Output: an upper bound for support $t_{m X}(M)$
Step 1. Construct graph $\Gamma=(V, E)$ from G, M and $m X$. Set $\min =n$.
Repeat for each vertex M_{x} of V :
Step 2. Find a maximum independent set S of Γ containing M_{x}. Then set $L=|S|$ and $N=$ $\cup_{M_{y} \in S} M_{y}$. If $|N|=n$ then go to Step 4.
Step 3. Select a vertex M_{z} such that $\left|N \cap M_{z}\right|$ is of minimum size. Then set $N^{\prime}:=N \cup M_{z}$ and add one to L. If $\left|N^{\prime}\right|=n$ then go to Step 4 , else replace N with N^{\prime} and go to Step 3 .
Step 4. If $L<\min$ then $\min =L$, else continue.
End repeat.
Step 5. Return min.
If the maximal subgroup M contains elements of a class $c Y$ then min, the output of Algorithm-1, is an upper bound of $u_{m X, c Y}(G)$. If each element of the class $c Y$ is in more than one conjugate of M then by a few changes in Algorithm-1 we can obtain better upper bound for $u_{m X, c Y}(G)$.

Algorithm-2:

Input: group G, maximal subgroup M, conjugacy classes $m X \in c l_{p}(G)$ and $c Y$
Output: an upper bound for $u_{m X, c Y}(G)$
Step 1. Construct graph $\Gamma=(V, E)$ from G, M and $m X$. Set $\min =n$.
Repeat for each vertex M_{x} of V :
Step 2. Find a maximum independent set S of Γ containing M_{x}. Then set $L=|S|$ and $N=$ $\cup_{M_{y} \in S} M_{y}$. Also set T to be the union of elements of the class $c Y$ in conjugates of M contained in the set N. If $|N|=n$ or $|T|=|c Y|$ then go to Step 4 .
Step 3. Select a vertex M_{z} such that $\left|N \cap M_{z}\right|$ is of minimum size. Then set $N^{\prime}:=N \cup M_{z}$ and add one to L. Also add to T, elements of the class $c Y$ in conjugates of M that are in M_{z}. If $\left|N^{\prime}\right|=n$ or $|T|=|c Y|$ then go to Step 4 , else replace N with N^{\prime} and go to Step 3.

Step 4. If $L<\min$ then $\min =L$, else continue.
End repeat.
Step 5. Return min.

In the following algorithm let M_{1} and M_{2} be two maximal subgroups from different conjugacy classes such that have intersection with $m X$ and $c Y$ and $\left|M_{1}^{G}\right|=n$. In Algorithm-3 by considering two conjugacy classes of maximal subgroups we can obtain better upper bound for $u_{m X, c Y}(G)$.

Algorithm-3:

Input: group G, maximal subgroups M_{1} and M_{2}, conjugacy classes $m X \in c l_{p}(G)$ and $c Y$
Output: an upper bound for $u_{m X, c Y}(G)$
Step 1. Construct graph $\Gamma=(V, E)$ from G, M_{1} and $m X$. Set min $=n$.
Repeat for each vertex $M_{1 x}$ of V :
Step 2. Find a maximum independent set S of Γ containing $M_{1 x}$. Then set $L=|S|$ and $N=$ $\cup_{M_{1 y} \in S} M_{1 y}$. Also set T to be the union of elements of the class $c Y$ in conjugates of M_{1} contained in N and in conjugates of M_{2} that contain element x. If $|N|=n$ or $|T|=|c Y|$ then go to Step 4.
Step 3. Select a vertex $M_{1 z}$ such that $\left|N \cap M_{1 z}\right|$ is of minimum size. Then set $N^{\prime}:=N \cup M_{1 z}$ and add one to L. Also add to T, elements of the class $c Y$ in conjugates of M_{1} that are in $M_{1 z}$ and in conjugates of M_{2} that have element z. If $\left|N^{\prime}\right|=n$ or $|T|=|c Y|$ then go to Step 4, else replace N with N^{\prime} and go to Step 3.
Step 4. If $L<\min$ then $\min =L$, else continue.
End repeat.
Step 5. Return min.
We can extend Algorithm-3 for any number of maximal subgroups from different conjugacy classes that intersect both $m X$ and $c Y$. Since Algorithm-2 and Algorithm-3 use large amounts of memory, we often use Algorithm-1 to find upper bounds in the proof of our Main Theorem. Therefore we give an implementation of Algorithm-1 in Appendix A.

4. Proof Of The Main Theorem

In this section we prove our Main Theorem. Therefore we consider the groups presented in Table 2, individually. For some sporadic simple groups for which we use Algorithm-3, the obtained bounds are given in some tables. In these tables upper bound for one of $u_{2 A, n Y}(G)$ or $u_{2 B, n Y}(G)$ or $u_{3 A, n Y}(G)$ for each conjugacy class $n Y$, which is minimum, was computed and are presented. We use "-" in tables when corresponding $u_{m X, n Y}(G)$ was not computed. In keeping with Atlas notation we will write $5 A B$ to indicate the conjugacy classes $5 A$ and $5 B$ and similarly for other classes.

Our method does not work for sporadic simple groups presented in Table 1. Because for using algorithms of Section 3, we must construct some graphs. For a finite group G size of these graphs are depended on size of conjugacy classes of elements and conjugacy classes of maximal subgroups of G. Constructing these graphs for sporadic simple groups presented in Table 1 are not computationally possible yet.
4.1. Mathieu sporadic group M_{11}. Bradley and Holmes in [4] proved that $s\left(M_{11}\right)=3$. They really just proved that any set of three elements has a mate from class $11 A$, in other words $3 \leq u\left(M_{11}\right)$ which combined with the fact that $u\left(M_{11}\right) \leq s\left(M_{11}\right)$ tells us that $u\left(M_{11}\right)=3$. Thus we have the following proposition.

Proposition 4.1. $u\left(M_{11}\right)=3$.
4.2. Mathieu sporadic group M_{12}. Group M_{12} has eleven conjugacy classes of maximal subgroups and fifteen conjugacy classes of elements. Group M_{12} has two conjugacy classes of maximal subgroups isomorphic to M_{11}. These two conjugacy classes have intersection with all conjugacy classes of elements except $2 A, 3 B, 6 A$ and $10 A$. With Algorithm-1 we found $\operatorname{support}_{2 B}\left(M_{11}\right) \leq 3$ for two conjugacy classes of M_{11}. For the remaining conjugacy classes $2 A, 3 B, 6 A$ and $10 A$ we have:

- With Algorithm-3 and conjugacy classes of two maximal subgroups $M_{10}: 2$ we found $u_{2 B, 2 A}\left(M_{12}\right)<3$. - With Algorithm-3 and conjugacy classes of maximal subgroups $L_{2}(11), 2 \times S_{5}$ and $4^{2}: D_{12}$ we found $u_{2 A, 3 B}\left(M_{12}\right)<3$.
- With Algorithm-3 and conjugacy classes of maximal subgroups $L_{2}(11), 2 \times S_{5}, 4^{2}: D_{12}$ and $A_{4} \times S_{3}$ we found $u_{2 A, 6 A}\left(M_{12}\right)<8$.
- With Algorithm-3 and conjugacy classes of maximal subgroups $M_{10}: 2, M_{10}: 2$ and $2 \times S_{5}$ we found $u_{2 B, 10 A}\left(M_{12}\right)<8$.

The results are presented in Table 3.
Table 3. An upper bound for $u\left(M_{12}\right)$.

$n Y$	$2 A B, 3 A, 4 A B, 5 A, 6 B, 8 A B, 11 A B$	$3 B$	$6 A$	$10 A$
$u_{2 B, n Y}\left(M_{12}\right)<$	3	-	-	8
$u_{2 A, n Y}\left(M_{12}\right)<$	-	3	8	-

For the sake of completeness, we give below some sets of elements that satisfy the conditions of Table 3. Consider the permutation representation of M_{12} on 12 points with standard generators from [1],

$$
a=(1,4)(3,10)(5,11)(6,12), b=(1,8,9)(2,3,4)(5,12,11)(6,10,7) .
$$

In Table 4 we give three elements from conjugacy class $2 B$ that do not have a mate from conjugacy classes $2 A B, 3 A B, 4 A B, 5 A, 6 B, 8 A B$ and $11 A B$.

Table 4. Three elements of the class $2 B$.

1	$(1,2)(3,7)(5,8)(6,12)$
2	$(1,2)(3,7)(4,10)(9,11)$
3	$(4,10)(5,8)(6,12)(9,11)$

In Table 5 we give eight elements from conjugacy class $2 B$ that do not have a mate from conjugacy class $10 A$.

TABLE 5. Eight elements of the class $2 B$.

1	$(1,3)(2,7)(5,8)(9,11)$
2	$(1,6)(4,11)(5,12)(7,10)$
3	$(2,10)(3,6)(4,9)(8,12)$
4	$(2,4)(3,12)(5,6)(10,11)$
5	$(1,4)(3,11)(5,10)(7,8)$
6	$(1,9)(2,5)(3,4)(8,10)$
7	$(1,10)(2,6)(4,8)(11,12)$
8	$(1,12)(2,11)(3,5)(4,7)$

In Table 6 we give eight elements from conjugacy class $2 A$ that do not have a mate from conjugacy class $6 A$.

TABLE 6. Eight elements of the class $2 A$.

1	$(1,2)(3,12)(4,6)(5,10)(7,8)(9,11)$
2	$(1,2)(3,7)(4,8)(5,10)(6,11)(9,12)$
3	$(1,2)(3,4)(5,10)(6,12)(7,9)(8,11)$
4	$(1,2)(3,11)(4,9)(5,10)(6,7)(8,12)$
5	$(1,2)(3,12)(4,10)(5,7)(6,11)(8,9)$
6	$(1,2)(3,7)(4,6)(5,11)(8,9)(10,12)$
7	$(1,2)(3,11)(4,5)(6,12)(7,10)(8,9)$
8	$(1,2)(3,4)(5,12)(6,7)(8,9)(10,11)$

Proposition 4.2. $u\left(M_{12}\right) \leq 7$.
Proof. Applying Lemma 2.3 to the information in Table 3 implies the result.
The proofs of all subsequent propositions are similar to the above, so we omit them.
4.3. Janko sporadic group J_{1}. We know that J_{1} has seven conjugacy classes of maximal subgroups and fifteen conjugacy classes of elements. Conjugacy classes of maximal subgroups $L_{2}(11), 2 \times A_{5}, 19: 6$ and $D_{6} \times D_{10}$ have intersection with all conjugacy classes of elements except $7 A$. Conjugacy classes of maximal subgroups $2^{3}: 7: 3$ and $7: 6$ have intersection with $7 A$. We use Algorithm- 1 to compute an upper bound for support $\sin _{2}(M)$ for $M \in\left\{L_{2}(11), 2 \times A_{5}, 19: 6, D_{6} \times D_{10}\right\}$ and Algorithm-3 to compute an upper bound for $u_{3 A, 7 A}\left(J_{1}\right)$ with maximal subgroups $2^{3}: 7: 3$ and $7: 6$. Computed bounds are
support $_{2 A}\left(L_{2}(11)\right) \leq 33$, support $_{2 A}\left(2 \times A_{5}\right) \leq 91$, support $2_{2 A}(19: 6) \leq 127$, support $_{2 A}\left(D_{6} \times D_{10}\right) \leq 133$ and $u_{3 A, 7 A}\left(J_{1}\right)<125$.
The results are presented in Table 7.

Table 7. An upper bound for $u\left(J_{1}\right)$.

$n Y$	$2 A, 3 A, 5 A B, 6 A, 11 A$	$7 A$	$10 A B$	$15 A B$	$19 A B C$
$u_{2 A, n Y}(J 1)<$	33	-	91	133	127
$u_{3 A, n Y}(J 1)<$	-	125	-	-	-

Proposition 4.3. $u\left(J_{1}\right) \leq 132$.
4.4. Mathieu sporadic group M_{22}. Group M_{22} has eight conjugacy classes of maximal subgroups and twelve conjugacy classes of elements. Conjugacy classes of maximal subgroups $L_{3}(4), 2^{4} \times A_{6}$ and $L_{2}(11)$ have intersection with all conjugacy classes of elements. With Algorithm-1 we found support $_{2 A}\left(L_{3}(4)\right) \leq 5$, support $2_{2 A}\left(2^{4} \times A_{6}\right) \leq 7$ and $\operatorname{support}_{2 A}\left(L_{2}(11)\right) \leq 26$, By Lemma 2.4, an upper bound of $u\left(M_{22}\right)$ is 25 .

Proposition 4.4. $u\left(M_{22}\right) \leq 25$.
4.5. Hall-Janko sporadic group J_{2}. We know that J_{2} has nine conjugacy classes of maximal subgroups and twenty one conjugacy classes of elements. Conjugacy classes of maximal subgroups $U_{3}(3)$ and $3 \cdot P G L_{2}(9)$ have intersection with all conjugacy classes of elements except $5 C D, 6 B$ and $10 C D$. With Algorithm-1 we found support $2_{2 A}\left(U_{3}(3)\right) \leq 5$ and support $_{2 A}\left(3 \cdot P G L_{2}(9)\right) \leq 9$. For the remaining conjugacy classes $5 C D, 6 B$ and $10 C D$ we have:

- With Algorithm-3 and conjugacy classes of maximal subgroups $2^{1+4}: A_{5}$ and $A_{5} \times D_{10}$ we found $u_{3 A, 5 D}\left(J_{2}\right)<4$ and $u_{3 A, 5 C}\left(J_{2}\right)<4$.
- With Algorithm-3 and conjugacy classes of maximal subgroups $2^{2+4}:\left(3 \times S_{3}\right), A_{4} \times A_{5}, L_{3}(2): 2$ and $5^{2}: D_{12}$ we found $u_{2 A, 6 B}\left(J_{2}\right)<12$.
- With Algorithm-3 and conjugacy classes of maximal subgroups $2^{1+4}: A_{5}$ and $A_{5} \times D_{10}$ we found $u_{3 A, 10 D}\left(J_{2}\right)<12$ and $u_{3 A, 10 C}\left(J_{2}\right)<12$.

The results are presented in Table 8

TABLE 8. An upper bound for $u\left(J_{2}\right)$.

$n Y$	$2 A, 3 A B, 4 A, 6 A, 7 A, 8 A, 12 A$	$2 B, 5 A B, 10 A B, 15 A B$	$5 C D$	$6 B$	$10 C D$
$u_{2 A, n Y}\left(J_{2}\right)<$	5	9	-	12	-
$u_{3 A, n Y}\left(J_{2}\right)<$	-	-	4	-	12

Proposition 4.5. $u\left(J_{2}\right) \leq 11$.
Bradley and Holmes in [4] proved that $s\left(J_{2}\right) \leq 24$. Since the upper bounds of $s\left(J_{2}\right)$ and $u\left(J_{2}\right)$ differed by a significant margin we conjecture that $u\left(J_{2}\right)<s\left(J_{2}\right)$. Therefore we give below some sets of elements that satisfy the conditions of Table 8 . Consider the permutation representation of J_{2} on 100 points with standard generators a and b in [1]. Define $x=a b$ and $y=a b^{-1}$.

In Table 9 we give five elements from conjugacy class $2 A$ that do not have a mate from conjugacy classes $2 A, 3 A B, 4 A, 6 A, 7 A, 8 A$ and $12 A$.

Table 9. Five elements of the class $2 A$.

1	$b y(y x)^{4} y^{2}\left((x y)^{2} y x\right)^{2}$
2	$b y^{2} x^{2}\left((y x)^{2} y\right)^{2} x(x y)^{2}\left(y x^{2}\right)^{2} a$
3	$x(x y)^{3}\left(x y^{2} x\right)^{4} y x^{2} a$
4	$b^{-1} x(y x y)^{2} x(x y)^{4} x(x y)^{2} y x^{2} y x$
5	$x^{-3} b\left((y x)^{2} y\right)^{2} y x^{2} y a$

In Table 10 we give nine elements from conjugacy class $2 A$ that do not have a mate from conjugacy classes $2 B, 5 A B, 10 A B$ and $15 A B$.

Table 10. Nine elements of the class $2 A$.

1	$\left((x y)^{3} x^{2} y\right)^{2} y x(x y)^{2} a$
2	$\left((b a)^{2} x^{-1}\right)^{2}\left(b^{-1} x a\right)^{2} b\left((y x)^{2} y\right)^{2} x^{2} y^{2} x a$
3	$b^{-1} x y^{2} x(x y)^{4} x^{2} y x^{2}$
4	$b\left(x(x y)^{2}\right)^{2} x^{2} y x^{2}$
5	$b(x y)^{2} x\left(y x^{2} y\right)^{4} x y x^{2}$
6	$\left(y x^{2} y\right)^{2} x y\left((x y)^{2} x\right)^{2} a$
7	$b^{-1}(y x)^{2}(y x y)^{2}\left((y x)^{2} x\right)^{2} y\left(y x^{2}\right)^{2} a$
8	$b y^{2} x y\left(y(x y x)^{2} y x\right)^{2} y^{2} x$
9	$b(x y)^{2} y\left((x y)^{2} y x\right)^{2}\left(x y^{2}\right)^{2} x y x^{2}$

In Table 11 we give twelve elements from conjugacy class $2 A$ that do not have a mate from conjugacy classes $6 B$. In Table 12 we give four elements from conjugacy class $3 A$ that do not have

Table 11. Twelve elements of the class $2 A$.

1	$\left(b^{-1}\left((x y)^{2} x\right)^{2} y a\right)^{2}$
2	$(b y a)^{2}(b a)^{2} b^{-1}\left((y x)^{2} y^{2} x\right)^{2} x y$
3	$\left(x y(y x)^{2}\right)^{2} y(y x)^{4} y^{2} x a$
4	$b y x y\left(x y^{2} x\right)^{4}(y x)^{2} y a$
5	$b^{-1}(y x)^{4} y^{2} x y\left(y x^{2} y^{2} x\right)^{2} y x a$
6	$b^{-1}(y x)^{2} x y\left((y x)^{2} y^{2} x\right)^{2} x^{2}$
7	$b y x\left(x y^{2}\right)^{2} x\left(y x(x y)^{2}\right)^{2} x(x y)^{2} a$
8	$(b a)^{2} x^{-2} b\left(x y^{2} x y\right)^{2}(x y)^{3}$
9	$\left((b y a)^{2} b a\right)^{3}$
10	$b^{-1} x(x y)^{5} x^{3}$
11	$b x\left(x y^{2} x y\right)^{2} x y^{2} x^{2} y$
12	$b x\left(y x^{2} y\right)^{2} x y\left((x y)^{2} x\right)^{2} y^{2}$

TABLE 12. Four elements of the class $3 A$.

1	$(x y)^{2} y x(x y)^{3} x^{2} y^{2} a$
2	$y(y x)^{4} x y^{2} x^{2} y x a$
3	$(y x y)^{2}(x y)^{2}\left(y x^{2}\right)^{2} a$
4	$b^{-1}(y x)^{2}\left((y x)^{2} y\right)^{2} y x y^{2}$

a mate from conjugacy classes $5 C D$.
In Table 13 we give twelve elements from conjugacy class $3 A$ that do not have a mate from conjugacy classes $10 C D$.

Table 13. Twelve elements of the class $3 A$.

1	$b^{-1}(y x)^{3} y\left(y x y^{2} x\right)^{2} x^{2}$
2	$y(y x)^{4} x y^{2} x^{2} y x a$
3	$y x y\left(x y^{2} x\right)^{3} y x y a$
4	$\left(y(y x)^{2}\right)^{2}$
5	$\left((b y a)^{2} x^{-1}\right)^{2}$
6	$\left((b a)^{2} x^{-1}\right)^{2} b y(y x)^{3} x y^{2}$
7	$x\left((y x)^{2} y\right)^{2} y x^{2} y^{2} x y a$
8	$y(x y x)^{2} y^{2} x y(x y x)^{2} a$
9	$x^{-2}(b a)^{2} b^{-1} x(y x y)^{2} x^{2} y x^{2}$
10	$y\left((x y)^{2} x\right)^{2} x y^{2} x^{2} y x a$
11	$x\left(y x^{2} y\right)^{2}(x y)^{3} y a$
12	$(x y x)^{2}(y x y)^{2} x(x y)^{2} a$

4.6. Higman-Sims sporadic group $H S$. We know that $H S$ has twelve conjugacy classes of maximal subgroups and twenty four conjugacy classes of elements. Conjugacy classes of maximal subgroups $M_{22}, U_{3}(5): 2$ and S_{8} have intersection with all conjugacy classes of elements. We found support $_{2 A}\left(S_{8}\right) \leq 33$, support $2_{2 A}\left(U_{3}(5): 2\right) \leq 11$ and support $_{2 A}\left(M_{22}\right) \leq 5$ with Algorithm-1. By Lemma 2.4, an upper bound of $u(H S)$ is 32 . So, we have the following proposition.

Proposition 4.6. $u(H S) \leq 32$.
4.7. Janko sporadic group J_{3}. Group J_{3} has nine conjugacy classes of maximal subgroups and twenty one conjugacy classes of elements. Conjugacy classes of maximal subgroups $L_{2}(16): 2, L_{2}(19)$, and $\left(3 \times A_{6}\right): 2$ have intersection with all conjugacy classes of elements. With Algorithm-1 we found support $_{2 A}\left(L_{2}(16): 2\right) \leq 83$, support $2_{2 A}\left(L_{2}(19)\right) \leq 375$ and support $\left.2_{2 A}\left(3 \times A_{6}\right): 2\right) \leq 459$. By Lemma 2.4, an upper bound of $u\left(J_{3}\right)$ is 458 . Therefore the following proposition is concluded.

Proposition 4.7. $u\left(J_{3}\right) \leq 458$.
4.8. Mathieu sporadic group M_{24}. Group M_{24} has nine conjugacy classes of maximal subgroups and twenty six conjugacy classes of elements. Conjugacy classes of maximal subgroups $M_{23}, M_{22}: 2$, $2^{4}: A_{8}, M_{12}: 2$ and $L_{3}(4): S_{3}$ have intersection with all conjugacy classes of elements. By Algorithm1 support $_{2 A}\left(M_{23}\right) \leq 3$, support $2_{2 A}\left(M_{22}: 2\right) \leq 13$, support $2_{2 A}\left(2^{4}: A_{8}\right) \leq 16$, support $_{2 A}\left(M_{12}: 2\right) \leq 27$ and support $_{2 A}\left(L_{3}(4): S_{3}\right) \leq 33$ were calculated. By Lemma 2.4, an upper bound of $u\left(M_{24}\right)$ is 32 . So, we have the following proposition.

Proposition 4.8. $u\left(M_{24}\right) \leq 32$.
4.9. McLaughlin sporadic group $M c L$. We know that $M c L$ has twelve conjugacy classes of maximal subgroups and twenty four conjugacy classes of elements. Conjugacy classes of maximal subgroups $U_{4}(3), M_{22}, U_{3}(5), L_{3}(4): 2$ and $2 . A_{8}$ have intersection with all conjugacy classes of elements. With Algorithm-1 we found support $2_{2 A}\left(U_{4}(3)\right) \leq 13$, support $_{2 A}\left(M_{22}\right) \leq 46$, support $2_{2 A}\left(U_{3}(5)\right) \leq 107$, support $_{2 A}\left(L_{3}(4): 2\right) \leq 160$ and support $_{2 A}\left(2 . A_{8}\right) \leq 278$. By Lemma 2.4, an upper bound of $u(M c L)$ is 277 . Therefore the following proposition is concluded.

Proposition 4.9. $u(M c L) \leq 27 \%$.
4.10. Held sporadic group He . We know that $H e$ has eleven conjugacy classes of maximal subgroups and thirty three conjugacy classes of elements. Conjugacy classes of maximal subgroups $S_{4}(4): 2,2^{2} . L_{3}(4) . S_{3}, 2^{6}: 3 . S_{6}, 2^{1+6} . L_{3}(2)$ and $3 . S_{7}$ have intersection with all conjugacy classes of elements. With Algorithm-1 we found support $2_{2 A}\left(S_{4}(4): 2\right) \leq 23$, support $2_{2 A}\left(2^{2} . L_{3}(4) . S_{3}\right) \leq 46$, support ${ }_{2 A}\left(2^{6}: 3 . S_{6}\right) \leq 147$, support $_{2 A}\left(2^{1+6} . L_{3}(2)\right) \leq 654$ and support $_{2 A}\left(3 \cdot S_{7}\right) \leq 642$. By Lemma 2.4, an upper bound of $u(H e)$ is 653. Therefore the following proposition is concluded.

Proposition 4.10. $u(H e) \leq 653$.
4.11. Suzuki sporadic group Suz. Group $S u z$ has seventeen conjugacy classes of maximal subgroups and forty three conjugacy classes of elements. Conjugacy classes of maximal subgroups $G_{2}(4)$, $3 . U_{4}(3): 2, U_{5}(2), 2^{1+6} . U_{4}(2)$ and $J_{2}: 2$ have intersection with all conjugacy classes of elements of Suz. By Algorithm-1 we found support ${ }_{3 A}\left(G_{2}(4)\right) \leq 11$, support $_{2 A}\left(3 . U_{4}(3): 2\right) \leq 150$, support $_{2 A}\left(U_{5}(2)\right) \leq 69$, support $_{3 A}\left(2^{1+6} \cdot U_{4}(2)\right) \leq 204$ and support ${ }_{3 A}\left(J_{2}: 2\right) \leq 374$. By Lemma 2.4, an upper bound of $u(S u z)$ is 373. So, we have the following proposition.

Proposition 4.11. $u(S u z) \leq 373$.
4.12. Conway sporadic group Co_{3}. We know that Co_{3} has fourteen conjugacy classes of maximal subgroups and forty two conjugacy classes of elements. Conjugacy classes of maximal subgroups $M c L: 2, H S, M_{23}, 3^{5}:\left(2 \times M_{11}\right)$ and $U_{3}(5): S_{3}$ have intersection with all conjugacy classes of elements of $C o_{3}$. By Algorithm-1 we found support $2_{2 A}(M c L: 2) \leq 12$, support $_{2 A}(H S) \leq 79, \operatorname{support}_{2 A}\left(M_{23}\right) \leq 160$, support $_{2 A}\left(3^{5}:\left(2 \times M_{11}\right)\right) \leq 456$ and support $_{2 A}\left(U_{3}(5): S_{3}\right) \leq 1540$. By Lemma 2.4, an upper bound of $u\left(\mathrm{Co}_{3}\right)$ is 1539. Therefore the following proposition is concluded.

Proposition 4.12. $u\left(\mathrm{Co}_{3}\right) \leq 1539$.
4.13. Baby Monster sporadic group \mathbb{B}. Group \mathbb{B} has thirty conjugacy classes of maximal subgroups [20] and one hundred eighty four conjugacy classes of elements. Let M is a maximal subgroup of \mathbb{B} and $n X \in \operatorname{cl} l_{p}(\mathbb{B})$. It is clear that if $M \cap n X \neq \emptyset$ then $\operatorname{support}_{n X}(M) \leq\left|M^{\mathbb{B}}\right|$. Therefore by Lemma 2.4, $u(\mathbb{B})$ is less than the index of maximal subgroup of minimum order of \mathbb{B}. Maximal subgroup 47:23 of \mathbb{B} has minimum order among all maximal subgroups. This subgroup has index 3843461129719173164826624000000 . Then the following proposition is concluded.

Proposition 4.13. $u(\mathbb{B}) \leq 3843461129719173164826623999999$.
We are now ready to prove our Main Theorem.
Main Theorem. If G is one of the groups $M_{12}, J_{1}, M_{22}, J_{2}, H S, J_{3}, M_{24}, M c L, H e, S u z, C o_{3}$ or \mathbb{B}, then the exact uniform spread $u(G)$ is bounded above by the numbers given in Table 2 and $u\left(M_{11}\right)=3$.

Proof. The proof follows from Propositions 4.1 to 4.13 .

Acknowledgments

The authors express their deepest gratitude to Professor Ali Reza Ashrafi for introducing them with concept of spread and to the referee whose suggestions and comments led to significant improvement of the presentation of this paper.

Appendix A

In the following we present a Magma [8] implementation of Algorithm-1. This code computes an upper bound of support ${ }_{2 A}\left(3 . P G L_{2}(9)\right)$ in the group J_{2}. By choosing proper values for " f ", " m " and
"size_mX" and loading groups presented in Table 2 one can check the results of Section 4. For groups $J_{3}, \mathrm{McL}, \mathrm{He}, \mathrm{Suz}$ and Co_{3}, Magma can not compute maximal subgroups. In these cases we loaded the group and its maximal subgroup M from [1] and omitted the lines " mG :=MaximalSubgroups(G)" and "M: $=\mathrm{mG}[\mathrm{f}]$ " subgroup" from code.

In the following code " f " is the number corresponding to subgroup M in maximal subgroups of G in Magma ordering. " m " is order of an element of conjugacy class $m X$. "size_ $m X$ " is size of conjugacy class $m X$.

We used Magma version 2.10 [8].

```
f:=6;
m:=2;
size_mX:=315;
load j2;
mG:=MaximalSubgroups(G);
M:=mG[f]` subgroup;
G1:=CosetImage(G,M);
cG1:=ConjugacyClasses(G1);
n:=Index(G,M);
for i in [1..#cG1] do
    if cG1[i,1] eq m and cG1[i,2] eq size_mX then
        gX:=cG1[i,3];
        break;
    end if;
end for;
v:=Fix(gX)^G1;
v:=Set(v);
v:=SetToIndexedSet(v);
min:=n;
bound:=#Fix(gX);
for k in [1..#v] do
    best:=bound;
    t:=0;
    L:=1;
    N:={};
    range:=[1..#v];
    Exclude(~range,k);
    N:=N join v[k];
    while t ne n do
```

```
    for i in range do
        r:=#(v[i] meet N);
        if r le best then
            best :=r;
            temp:=i;
        end if;
    end for;
    N:=N join v[temp];
    L:=L+1;
    Exclude(~range,temp);
    if L gt min then
        break;
    end if;
    best:=bound;
    t:=#N;
    end while;
    if L lt min then
        min:=L;
        print ''Temporary upper bound is ='', min;
    end if;
end for;
print ''Upper bound is='', min;
```


References

[1] R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh and R. Wilson, ATLAS of Finite Group Representations - Version 3. Available online http://brauer.maths.qmul.ac.uk/Atlas/ v3/.
[2] M. Aschbacher and R. M. Guralnick, Some applications of the first cohomology group, J. Algebra, (1984) 90 446-460.
[3] G. J. Binder, The two-element bases of the symmetric group, Izv. Vyss. Ucebn. Zaved. Mathematika, (1970) 90 9-11.
[4] J. D. Bradley and P. E. Holmes, Improved bounds for the spread of sporadic groups, LMS J. Comput. Math., (2007) 10 132-140.
[5] J. D. Bradley and J. Moori, On the exact spread of sporadic simple groups, Comm. Algebra, (2007) 35 2588-2599.
[6] J. L. Brenner and J. Wiegold, Two-generator groups I, Michigan Math. J., (1975) 22 53-64.
[7] T. Breuer, R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple groups II, J. Algebra, (2008) 320 443-494.
[8] W. Bosma and J. J. Cannon, Handbook of Magma functions, School of Mathematics and Statistics, University of Sydney, Sydney, 1995. http://magma.maths.usyd.edu.au/magma/faq/citing.
[9] T. Burness and S. Guest, On the uniform spread of almost simple linear groups, Nagoya Math. J., (2013) 209 35-109.
[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An ATLAS of Finite Groups, Oxford: Oxford University Press, 1985.
[11] B. Fairbairn, New Upper Bounds On the spreads of the sporadic simple groups, Comm. Algebra, (2012) 40 18721877.
[12] B. Fairbairn, The exact spread of M_{23} is 8064, Int. J. Group Theory, (2012) 1-2.
[13] S. Ganief and J. Moori, On the spread of the sporadic simple groups, Comm. Algebra, (2001) 29 3239-3255.
[14] R. M. Guralnick and W. M. Kantor, Probabilistic generation of finite simple groups, J. Algebra, (2000) 234 743-792.
[15] R. M. Guralnick and A. Shalev, On the spread of finite simple groups, Combinatorica, (2003) 23 73-87.
[16] S. Harper, On the uniform spread of almost simple symplectic and orthogonal groups, J. Algebra, (2017) 490 330-371.
[17] G. A. Miller, On the groups generated by two operators, Bull. Amer. Math. Soc., (1901) 7 424-426.
[18] R. Steinberg, Generators for simple groups, Canad. J. Math., (1962) 14 277-283.
[19] The GAP Group, GAP Groups, Algorithms, and Programming, (2014) Version 4.7.5, http://www.gap-system. org.
[20] R. A. Wilson, The maximal subgroups of the baby monster I, J. Algebra, (1999) 211 1-14.
[21] A. Woldar, The exact spread of the Mathieu group M_{11}, J. Group Theory, (2007) 10 167-171.

Ali Reza Rahimipour

Department of Mathematics, Faculty of Science, University of Qom, P.O.Box 37161-46611, Qom, I. R. Iran Email: a.rahimipour@qom.ac.ir and a.rahimipour@gmail.com

Yousof Farzaneh

Department of Mathematics, Faculty of Science, Iran University of Science Technology, Tehran, Iran
Email: yfarzaneh@iust.ac.ir

[^0]: MSC(2010): Primary: 20D08; Secondary: 20F05.
 Keywords: Exact uniform spread, Exact spread, Sporadic group.
 Received: 27 May 2018, Accepted: 15 August 2018.
 *Corresponding author.

