
Journal of Engineering Science and Technology
Vol. 13, No. 9 (2018) 2734 - 2749
© School of Engineering, Taylor’s University

2734

UML 2.0 BASED ROUND TRIP ENGINEERING FRAMEWORK FOR
THE DEVELOPMENT OF SPF BASED SECURE APPLICATION

NITISH PATHAK

Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM),

Paschim Vihar (East) Metro Station, New Delhi-110063, India

E-mail: nitishforyou@gmail.com

Abstract

This research paper proposes the UML 2.0 based framework for round-trip

engineering and use of Security Performance Flexibility model to keep high

security in web applications. This model allows system administrators to skip or

disable some unnecessary security checks in trusted operating systems through

which, they can effectively balance their performance needs without

compromising the security of the system. For example, the system admin can tell

that video on demand server is allowed to skip only security checks on reading

files, while the database server is allowed to skip only security checks on seeking

files. Which operation is needed to be skipped and, which operation is not needed

to be skipped is very much subjective in nature, this will depend upon the user’s

requirement and the particular application’s requirement. The selection of these

operations for a particular application is the part of software requirement

elicitation process. This UML 2.0 based research work proposes Object-Oriented

class-based software development, source code generation in C++ and the

integration of security engineering into a model-driven software development.

On this source code, Halstead software science measures, etc., can be applied.

This helps developers in code restructuring; identify probable bugs or

deficiencies for probable improvements and helps from the analysis phase to the

maintenance phase.

Keywords: Requirement elicitation, Round trip engineering, Security-enhanced version

of linux (SELinux), Security performance flexibility (SPF), UML 2.0.

UML 2.0 Based Round Trip Engineering Framework for the Development 2735

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

1. Introduction

In the last decade, there has been vast growth in the field of networking, sharing of

data worldwide. Then comes the most extensively used thing Internet have made

cybersecurity a very crucial aspect of research and development. It is a matter of

concern for both the common users and researchers connected all over the world

[1]. Despite a lot of works undergoing we are still unable to get something that

reliable and silver bullet that it may provide us with complete security for our

systems. Being so advanced we still lack the basic potential to create such a system

that is capable of stopping viruses and accessing our confidential data from our

systems [2]. The security methods developed, researched till yet are implemented

in the application layer of the computers, which is making our systems more prone

to data insecurity. These methods include encryption using a key, i.e.,

cryptography, using firewalls, access control using authentication and application

layer access control [3]. The most two burning domains are cryptography and

authentication techniques in which, max research is being done. Although these are

something very difficult to crack, no one knows the dynamic minds making some

of the probability of data insecurity [4].

The biggest threat to our application layer is viruses and Trojan Horses. Once

these two enters into our system they have the potential to access and even modify

each and every data present in the system [5]. Now, these days, to overcome the

threats operating system application layer and the network entry points are used to

implement the security measures. Although no preventive measures are used inside

the kernel of operating systems [6], it is believed that security measures in the

kernel are much more effective than the application layer. In fact, after a lot of

research such operating systems have been developed, which have much more

mechanisms inside the OS kernel providing us with a very good level of security

thus securing our systems [7]. In reality, Trusted Operating Systems (TOS) are a

better choice for web applications to maintain the security concern, but this security

will come at a cost. By using trusted systems, our web application will be more

and more secure, but due to more security checks, the performance of the same

system will disgrace in all respect [8].

The security is not something expected not only by big organizations but also

by common consumers so now concerns are being there on this and many vendors

are trying hard to fix the issue [9]. The companies, which came up with some

promising operating systems with security features are Argus-Systems Group,

AT&T (System V), Hewlett-Packard, Honeywell (Multics), Sun Microsystems, etc.

[10]. These operating systems are a better choice for maintaining the security in

web applications. In this paper, we are suggesting SPF model of SELinux trusted

operating system for maintaining the high security in web applications. Proper

definitions of the secure system vary from organization to organization. These

secure Systems are more complex for computer administrators to handle and

manage. As we know, that conventional operating systems can be managed by

system admin easily [11]. Trusted operating systems generally refer to an operating

system that provides sufficient support for multilevel security. Such secure Systems

require much more extra effort and time to set up the desired security policy on the

part of the administrator. The implementation of security policies, as per the

requirement of the user, is very complex in such systems [12]. Programmers fluent

in secure coding practices can avoid common security flaws in programming

languages and follow best practices to help avoid the increasing number of targeted

2736 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

attacks that focus on application vulnerabilities [13]. In this research paper, we are

suggesting SPF based SELinux trusted operating systems for maintaining the

security concern in web applications.

The Unified Modelling Language (UML) is gradually more used for capturing

conceptual object-oriented models of software, as it supports conceptual modelling

of real-life domains. UML is used in many customs for expressing the concepts

such as software specification, website structure and business modelling [14]. In

the proposed design and development, we are using UML 2.0 based conceptual

modelling for the development of SPF based secure application. It makes the

programming simpler, more effective and manageable [15]. In this paper, we are

concerned with the capture of abstract entities (or classes), the associations and

relationship existing between them and adjacent ones, as represented in one or more

object-oriented diagrams. To retain the balance between security and web

application performance, we propose an amalgamation of security-based round-trip

engineering [16]. This research work proposes SPF based secure software analysis,

SPF based secure software design, SPF based secure software development and

roundtrip engineering based software development. Far above the ground, quality

of software design is necessary for the success of software [17].

2. Trusted Operating System Based Secure Web Applications

The essential structural design of this operating system is shown in Fig. 1. Just for

a reminder to the readers; architecture is just a concept although implementation

can be done in many ways [18]. The architecture of traditional operating systems

is given in Fig. 1(a). System call interface helps the application and middleware

interface to communicate with the operating system.

 (a) Ordinary operating systems. (b) Proposed structure of

trusted operating systems.

Fig. 1. Structure of trusted operating systems

and ordinary operating systems [18].

UML 2.0 Based Round Trip Engineering Framework for the Development 2737

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Figure 1(a) illustrating a thin or slim security layer of operating systems kernel

security checks. Now in order to provide higher security, many security checks are

there in the kernel of trusted operating systems. Figure 1(b) demonstrates the

additional security checks in the kernel [19]. This will cause trusted operating

systems to be slower than standard operating systems. Figure 1(b) clearly depicts

the thicker layer of kernel security checks. What all security measures are being

taken in the kernel security check depends all on implementation and modelling

[20]. But the disadvantage of having extra security check is that whenever user tries

to do any useful work it need to undergo all the checks thus deteriorating the system

overall performance [21].

3. Problem Explanation and Solution Methodology

Security of trusted operating systems (TOS) also affect the quality of multimedia and

video streaming services. However, in the case of trusted operating systems for every

read from disk system have to do repeated checks. Due to repeated security checks,

the frame rate and quality of video streaming will be decreased. The result will be

worst when the running system is heavily loaded with many programs [22]. In this

case when the system is very loaded with multiple processing and multiple

applications are in the running mode, definitely the streaming will be very slow and

the quality of the video may be very poor [23]. This is not true for video on-demand

server because they keep in mind about the security checks, so they care about the

video quality rather than read accesses to the server [24]. This selection of operations

and system calls will be different from one application to another. So, for the selection

of these necessary and unnecessary operations pattern mining is required [25].

For example, admin of the system can disable all the read checks in web server

because they are actually useless, which finally increases the throughput of the web

server [26]. Web server deals with sole public data and public information. Since

the majority of data is public on any web server, the task of checking it during a

read from disk is something useless because this data is already readable by each

and every user using internet [27]. The real task of security comes when it comes

to writing access. For any web server integrity is the main issue rather than its

confidentiality. As we had stated that there are many types of workloads that are

continuously being checked by the security mechanisms of the kernel in which,

many of them are very much useless or undesired in a trusted operating system

[28]. The primary concern of these workloads is the quality as well as the integrity

of data rather than the security of certain operations since the data they consist can

be public. This let us conclude that by disabling security measures of some parts of

OS performance can be increased.

The architectural consideration behind the SPF configuration is demonstrated in

Fig. 2. This research paper proposes a concept of SPF, in order to gain improved

performance and speed for particular system workloads for trusted operating systems.

This particular proposed model allows system administrators to skip or disable some

unnecessary security checks in these operating systems through which, they can

effectively balance their performance needs without compromising the security of the

system. Figure 2 provides the administrator’s option of disabling security checks for

some useless system processes or undesired process. By skipping these processes or

system calls, the performance of the system will be improved. These SPF based

improved version of secure systems can be used for the desired web application, for

2738 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

maintaining the desired level of security concern in particular application. The

performance of the systems surely increased.

Fig. 2. System-SPF structural design for stock control web application.

4. Object-Oriented Implementation in C++ for Store Stock Control

Based Web Application

The projected approach for the case study is based on the following phases of the

development process:

 First of all, identify the pattern for the system calls, through requirement

elicitation techniques.

 To represent the functional requirement of a web application, design the use case

diagram. Explain almost every use case in a textual approach, i.e., description of

major use cases is required for more refinement. If something is not clear through

use case diagram then use case description will be very beneficial in other phases

of the software development lifecycle.

 Development of class diagram for roundtrip engineering in C++ for the same

case study.

Figure 3 shows the functional requirements of the system through use case

diagram. A use case model is a business analysis presentation of the steps defining

the interactions between a user (called an actor) and a system (usually a computer

system). These functional requirements are implemented through functions, member

functions, methods, procedures, subroutines, etc. During the analysis phase of the

software development life cycle, for a case study, we can see that the store manager,

sales assistant, customer, warehouse person, stock manager, etc., are the actor. These

actors will be treated as object-oriented classes for the class diagram. Rest of the

diagram indicates the use cases (display stock details, payment use case, order

delivery use case and sales summary report use case, etc.). These use cases show the

UML 2.0 Based Round Trip Engineering Framework for the Development 2739

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

functional requirement of the software or web application. The use case diagram of

Stock Control system is given in Fig. 3.

Fig. 3. Use case model for store stock control based web application.

Description of major use cases for web application

A use case is a written description of how users will perform tasks on your

website. It outlines, from a user’s point of view, a system’s behavior as it

responds to a request. The use case description is a written account of the

sequence of steps performed by an analyst to accomplish a complete

business transaction. It is initiated by an actor, provides value to that actor,

and is a goal of the actor working in that system. Tables 1 to 6 show the use

case descriptions of major use cases.

Table 1. Display stock details.

Brief

description

The system displays info to sales assistant

Actors System

Flow of events Sales assistant enters the product numbers and required quantities

into system

 System displays the description of the product

Alternative flow If the stocks control system not functioning, it will not start

Precondition Product numbers must be entered

Post condition Information regarding product is displayed

2740 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Table 2. Order delivery use case.

Brief description This use case enables the customer to get the delivery of their

order from the stock control system

Actors Customer

Flow of events Places order

 Enter delivery details

Alternative flow If the processing not successful, generate error report to the sales

assistant

Precondition The order should be successfully processed on the system

Post condition If the use case successful, the order shall be delivered to the

customer. If not, the system state is unchanged

Table 3. Payment use case description.

Brief description of

payment

Payment use case allows the customer to make payment for

his order in the stock control system

Actors Customer

Flow of events Places order

 Enter delivery details

 Makes payment

Alternative flow If the processing not successful, generate error report to the

customer showing order is unsuccessful

Precondition The order should be successfully processed on the system

Post condition If the payment use case successful, the payment for the order

shall be made by the customer. If not, the order is incomplete

Table 4. Credit card payment use case description.

Brief description The credit/debit card is the mode of payment for the customer.

Actors Customer, sales assistant

Flow of events The customer pays for the goods with credit card

 The card payment is verified using online transaction system

Alternative flow If the processing not successful, generate error report to the customer

showing order is unsuccessful

Precondition The order should be successfully processed on the system

Post condition If the credit card payment use case was successful, the payment shall

be made by the customer. If not, the order is incomplete.

Table 5. Cash payment use case.

Brief

description

This use case enables the customer to make payment for his

order in the stock control system through hard cash

Actors Customer

Flow of events Places order

 Enter delivery details

 Makes payment through cash

Alternative flow If the processing not successful, generate error report to the

customer showing order is unsuccessful

Precondition The order should be successfully processed on the system

Post condition If the use case executed successfully, the payment shall be made by

the customer. If not, the order is incomplete

UML 2.0 Based Round Trip Engineering Framework for the Development 2741

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Table 6. Make refunds use case.

Brief

description

The sales assistant makes the refunds to the customer by

initiating this use case

Actors Sales assistant, customer

Flow of events The customer produces a valid receipt

 The refunds are made by the sales assistant

 The use case ends

Alternative

flow

Invalid receipt

 The customer not produce a valid receipt

 Customer will be asked for a valid receipt. If able to produce a

valid receipt, the basic flow step “refund” is resumed. Otherwise,

the use case ends

Precondition Customer made all the payments

Post condition Customer get refunds

The analysis phase of the software development lifecycle is closed to design

and design phase is closed to implementation. With the help of the use of case

diagram, we develop the component based classes. In the object-oriented class

diagram, the designer will identify the classes. These classes can be identified

through a Software Requirement Specification (SRS). The actors, which have been

identified in the use case diagram, for a specific web application, can be considered

as classes in a class diagram. Use cases of use case diagram will be the member

function or methods of object-oriented classes. As normal practices, actors of use

case diagram are considered as classes and the use cases are considered as member

functions or methods of the classes. When we want to model the structure of a

system or a web application, we can make use of an object-oriented class diagram.

Classes of applications are more or less like entities in entity relationship diagram.

When we want to model the interaction among objects in runtime, and sequence of

function calling and method invocation, we can design and draw the interaction or

sequence diagram for major use cases. As we know, the analysis is close to the

design phase of the software development life cycle and design is close to the

development. These object-oriented languages are close to real-world mapping

[28]. We develop the component based class diagram. The standard class diagram

of store stock control is as follows in Fig. 4.

In this store stock control based web application, storing objects may be a sales

clerk, inventory, credit card, cheque, store manager, payment, person, marketing,

stock manager, person, warehouse person, invoice, system, customer, etc. (see Fig.

4). During the web development, we should note the point that the analysis phase

of the Software Development Lifecycle is close to the design and design phase of

software development life cycle is close to the implementation phase. The correct

transition of analysis phase to design and design phase to development phase is

essential. If the analysis is wrong, it means system requirement discovery is wrong.

If the analysis and design phase not implemented correctly, it means final software

and web application will not accomplish the purpose of users.

The class wise equivalent C++ source code of this case study is given in

Appendix A.

With the help of above-mentioned software development process, developers

can identify software Metrics like no. of data members, no. of data members per

superclass, no. of data members per subclass, member functions, the length of the

2742 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

program, Volume, vocabulary of a program, average number of live variables,

Count of executable statements, member functions per class, data structure metrics,

and information flow, etc. These software metrics can be identified through

halstead software science measures and data structure metrics. These metrics are

therefore computed statically from the source code. The number of distinct

operators, number of distinct operands, the total number of operators and the total

number of operands can be identified through the C++ source code. Source Code

review improves the overall quality of the software. With the help of the above-

mentioned approach, software project planning will become easier for developers.

Fig. 4. Class diagram for online store stock control web application.

5. Transition Process of Roundtrip Engineering

Forward engineering starts with problem statements and reverses engineering start

with existing software with source code. Reverse engineering is used to increase

the understanding level of the software. Generate ANSI C++ source code from

UML class model, and let the UML model reflect the change you made in the

source code. Round-trip engineering helps keep your ANSI C++ source code and

software design synchronized. Every time you generate code or update UML

model, changes will be merged. Round trip engineering is also possible for C#,

Java, PHP, XML, Ada95, PERL, Ruby, etc.

In this process, SRS, SDD any diagram or any document can be used, so that

maintenance engineer can understand the existing software for the purpose of up

UML 2.0 Based Round Trip Engineering Framework for the Development 2743

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

gradation. Figure 5 shows the model of round-trip engineering process for complex

software development. In this paper, we have used round-trip engineering

implementation for the same stock control system web application. The recovered

design of old software describes the existing software system, after that, we can

design and develop a more secure system. Figure 5 indicates the model of round-

trip engineering process for complex software development. In this paper, we have

used IBM Rational Rose for the same purpose.

Fig. 5. Model of round trip engineering process

for complex software development.

6. Results and Discussion

Tables 7 to 9 show the performance results that are appropriate to SPF. These

tables showing the results with SPF, without SPF and showing the

performance compression.

Table 7. Security checks executed in SELinux trusted operating system.

File system tests
SELinux

without SPF

SELinux with

system-SPF model

Random disk reads (K) per second 94167 93135

Random disk writes (K) per second 79188 79508

Sequential disk reads (K) per second 335527 325591

Sequential disk writes (K) per second 149616 153174

Disk copies (K) per second 102252 102744

Table 8. Security checks skipped in SELinux trusted operating system.

File system tests
SELinux

without SPF

SELinux with

system-SPF model

Random disk reads (K) per second 94167 99762

Random disk writes (K) per second 79188 84768

Sequential disk reads (K) per second 335527 363571

Sequential disk writes (K) per second 149616 159727

Disk copies (K) per second 102252 110315

2744 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Table 9. Comparison of performance improvement

after security checks skipped in SELinux trusted operating system.

File system tests

SELinux

without SPF

performance

degradation

SELinux with

system-SPF model

improvement over

SELinux no SPF

Random disk reads (K) per second -6% +5%
Random disk writes (K) per second -6% +6%
Sequential disk reads (K) per second -9% +7%
Sequential disk writes (K) per second -5% +6%
Disk copies (K) per second -7% +7%

An added advantage of choosing SELinux is being open source thus allowing

modification and change as per your requirement. SPF based SELinux trusted

operating system is a better choice for maintaining the security in web applications.

Just because of privacy and confidentiality in trusted operating systems, the source

code of any software company, business and armed forces will not be available for

the normal user. So obtaining such source code in a specific language is not as easy

as we think. The privacy and security implementation for any system will vary from

one development company to another.

7. Conclusions

This research paper presents an SPF based approach for web applications and the

integration of security engineering into a model-driven software development. This

research work showcases the effectiveness of UML 2.0 based object-oriented

modelling with the primary focus of security through the system level SPF in web

applications. In this paper, we suggested that the secure web application

development should be enhanced by applying security checkpoints and techniques

at early stages of development as well as throughout the Software Development

Lifecycle. Special emphasis should be applied to the coding phase of development.

SPF based model of trusted operating systems allowed system administrators to

skip or disable some unnecessary security checks in trusted operating systems

through which, they can effectively balance their performance needs without

compromising the security of the system. In this paper, we described round trip

engineering, source code structuring and restructuring of a secure software system.

Currently, our design is focusing on static, i.e., the fixed design models, which

are relatively very close to the object-oriented implementation. Our future research

work can focus on modelling security requirements and design information using

the dynamic UML models.

Abbreviations

OO Object-Oriented

SDD Software Design Document

SDLC Software Development Lifecycle

SELinux Security-Enhanced Version of Linux

SPF Security Performance Flexibility

SRS Software Requirement Specification

TOS Trusted Operating System

UML Unified Modeling Language

https://en.wikipedia.org/wiki/Unified_Modeling_Language

UML 2.0 Based Round Trip Engineering Framework for the Development 2745

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

References

1. Valderas, P.; and Pelechano, V. (2014). A survey of requirements specification

in model-driven development of web applications. ACM Transactions on the

Web, 5(2), 1-51.

2. Davis, J.P.; and Bonnel, R.D. (2009). Propositional logic constraint patterns

and their use in UML-based conceptual modelling and analysis. IEEE

Transactions on Knowledge and Data Engineering, 19(3), 427-440.

3. Marcus, A.; Poshyvanyk, D.; and Ferenc, R. (2011). Using the conceptual

cohesion of classes for fault prediction in object-oriented systems. IEEE

Transactions on Software Engineering, 34(2), 287-300.

4. Poblete, B.; Spiliopoulu, M.; and Baeza-Yates, R. (2012). Privacy-preserving

query log mining for business confidentiality protection. ACM Transactions

on the Web, 4(3), Article No. 10.

5. Comai, S.; and Mazza, D. (2013). A model-driven methodology to the content layout

problem in web applications. ACM Transactions on the Web, 6(3), Article No. 10.

6. Bittar, T.J.; Fortes, R.P.M.; Lobato, L.L.; and Watanabe, W.M. (2009). Web

communication and interaction modelling using model-driven development.

Proceedings of the 27th International Conference on Design of Communication

(SIGDOC’09). Bloomington, Indiana, United States of America, 193-197.

7. Medeiros, I.; Neves, N.F.; and Correia, M. (2014). Automatic detection and

correction of web application vulnerabilities using data mining to predict false

positives. Proceedings of the International World Wide Web Conference

Committee (WWW’14). Seoul, Korea, 63-73.

8. Andrea, D.L.; Carmine, G.; Rocco, O.; and Genoveffa, T. (2009). An

experimental comparison of ER and UML class diagrams for data modelling.

Empiral Software Engineering, 15(5), 455-492.

9. Selby, R.W.; Basili, V.R.; and Baker, F.T. (1987). Clean software

development: An empirical evaluation. IEEE Transactions on Software

Engineering, SE-13(9), 1027-1037.

10. Fernandes, J.M.; and Machado, R.J. (2001). From use cases to objects: An

industrial information systems case study analysis. Proceedings of the 7th

International Conference on Object-Oriented Information Systems (OOIS

’01). Calgary, Canada, 319-328.

11. Cheng, B.H.C.; and Wang, E.W. (2002). Formalizing and integrating the

dynamic model for object-oriented modelling. IEEE Transactions on Software

Engineering, 28(8), 747-762.

12. Ricci, L.A.; and Schwabe, D. (2006). An authoring environment for model-

driven web applications. Proceedings of the 12th Brazilian Symposium on

Multimedia and the Web. New York, United States of America, 11-19.

13. Bernardi, S.; Merseguer, J.; and Petriu, D.C. (2012). Dependability modelling

and analysis of software systems specified with UML. ACM Computing

Surveys, 45(1), Article No. 2.

14. Chauron, M.R.V.; Heijstek, W.; and Nughoro, A. (2012). How effective is

UML modelling? An empirical perspective on costs and benefits. Software and

System Modeling, 4(11), 571-580.

15. Pathak, N.; Sharma, G.; and Singh, B.M. (2015). Trusted operating system

based model-driven development of secure web applications. Proceedings of

2746 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

the 50th Golden Jubilee Annual Convention, Computer Society of India (CSI-

2015). New Delhi, India.

16. Runeson, P.; and Martin, H. (2008). Guidelines for conducting and reporting

case study research in software engineering. Empirical Software Engineering

14(2), 131-164.

17. Pathak, N.; Sharma, G.; and Singh, B.M. (2017). Towards designing of SPF

based secure web application using UML 2.0. International Journal of Systems

Assurance Engineering and Management, 8(1), 208-218.

18. Siau, K.; and Lee, L. (2004). Are use case and class diagrams complementary

in requirements analysis? An experimental study on use case and class

diagrams in UML. Requirements Engineering, 9(4), 229-237.

19. Brambilla, M.; Ceri, S.; Fraternali, P.; and Manolescu, I (2006). Process

modelling in web applications. ACM Transactions on Software Engineering

and Methodology, 15(4), 360-409.

20. Kapitsaki, G.M.; Kateros, D.A.; Pappas, C.A.; Tselikas, N.D.; and Venieris, I.S.

(2008). Model-driven development of composite web applications.

Proceedings of the 10th International Conference on Information Integration

and Web-based Applications and Services (iiWAS’08). Linz, Austria, 309-402.

21. Pathak, N.; Sharma, G.; and Singh, B.M. (2015). Designing of SPF based

secure web application using forward engineering. Proceedings of the 2nd

International Conference on Computing for Sustainable Global Development-

(Indiacom). New Delhi, India, 464-469

22. Desnoyers, P.; Wood, T.; Shenoy, P.; Singh, R.; Patil, S.; and Vin, H. (2012).

Modellus: Automated modelling of complex internet data center applications.

ACM Transactions on the Web, 6(2), Article No. 8.

23. Pathak, N.; Singh, B. M.; and Sharma, G. (2017). UML 2.0 based framework

for the development of secure web application. International Journal of

Information Technology, 9(1), 101-109.

24. Kim, H.; Zhang, Y.; Oussena, S.; and Clark, T. (2009). A case study on model

driven data integration for data centric software development. Proceedings of

the ACM First International Workshop on Data-Intensive Software

Management and Mining (DSMM ’09). Hong Kong, China, 1-6.

25. Pathak, N.; Sharma, G.; and Singh, B.M. (2015). Experimental analysis of SPF

based secure web application. International Journal of Modern Education and

Computer Science (IJMECS), 7(2), 48-55.

26. Kim, P.J.; and Noh, Y.J. (2013). Mobile agent system architecture for

supporting mobile market application service in mobile computing

environment. Proceedings of the IEEE International Conference on Geometric

Modelling and Graphics. London, United Kingdom, 149-153.

27. Pathak, N.; Sharma, G.; and Singh, B. M. (2017). An empirical perspective of

roundtrip engineering for the development of secure web application using UML

2.0. International Journal of Intelligent Systems and Applications, 9(5), 43-54.

28. Hernes, M.; Maleszka, M.; Nyuyen, N.T.; and Bytniewski, A. (2015). The

automatic summarization of text documents in the cognitive integrated

management information system. Proceedings of the IEEE Federated

Conference on Computer Science and Information Systems (FedCSIS). Lodz,

Poland, 1387-1396.

UML 2.0 Based Round Trip Engineering Framework for the Development 2747

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Appendix A

The class wise equivalent C++ sample code of the case study.

Class Person

{

public:

//##ModelId=553C976E01C4

GetDeatils();

//##ModelId=553C97750038

SetDeatils();

private:

//##ModelId=553C971B02D3

String Name;

//##ModelId=553C97380226

String Phone;

//##ModelId=553C975B0001

String Address;

};

#include "Person.h"

//##ModelId=553C9B4C0295

class Customer : public Person

{

public:

//##ModelId=553C9B890326

Make_Payment();

private:

//##ModelId=553C9B5A003E

Person Name;

//##ModelId=553C9B5E0028

Person Phone;

//##ModelId=553C9B64019E

person Address;

//##ModelId=553C9B680189

String Credit_Card;

//##ModelId=553C9B6F0007

Integer Cash_Amount;

};

#endif /*

#include "Person.h"

//##ModelId=553C99010386

class Stock Manager : public Person

{

public:

//##ModelId=553C99340150

Check_Demand();

//##ModelId=553C99380262

Monitor_Stock_Level();

//##ModelId=553C9940011C

Monitor_Weekly_Run_Rates();

//##ModelId=553C994F005E

2748 N. Pathak

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

Order_Stock();

private:

//##ModelId=553C9912016D

Person Name;

//##ModelId=553C991601B4

Person Phone;

//##ModelId=553C991B0229

Person Address;

//##ModelId=553C9920005D

String Stock_Status;

};

#endif /*

WAREHOUSE_STAFF_H_HEADER_INCLUDED_AAC32

A1B */

//##ModelId=553C9C2202FC

class WareHouse Staff

{

public:

//##ModelId=553C9C4B0368

Book_Stock();

private:

//##ModelId=553C9C2B02DE

String Stock_Status;

//##ModelId=553C9C330009

Stock_Description;

};

#endif /*

Calculate_Weekly_Sales_Bonus();

private:

//##ModelId=553C97B30348

Person Name;

//##ModelId=553C97BD029E

Person Phone;

//##ModelId=553C97C5007C

Person Address;

//##ModelId=553C97D101AE

String Sales_Status;

//##ModelId=553C97E402A7

String Store_Address;

};

#endif /*

//##ModelId=553C981A01B5

Store Manager::Calculate_Weekly_Sales_Bonus()

{

}

#include "System.h"

//##ModelId=553C9ACD031A

System::Print_Receipt()

{

}

UML 2.0 Based Round Trip Engineering Framework for the Development 2749

Journal of Engineering Science and Technology September 2018, Vol. 13(9)

//##ModelId=553C9AD20266

System::Display_Stock_Details()

{

}

#include "WareHouse Staff.h"

//##ModelId=553C9C4B0368

WareHouse Staff::Book_Stock()

{

}

#include "Customer.h"

//##ModelId=553C9B890326

Customer::Make_Payment()

{

}

//##ModelId=553C9A3E007C

Sales Assistant::Place_Back_Order()

{

}

//##ModelId=553C9A4A0191

Sales Assistant::Assign_Sales()

{

}

//##ModelId=553C9A530207

Sales Assistant::Collects_Payment()

{

}

