

Advances in Group Theory and Applications © 2018 AGTA - www.advgrouptheory.com/journal 6 (2018), pp. 89–100 ISSN: 2499-1287 DOI: 10.32037/agta-2018-006

On Sublattices of the Lattice of all ω-Composition Formations of Finite Groups *

Nikolay N. Vorob'ev

(Received Feb. 8, 2018; Accepted Sept. 10, 2018 — Communicated by A. Skiba)

Abstract

It is proved that the lattice of all ω -local formations is a complete sublattice of the lattice of all ω -composition formations of finite groups.

Mathematics Subject Classification (2010): 20D10, 20F17

Keywords: finite group; formation of groups; ω -local formation; ω -composition formation; complete lattice of formations

1 Introduction

Throughout this paper, all groups are finite. Moreover, we will use ω to denote a non-empty set of primes and $\omega' = \mathbb{P} \setminus \omega$.

Recall that a *variety of groups* may be defined as a non-empty class of groups closed under taking homomorphic images and subcartesian products (see Chap. 1, Sec. 5, Remark 15.53 of [13]). In the universe of all finite groups the definition of a variety leads us to the concept of the formation: a class of finite groups \mathfrak{F} which is closed under taking homomorphic images and finite subdirect products is called a *formation* (Gaschütz [6]). It is well known that the lattice of all varieties of groups is complete, modular but

^{*} Research of the author supported by the Belarusian Republic Foundation for Fundamental Research (grant F18U-007) and by State Program of Fundamental Research of Republic Belarus (Grant 20160350)

is not distributive [13]. Moreover, Skiba proved (see p.91 of [21] or p.137 of [26]) that the lattice of all varieties of locally finite groups is a sublattice of the lattice of all hereditary (in the sence of Mal'cev; see [12]) *formations*. This circumstance confirms the importance of studying of the lattices of formations.

The most useful for applications of the formation theory (in particular, in the theory of formal languages; see [2],[3],[4]) and in the theory of lattices of group classes (see [1],[5],[7],[8],[9],[10],[11],[14],[15],[16],[17],[18], [19],[21],[23],[24],[25],[26],[29],[30],[31],[32],[33],[35]) are the so-called local and Baer-local formations and their generalizations (ω -local and ω -composition formations).

Recall that the formation \mathfrak{F} is said to be: ω -local or ω -saturated if $G \in \mathfrak{F}$ whenever $G/O_p(\Phi(G)) \in \mathfrak{F}$ for any prime $p \in \omega$; ω -composition or solubly ω -saturated if $G \in \mathfrak{F}$ whenever $G/\Phi(O_p(G)) \in \mathfrak{F}$ for any prime $p \in \omega$. A local formation is an ω -local formation, where $\omega = \mathbb{P}$ is the set of all primes. Analogously, a composition or Baer-local formation is an ω -composition formation, where $\omega = \mathbb{P}$.

It is well known that the set of all ω -local formations \mathcal{L}^{ω} and the set of all ω -composition formations \mathcal{C}^{ω} partially ordered by set inclusion are complete lattices (Skiba and Shemetkov in [22] and [27]). Moreover, it was proved [28] that the lattice of all local formations \mathcal{L} is a complete sublattice of the lattice of all Baer-local formations \mathcal{C} .

We prove the following generalization of this result in this paper.

Theorem The lattice \mathcal{L}^{ω} is a complete sublattice of the lattice \mathcal{C}^{ω} .

All unexplained notations and terminology are standard. The reader is referred to [1],[5],[21],[20],[22],[26],[27], if necessary.

2 Preliminaries

Recall that $\pi(G)$ denotes the set of all prime divisors of the order of a group G For any collection of groups \mathfrak{X} we denote by $Com(\mathfrak{X})$ the class of all simple abelian groups A such that $A \simeq H/K$, where H/K is a composition factor of $G \in \mathfrak{X}$.

Recall that the subgroup $C^{p}(G)$ is the intersection of the centralizers of all the abelian p-chief factors of G ($C^{p}(G) = G$ if G has no abelian p-chief factors).

The symbols \mathfrak{G} , \mathfrak{N}_p , $\mathfrak{G}_{p'}$, \mathfrak{G}_{ω} and \mathfrak{G}_{ω} denote the class of all groups, the class of all p-groups, the class of all p-groups, the class of all ω -groups and the class of all soluble ω -groups, respectively. For every group class $\mathfrak{F} \supseteq (1)$, by $G_{\mathfrak{F}}$ we denote the product of all normal \mathfrak{F} -subgroups of a group G. In particular, we write

$$O_{\mathfrak{p}}(G) = G_{\mathfrak{N}_{\mathfrak{p}}}, \ O_{\omega}(G) = G_{\mathfrak{G}_{\omega}}, \ R_{\omega}(G) = G_{\mathfrak{G}_{\omega}}, \ O_{\mathfrak{p}',\mathfrak{p}}(G) = G_{\mathfrak{G}_{\mathfrak{p}'}\mathfrak{N}_{\mathfrak{p}}}.$$

Let f be a function of the form

$$f: \omega \cup \{\omega'\} \to \Big\{ \text{formations of groups} \Big\}.$$
(1)

According to [22] and [27] we consider, respectively, two classes of groups

$$LF_{\omega}(f) = (G \mid G/O_{\omega}(G) \in f(\omega') \text{ and } G/O_{p',p}(G) \in f(p)$$

for all $p \in \omega \cap \pi(G)$)

and

$$CF_{\omega}(f) = (G \mid G/R_{\omega}(G) \in f(\omega') \text{ and } G/C^{p}(G) \in f(p)$$

for all $p \in \omega \cap \pi(Com(G))$.

If \mathfrak{F} is a formation such that $\mathfrak{F} = LF_{\omega}(f)$ for a function f of the form (1), then \mathfrak{F} is said to be ω -*local* and f is said to be an ω -*local satellite* of \mathfrak{F} (see [22]). If $\mathfrak{F} = LF_{\omega}(f)$ and $f(\mathfrak{a}) \subseteq \mathfrak{F}$ for all

$$\mathfrak{a} \in \mathfrak{\omega} \cup \{\mathfrak{\omega}'\},\$$

then f is called an *inner* ω -*local satellite* of \mathfrak{F} . The symbol $\mathfrak{N}_p F(p)$ denotes the set of all groups A such that $A^{F(p)}$ is a p-group. According to Remark 1 of p.118 in [22], for any ω -local formation \mathfrak{F} , there exists a unique formation function F of the form (1) such that $\mathfrak{F} = LF_{\omega}(F)$ and $F(p) = \mathfrak{N}_p F(p) \subseteq \mathfrak{F}$ for all $p \in \omega$. The formation function F is called the *canonical* ω -*local satellite* of \mathfrak{F}.

If \mathfrak{F} is a formation such that $\mathfrak{F} = CF_{\omega}(f)$ for a function f of the form (1), then \mathfrak{F} is said to be ω -composition and f is said to be an ω -composition satellite of \mathfrak{F} (see [27]). If $\mathfrak{F} = CF_{\omega}(f)$ and $f(\mathfrak{a}) \subseteq \mathfrak{F}$ for all $\mathfrak{a} \in \omega \cup \{\omega'\}$, then f is called an *inner* ω -composition satellite of \mathfrak{F} . According to Remark 1 of p.902 in [27], for any ω -composition formation \mathfrak{F} , there exists a unique formation function F of the form (1) such that $\mathfrak{F} = CF_{\omega}(F)$ and $F(p) = \mathfrak{N}_pF(p) \subseteq \mathfrak{F}$ for all $p \in \omega$. The formation function F is called the *canonical* ω -composition satellite of \mathfrak{F} .

Let Θ be a complete lattice of formations. A formation function f of the form (1) is called Θ -*valued* if all its values belong to the lattice Θ . We denote by Θ^{ω_1} the set of all formations having an ω -local Θ -valued satellite (see [22]); analogously, we denote by Θ^{ω_c} the set of all formations having an ω -composition Θ -valued satellite (see [27]).

By \mathcal{L}^{ω} we denote the set of all ω -local formations; by \mathcal{C}^{ω} we denote the set of all ω -composition formations. With respect to inclusion \subseteq , the sets \mathcal{L}^{ω} and \mathcal{C}^{ω} are complete lattices (see p.119 of [22] and p.904 of [27]). In the lattice \mathcal{L}^{ω} (\mathcal{C}^{ω} , respectively) for arbitrary non-empty set

$$\Sigma = \{\mathcal{H}_i \mid i \in \Lambda\}$$

of its elements,

$$\bigcap_{i\in\Lambda}\mathcal{H}_i$$

is the greatest lower bound for Σ in \mathcal{L}^{ω} (in \mathcal{C}^{ω} , respectively);

$$\mathcal{L}^{\omega} \operatorname{form}\left(\bigcup_{i \in \Lambda} \mathcal{H}_i\right)$$

is the least upper bound for Σ in \mathcal{L}^{ω} (in \mathcal{C}^{ω}

$$\mathcal{C}^{\omega} form\left(\bigcup_{i\in\Lambda}\mathcal{H}_i\right)$$

is the least upper bound, respectively). Here the symbol \mathcal{L}^{ω} form (\mathfrak{X}) (\mathcal{C}^{ω} form (\mathfrak{X})) denotes the intersection of all ω -local (ω -composition) formations containing a collection of groups \mathfrak{X} .

We will use the following results in the proof of the theorem.

Lemma 2.1 (see Lemma 4 of [22]) If $\mathfrak{F} = LF_{\omega}(f)$ and $G/O_{p}(G) \in f(p) \cap \mathfrak{F}$ for some $p \in \omega$, then $G \in \mathfrak{F}$.

Lemma 2.2 (see Chapter IV, Proposition 1.5 of [5]) Let R/S be a normal section of a group G in a formation \mathfrak{F} , and let K be a normal subgroup of G contained in $C_G(R/S)$. With respect to the following action of G/K on R/S :

$$(rS)^{gK} = g^{-1}rgS, \quad r \in R, g \in G$$

form the semidirect product

$$\mathbf{H} = (\mathbf{R}/\mathbf{S}) \rtimes (\mathbf{G}/\mathbf{K}).$$

Then $H \in \mathfrak{F}$.

Let Θ be a complete lattice of formations and let $\mathfrak{X} \subseteq \mathfrak{F} \in \Theta$ be a collection of groups. We write Θ form \mathfrak{X} to denote the intersection of all formations of Θ containing all groups of \mathfrak{X} . For any collection of formations $\{\mathfrak{F}_i \mid i \in I\}$ of Θ we write

$$\vee_{\Theta}(\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in I) = \Theta form\left(\bigcup_{\mathfrak{i} \in I} \mathfrak{F}_{\mathfrak{i}}\right).$$

Let $\{f_i \mid i \in I\}$ be a collection of Θ -valued functions of the form (1). Then we denote by $\bigvee_{\Theta}(f_i \mid i \in I)$ a function f such that

$$f(\mathfrak{a}) = \Theta form\left(\bigcup_{\mathfrak{i} \in I} f_{\mathfrak{i}}(\mathfrak{a})\right)$$

for all $a \in \omega \cup \{\omega'\}$.

A complete lattice of formations Θ^{ω_1} is called *inductive* (see pp.151–152 of [26]), if for any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations \mathfrak{F}_i of Θ^{ω_1} and for any collection $\{f_i \mid i \in I\}$ of inner Θ -valued ω -local satellites f_i , where f_i is an ω -local satellite of \mathfrak{F}_i , we have

 $\bigvee_{\Theta^{\omega_{\mathfrak{l}}}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I}) = \mathsf{LF}_{\omega} (\bigvee_{\Theta} (\mathsf{f}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I})).$

Lemma 2.3 (see Lemma 4 of [9]) The lattice \mathcal{L}^{ω} is inductive.

Analogously, a complete lattice of formations Θ^{ω_c} is called *inductive* [26], if for any collection

 $\{\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in I\}$

of formations \mathfrak{F}_i of Θ^{ω_c} and for any collection

 $\{f_{\mathfrak{i}} \mid \mathfrak{i} \in I\}$

of inner Θ -valued ω -composition satellites f_i , where f_i is an ω -composition satellite of \mathfrak{F}_i , we have

$$\bigvee_{\Theta^{\omega_{c}}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathfrak{I}) = CF_{\omega} (\bigvee_{\Theta} (f_{\mathfrak{i}} \mid \mathfrak{i} \in \mathfrak{I})).$$

Lemma 2.4 (see Theorem of [30] and Theorem 2.1 of [34]) The lattice \mathbb{C}^{ω} is inductive.

3 Proof of the Theorem

Let $\{\mathfrak{F}_i \mid i \in I\}$ be a collection of ω -local formations and let F_i be the canonical ω -local satellite of \mathfrak{F}_i . Let

$$\mathfrak{F} = \bigvee_{\mathcal{L}^{\omega}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in I) \text{ and } \mathfrak{H} = \bigvee_{\mathfrak{C}^{\omega}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in I).$$

It is clear that

$$\bigcap_{i\in I} \mathfrak{F}_i$$

is an ω -local formation and this formation is the greatest lower bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{L}^{ω} . On the other hand, clearly, \mathfrak{F} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{L}^{ω} and \mathfrak{H} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in \mathcal{C}^{ω} . Therefore, in fact, we need only prove that $\mathfrak{F} = \mathfrak{H}$. The inclusion $\mathfrak{H} \subseteq \mathfrak{F}$ is evident. Hence, we need only show that $\mathfrak{F} \subseteq \mathfrak{H}$. Let $\mathfrak{H}_i = CF_{\omega}(H_i)$, where H_i is an ω -composition satellite such that

$$H_{i}(a) = \begin{cases} \mathfrak{F}_{i}, & \text{if } a = \omega', \\ F_{i}(a), & \text{if } a = p \in \omega \end{cases}$$

We show that $\mathfrak{F}_{\mathfrak{i}} = \mathfrak{H}_{\mathfrak{i}}$ for all $\mathfrak{i} \in \mathfrak{I}$.

Suppose $\mathfrak{H}_i \not\subseteq \mathfrak{F}_i$. Let G be a group of minimal order in $\mathfrak{H}_i \setminus \mathfrak{F}_i$. Then G is a monolithic group and $R = G^{\mathfrak{F}_i}$ is the monolith of G.

If $R_{\omega}(G) = 1$, then

$$G \simeq G/1 = G/R_{\omega}(G) \in H_{i}(\omega') = \mathfrak{F}_{i},$$

a contradiction.

Hence, $R_{\omega}(G) \neq 1$, i.e., R is a p-group for some $p \in \omega$. Since \mathfrak{F}_i is ω -saturated, it follows that $R \not\subseteq \Phi(G)$. Consequently, there exists a maximal subgroup M of G such that $R \notin M$. Hence, $M_G = 1$, i.e., G is a primitive group. Therefore, $R = C_G(R) = O_{p',p}(G)$. Hence, $R = O_p(G) = C^p(G)$. Consequently,

$$G/O_{p',p}(G) = G/C^{p}(G) = G/O_{p}(G) \in H_{i}(p) = F_{i}(p).$$

Hence, by Lemma 2.1, we have $G \in \mathfrak{F}_i$, a contradiction. Therefore, $\mathfrak{H}_i \subseteq \mathfrak{F}_i$.

Now we show that $\mathfrak{F}_i \subseteq \mathfrak{H}_i$. Assume it is false. Let G be a group of minimal order in $\mathfrak{F}_i \setminus \mathfrak{H}_i$. Then G is a monolithic group and $R = G^{\mathfrak{H}_i}$ is the monolith of G.

Let $O_{\omega}(G) = 1$. Then $R_{\omega}(G) = 1$ and $\omega \cap \pi(Com(G)) = \omega \cap \pi(Com(G/R))$. Let

$$p \in \omega \cap \pi(Com(G)).$$

If R is non-abelian, then

$$G \simeq G/1 = G/R_{\omega}(G) \in H_{i}(\omega') = \mathfrak{F}_{i}.$$

We have $G/R \in \mathfrak{H}_i$, by the choice of G. Moreover, $C^p(G/R) = C^p(G)/R$. Consequently,

$$(G/R)/C^p(G/R) = (G/R)/(C^p(G)/R) \simeq G/C^p(G) \in H_i(p).$$

Thus, $G/C^p(G) \in H_i(p)$ for all $p \in \omega \cap \pi(Com(G))$. Hence, $G \in \mathfrak{H}_i$, a contradiction.

Let R be an abelian ω' -group. Note that

$$G \simeq G/1 = G/R_{\omega}(G) \in H_{i}(\omega') = \mathfrak{F}_{i}$$

since $R_{\omega}(G) = 1$. Since $G/R \in \mathfrak{H}_i$ and $C^p(G/R) = C^p(G)/R$, we have

$$G/C^{p}(G) \in H_{i}(p)$$

for all $p \in \omega \cap \pi(Com(G))$. Hence, $G \in \mathfrak{H}_i$, a contradiction.

Consequently, $O_{\omega}(G) \neq 1$. Let $p \in \pi(R) \subseteq \omega$. If R is non-abelian, then $\pi(\text{Com}(R)) = \emptyset$. Hence, $R_{\omega}(G) = 1$. Consequently,

$$G \simeq G/1 = G/R_{\omega}(G) \in H_i(\omega') = \mathfrak{F}_i.$$

Since $G/R \in \mathfrak{H}_i$ and $C^p(G/R) = C^p(G)/R$, it follows that $G/C^p(G) \in H_i(p)$ for all $p \in \omega \cap \pi(Com(G))$. Hence, $G \in \mathfrak{H}_i$, a contradiction.

Consequently, R is an abelian p-group. We have $G/R \in \mathfrak{H}_i$, by the choice of G. Moreover, since $R \leq R_{\omega}(G)$, we have $R_{\omega}(G/R) = R_{\omega}(G)/R$. It follows that

$$G/R_{\omega}(G) \in H_{i}(\omega') = \mathfrak{F}_{i}.$$

Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}_i$, using Lemma 2.2, we have $T \in \mathfrak{F}_i$.

If |T| < |G|, then $T \in \mathfrak{H}_i$, by the choice of the group G. Hence,

$$G/C_G(R) \simeq T/R = T/C_T(R) = T/C^p(T) \in H_i(p).$$

Let $C^*/R = C^p(G/R)$. Since $G/R \in \mathfrak{H}_i$, we have

$$(G/R)/C^p(G/R) = (G/R)/(C^*/R) \simeq G/C^* \in H_i(p).$$

Moreover, from the above proved we know $G/C_G(R) \in H_i(p)$. Consequently,

 $G/(C^* \cap C_G(R)) = G/C^p(G) \in H_i(p).$

If $q \neq p$, then, evidently,

$$C^{q}(G/R) = C^{q}(G)/R.$$

Since $G/R \in \mathfrak{H}_i$, it follows that

$$G/C^{q}(G) \in H_{i}(q)$$

for all $q \in (\omega \cap \pi(\text{Com}(G))) \setminus \{p\}$. Thus,

$$G/C^{r}(G) \in H_{i}(r)$$

for all $r \in \omega \cap \pi(\text{Com}(G))$. Hence, $G \in \mathfrak{H}_i$, a contradiction.

Therefore, |T| = |G|. Hence, $R = C_G(R)$. It follows that

$$\mathbf{R} = \mathbf{C}_{\mathbf{G}}(\mathbf{R}) = \mathbf{C}^{\mathbf{p}}(\mathbf{G}) = \mathbf{O}_{\mathbf{p}',\mathbf{p}}(\mathbf{G}).$$

Therefore,

$$G/C^{p}(G) = G/O_{p',p}(G) \in F_{i}(p) = H_{i}(p).$$

Moreover, from the above proved we know

$$G/C^{q}(G) \in H_{i}(q)$$

for all $q \in (\omega \cap \pi(\text{Com}(G))) \setminus \{p\}$. Thus,

$$G/C^{r}(G) \in H_{i}(r)$$

for all $r \in \omega \cap \pi(\text{Com}(G))$. Hence, $G \in \mathfrak{H}_i$, a contradiction. Consequently, $\mathfrak{F}_i \subseteq \mathfrak{H}_i$. Thus, $\mathfrak{F}_i = \mathfrak{H}_i$ for all $i \in I$.

Since by Lemma 2.3 the lattice \mathcal{L}^{ω} is inductive, we have

$$\mathfrak{F} = \bigvee_{\mathcal{L}^{\omega}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I}) = \mathsf{LF}_{\omega} (\lor (\mathsf{F}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I})).$$

Since by Lemma 2.4 the lattice C^{ω} is inductive, we have

$$\mathfrak{H} = \bigvee_{\mathfrak{C}^{\omega}} (\mathfrak{F}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I}) = \mathsf{CF}_{\omega} (\lor (\mathsf{H}_{\mathfrak{i}} \mid \mathfrak{i} \in \mathbf{I})).$$

Now we are ready to prove the following equality $\mathfrak{F} = \mathfrak{H}$. Clearly, $\mathfrak{H} \subseteq \mathfrak{F}$. Suppose that $\mathfrak{F} \not\subseteq \mathfrak{H}$. Let G be a group of minimal order in $\mathfrak{F} \setminus \mathfrak{H}$. Then G is a monolithic group and $\mathbb{R} = \mathbb{G}^{\mathfrak{H}}$ is the monolith of G.

If $O_{\omega}(G) = 1$, then

$$\begin{split} G &\simeq G/1 = G/O_{\omega}(G) \in \big(\lor (F_i \mid i \in I) \big)(\omega') = \\ &= \lor (F_i(\omega') \mid i \in I) = \lor (\mathfrak{F}_i \mid i \in I) \subseteq \lor_{\mathfrak{C}^{\omega}}(\mathfrak{F}_i \mid i \in I) = \mathfrak{H}, \end{split}$$

a contradiction.

Hence, $O_{\omega}(G) \neq 1$. Let $p \in \pi(R) \subseteq \omega$. If R is non-abelian, then

$$O_{\mathfrak{p}',\mathfrak{p}}(\mathsf{G}) = 1.$$

Hence, since the canonical ω -local satellite F_i is inner,

$$G \simeq G/1 = G/O_{p',p}(G) \in (\forall (F_i \mid i \in I))(p) =$$
$$= \forall (F_i(p) \mid i \in I) \subseteq \forall (\mathfrak{F}_i \mid i \in I) \subseteq \forall_{C^{\omega}}(\mathfrak{F}_i \mid i \in I) = \mathfrak{H}.$$

This contradicts the choice of the group G.

Hence, R is an abelian p-group. We have $G/R \in \mathfrak{H}$, by the choice of G. Moreover, since $R \leq R_{\omega}(G)$, we have $R_{\omega}(G/R) = R_{\omega}(G)/R$. It follows that

$$G/R_{\omega}(G) \in (\vee(H_{\mathfrak{i}} | \mathfrak{i} \in I))(\omega').$$

Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}$, using Lemma 2.2, we have $T \in \mathfrak{F}$.

If $|\mathsf{T}| < |\mathsf{G}|$, then $\mathsf{T} \in \mathfrak{H}$, by the choice of G. Consequently,

$$G/C_G(R) \simeq T/R = T/C_T(R) = T/C^p(T) \in (\lor(H_i \mid i \in I))(p)$$

Let $C^*/R = C^p(G/R)$. Since $G/R \in \mathfrak{H}$, we have

$$G/C^* \in (\vee(H_i \mid i \in I))(p).$$

Moreover, from the above proved we know

$$G/C_G(R) \in (\vee(H_i \mid i \in I))(p).$$

Hence,

$$G/C^{p}(G) \in (\vee(H_{i} | i \in I))(p).$$

If $q \neq p$, then, evidently, $C^q(G/R) = C^q(G)/R$. Since $G/R \in \mathfrak{H}$, it follows that

$$G/C^{q}(G) \in (\vee(H_{i} | i \in I))(q)$$

for all $q \in (\omega \cap \pi(Com(G))) \setminus \{p\}$. Thus,

$$G/C^{r}(G) \in (\lor(H_{i} \mid i \in I))(r)$$

for all $r \in \omega \cap \pi(\text{Com}(G))$. Hence, $G \in \mathfrak{H}$, a contradiction.

Therefore, |T| = |G|. Consequently, $R = C_G(R)$. It follows that

 $\mathbf{R} = \mathbf{C}_{\mathbf{G}}(\mathbf{R}) = \mathbf{O}_{\mathbf{p}}(\mathbf{G}) = \mathbf{C}^{\mathbf{p}}(\mathbf{G}) = \mathbf{O}_{\mathbf{p}',\mathbf{p}}(\mathbf{G}).$

Therefore, since $\mathfrak{F}_{\mathfrak{i}} = \mathfrak{H}_{\mathfrak{i}}$ for all $\mathfrak{i} \in \mathfrak{l}$, we have

$$G/C^{p}(G) = G/O_{p',p}(G) \in (\vee(F_{i} \mid i \in I))(p) = \vee(F_{i}(p) \mid i \in I) =$$

 $= \lor (H_{\mathfrak{i}}(p) \mid \mathfrak{i} \in I) = \bigl(\lor (H_{\mathfrak{i}} \mid \mathfrak{i} \in I)\bigr)(p).$

Moreover, from the above proved we know

$$G/C^{q}(G) \in (\vee(H_{i} | i \in I))(q)$$

for all $q \in (\omega \cap \pi(Com(G))) \setminus \{p\}$. Thus,

$$G/C^{r}(G) \in (\vee(H_{i} \mid i \in I))(r)$$

for all $r \in \omega \cap \pi(\text{Com}(G))$. Hence, $G \in \mathfrak{H}$. Consequently, $\mathfrak{F} \subseteq \mathfrak{H}$. Thus, $\mathfrak{F} = \mathfrak{H}$, and the theorem is proved.

REFERENCES

- [1] A. BALLESTER-BOLINCHES L.M. EZQUERRO: "Classes of Finite Groups", Springer, Berlin (2006).
- [2] A. BALLESTER-BOLINCHES J.É. PIN X. SOLER-ESCRIVÀ: "Formations of finite monoids and formal languages: Eilenberg's variety theorem revisited", Forum Math. 26 (2014), 1737-1761.
- [3] A. Ballester-Bolinches J.É. Pin X. Soler-Escrivà: "Languages associated with saturated formations of groups", Forum Math. 27 (2015), 1471–1505.
- [4] CH. BEHLE A. KREBS S. REIFFERSCHEID: "An approach to characterize the regular languages in TC⁰ with linear wires", *Electronic Collog*. Comp. Complexity 16 (2009), 1-7.
- [5] K. DOERK T. HAWKES: "Finite Soluble Groups", de Gruyter, Berlin (1992).
- [6] W. GASCHÜTZ: "Zur Theorie der endlichen auflösbaren Gruppen", Math. Z. 80 (1963), 300-305.
- [7] W. GUO: "The Theory of Classes of Groups", Kluwer, New York (2000).
- [8] W. Guo: "Structure Theory for Canonical Classes of Finite Groups", Springer, Berlin (2015).
- [9] W. GUO A.N. SKIBA: "Two remarks on the identities of lattices of w-local and w-composition formations of finite groups", Russian Math. 46 (2002), 12–20.
- [10] J. JAKUBÍK: "Formations of lattice ordered groups and of GMV-algebras", Math. Slovaca 58 (2008), 521-534.
- [11] D. JAKUBÍKOVÁ-STUDENOVSKÁ J. PÓCS: "Formations of finite monounary algebras", Algebra Universalis 68 (2012), 249-255.
- [12] A.I. MAL'CEV: "Algebraic Systems", Nauka, Moscow (1970).
- [13] H. NEUMANN: "Varieties of Groups", Springer, Berlin (2012).
- [14] V.G. SAFONOV: "On the modularity of the lattice of τ -closed totally saturated formations of finite groups", Ukrainian Math. J. 58 (2006), 967-973.
- [15] V.G. SAFONOV: "The property of being algebraic for the lattice of all τ -closed totally saturated formations", Algebra Logic 45 (2006), 353-356.

- [16] V.G. SAFONOV: "On modularity of the lattice of totally saturated formations of finite groups", Comm. Algebra 35 (2007), 3495–3502.
- [17] V.G. SAFONOV: "On a question of the theory of totally saturated formations of finite groups", Algebra Colloq. 15 (2008), 119–128.
- [18] V.G. SAFONOV: "&-separability of the lattice of τ-closed totally saturated formations", *Algebra Logic* 49 (2010) 470–479.
- [19] V.G. SAFONOV L.A. SHEMETKOV: "Sublattices of the lattice of totally saturated formations of finite groups", *Dokl. Nats. Akad. Nauk Belarusi* 52 (2008), 34–37.
- [20] L.A. SHEMETKOV: "Formations of Finite Groups", Nauka, Moscow (1978).
- [21] L.A. SHEMETKOV A.N. SKIBA: "Formations of Algebraic Systems", *Nauka*, Moscow (1989).
- [22] L.A. SHEMETKOV A.N. SKIBA: "Multiply ω-local formations and Fitting classes of finite groups", *Siberian Adv. Math.* 10 (2000), 112–141.
- [23] L.A. SHEMETKOV A.N. SKIBA N.N. VOROB'EV: "On laws of lattices of partially saturated formations", Asian-Eur. J. Math. 2 (2009), 155–169.
- [24] L.A. SHEMETKOV A.N. SKIBA N.N. VOROB'EV: "On lattices of formations of finite groups", *Algebra Colloq.* 17 (2010), 557–564.
- [25] YU.A. SKACHKOVA: "Lattices of Ω-fiber formations", Discrete Math. Appl. 12 (2002), 269–278.
- [26] A.N. SKIBA: "Algebra of Formations", *Izdatel'stvo Belaruskaya Navuka*, Minsk (1997).
- [27] A.N. SKIBA L.A. SHEMETKOV: "Multiply L-composite formations of finite groups", Ukrainian Math. J. 52 (2000), 898–913.
- [28] A.N. SKIBA N.N. VOROB'EV: "On the lattices of saturated and solubly saturated formations of finite groups", *Southeast Asian Bull. Math.* 37 (2013), 771–780.
- [29] A.A. TSAREV: "Inductive lattices of totally composition formations", *Revista Colomb. Mat.* 52 (2018), 161–169.
- [30] A.A. TSAREV N.N. VOROB'EV: "On a question of the theory of partially composition formations", *Algebra Colloq.* 21 (2014), 437–447.
- [31] A.A. TSAREV N.N. VOROB'EV: "On a question of the theory of partially composition formations", J. Algebra Appl. 16 (2018), 17pp.
- [32] N.N. VOROB'EV: "A note on compact elements of the lattice of solubly saturated formations", *Asian-Eur. J. Math.* 8 (2015), 8pp.

- [33] N.N. VOROB'EV A.N. SKIBA A.A. TSAREV: "Laws of the lattices of partially composition formations", *Siberian Math. J.* 52 (2011), 802–812.
- [34] N.N. VOROB'EV A.A. TSAREV: "On the modularity of a lattice of τ-closed n-multiply ω-composite formations", *Ukrainian Math. J.* 62 (2010), 518–529.
- [35] N.N. VOROB'EV: "Algebra of Classes of Finite Groups", *Vitebsk University Press*, Vitebsk (2012).

Nikolay N. Vorob'ev Department of Mathematics Masherov Vitebsk State University 210038, Vitebsk (Belarus) e-mail: vornic2001@mail.ru