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High-order correlation has recently been proposed to model brain functional connectivity

network (FCN) for identifying neurological disorders, such as mild cognitive impairment

(MCI) and autism spectrum disorder (ASD). In practice, the high-order FCN (HoFCN) can

be derived from multiple low-order FCNs that are estimated separately in a series of

sliding windows, and thus it in fact provides a way of integrating dynamic information

encoded in a sequence of low-order FCNs. However, the estimation of low-order FCN

may be unreliable due to the fact that the use of limited volumes/samples in a sliding

window can significantly reduce the statistical power, which in turn affects the reliability

of the resulted HoFCN. To address this issue, we propose to enhance HoFCN based

on a regularized learning framework. More specifically, we first calculate an initial HoFCN

using a recently developed method based on maximum likelihood estimation. Then, we

learn an optimal neighborhood network of the initially estimated HoFCN with sparsity

and modularity priors as regularizers. Finally, based on the improved HoFCNs, we

conduct experiments to identify MCI and ASD patients from their corresponding normal

controls. Experimental results show that the proposed methods outperform the baseline

methods, and the improved HoFCNs with modularity prior consistently achieve the best

performance.

Keywords: high-order correlation, functional connectivity network, dynamic network, modularity, mild cognitive

impairment, autism spectrum disorder

INTRODUCTION

Currently, resting state functional magnetic resonance imaging (rs-fMRI), which treats blood
oxygen level dependent (BOLD) signals as indirect measures of neural activities, has been widely
used in the fields of medicine and neuroscience (Liu et al., 2008; van den Heuvel and Hulshoff Pol,
2010; Liu F. et al., 2013). Based on rs-fMRI, the study of functional connectivity network (FCN)
has become a prevalent way to understand brain working mechanism and provide promising
biomarkers for diagnosing neural or mental disorders (Bullmore and Sporns, 2009; Fornito et al.,
2015; Liu et al., 2017), such as autism spectrum disorder (ASD) (Weng et al., 2010;Wee et al., 2016),
Alzheimer’s disease (AD) (Wang et al., 2006; Sanz-Arigita et al., 2010), mild cognitive impairment
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(MCI) (Rombouts et al., 2005; Qiao et al., 2016), major depressive
disorder (Greicius et al., 2007; Cullen et al., 2014), schizophrenia
(Jafri et al., 2008), and social anxiety disorder (Liu et al.,
2015).

To date, researchers have developed many FCN estimation
methods (Smith et al., 2011) from the simplest Pearson’s
correlation (PC) to the most complex dynamic causal modeling.
In this paper, we mainly focus on the correlation-based methods
due to their relative simplicity and reliability (Smith et al., 2013).
Further, we suppose each node of the FCN corresponds to a
brain region or a spatial region of interest (ROI) that has been
well-defined according to a certain brain atlas, and each “edge” of
the FCN corresponds to the relationship between BOLD signals
that are extracted from the associated ROIs.

In the conventional correlation-based FCN models, PC is the
most popular one for calculating the relationship between ROIs
(Smith et al., 2013), but it only captures full correlation without
removing the confounding effect from other ROIs. To ease this
issue, partial correlations have been employed in calculating the
relationship between ROIs for FCN construction (Marrelec et al.,
2006). However, the estimation of partial correlation involves
the calculation of an inverse covariance matrix, usually resulting
in an ill-posed problem. Therefore, many studies adopted a
regularizer in the model for more reliable partial correlation
estimation (Friedman et al., 2008; Huang et al., 2009; Varoquaux
et al., 2010). In fact, the regularizer also plays a role in encoding
priors for FCN construction. For example, l1-norm regularizer is
commonly used for encoding sparsity prior of FCN (Lee et al.,
2011), and also trace norm regularizer is used for low-rank
prior (Liu G. et al., 2013; Qiao et al., 2016). In summary, most
of the correlation-based FCN models can be formulated by
a matrix-regularized learning framework, where different data
fitting terms and regularized terms are combined for estimating
FCNs. Please see Table 1 in section Related Methods for more
details.

Compared with the aforementioned FCN estimation methods
based on low-order correlations, a novel concept of high-order
correlation or high-order FCN (HoFCN) has been recently
proposed (Chen et al., 2016; Zhang et al., 2016) for measuring

TABLE 1 | Correlation-based FCN estimation methods under a matrix-regularized

learning framework, where ‖·‖F , ‖·‖1, ‖·‖* , and ‖·‖q,1 denote F-norm, l1-norm,

trace norm and lq,1-norm of a matrix, respectively.

Method Data fitting term Regularized term

PC (Biswal et al., 1995)
∥

∥

∥
W − XTX

∥

∥

∥

2

F
N/A

PCsparsity (Li et al., 2017)
∥

∥

∥
W − XTX

∥

∥

∥

2

F
‖W‖1

PCscale−free (Li et al., 2017)
∥

∥

∥
W − XTX

∥

∥

∥

2

F

∑n
i,j=1 γij

∣

∣Wij

∣

∣

SR (Lee et al., 2011) ‖X − XW‖2
F

‖W‖1

LR (Qiao et al., 2016) ‖X − XW‖2
F

‖W‖*

SLR (Qiao et al., 2016) ‖X − XW‖2
F

λ1 ‖W‖1 + λ2 ‖W‖*

SGR (Wee et al., 2014) ‖X − XW‖2
F

λ1 ‖W‖1 + λ2 ‖W‖q,1

WSR (Yu et al., 2017) ‖X − XW‖2
F

∥

∥C
⊙

W
∥

∥

1

WSGR (Yu et al., 2017) ‖X − XW‖2
F

λ1
∥

∥C
⊙

W
∥

∥

1 + λ2 ‖W‖q,1

more complex interaction information in the brain. Different
from the low-order FCN that models the dependency between
ROIs, HoFCN aims to capture relationships among different
edges. To put it simply, we can consider the ecological chain
(network) as an analogy, where the species are regarded as
nodes and the ecological chains are the edges between the
nodes. In such a way, ecological chains represent the low-order
connection information of this network. However, there may
exist some relationships among different ecological chains, and
the flourishment or destruction of an ecological chain may affect
another ecological chain. Therefore, we expect the relationships
between edges can provide higher-order information inmodeling
FCN, compared with the low-order methods that only measure
the relationship between nodes.

To date, several studies have suggested that HoFCNs can
provide some useful and complementary information for
disorder identification (Macke et al., 2011; Plis et al., 2014;
Chen et al., 2016; Zhang et al., 2017). For instance, Plis
et al. investigated the nonlinear interactions among brain
regions in schizophrenia based on mutual information (Plis
et al., 2014). Chen et al. proposed to estimate HoFCNs via
correlation’s correlation, and use a clustering strategy to reduce
the dimensionality for efficient computation (Chen et al., 2016,
2017). Guo et al. constructed HoFCN based on minimum
spanning tree and applied it for AD classification (Guo et al.,
2017). Zhang et al. proposed the hybrid HoFCN for MCI
identification based on the linear combination of low- and high-
order FCNs (Zhang et al., 2017). Zhao et al. developed the
multi-level HoFCN mainly based on PC and applied it for ASD
diagnosis (Zhao et al., 2018).

Different from the heuristic methods for defining HoFCNs,
Zhou et al. recently proposed to estimate HoFCN based on a
rigorous probabilistic framework (Zhou et al., 2018), where a
set of low-order correlation matrices (or low-order FCNs) are
first calculated separately in sliding windows, and then these
correlation matrices are considered as samples for achieving
HoFCN by maximum likelihood estimation (MLE). Such a
framework not only gives a clear theoretical explanation of
HoFCN, but also provides a way of integrating dynamic
information encoded in a sequence of low-order FCNs. However,
the initially estimated low-order FCNs may be unreliable, since
the use of limited volumes/samples in each sliding window will
significantly reduce the statistical power. As such, the derived
HoFCN may contain noisy connections inheriting from the low-
order counterparts. To deal with this problem, we propose to
improve the HoFCNs based on a regularized learning framework.
To be specific, we adopt a two-step learning strategy. First, an
initial HoFCN is estimated using the MLE method as proposed
in Zhou et al. (2018). Then, an optimal neighborhood network of
the initially estimated HoFCN is learnt to meet the sparsity and
modularity regularizers, aiming, respectively to remove possible
noisy connections and encode more informative structure (i.e.,
modularity) of the network. To verify the effectiveness of our
proposed method, we apply the improved HoFCNs to identify
subjects with MCI and ASD from normal controls (NCs),
respectively. The experimental results show that our proposed
methods outperform the baseline methods, and the improved
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HoFCN with modularity prior consistently achieves the best
performance.

The rest of this paper is organized as follows. In section
Related Methods, we introduce the correlation-based low-order
and high-order FCNmodelingmethods. In section The Proposed
Method, we propose our HoFCN learning strategy, including the
motivation, model and algorithm. In section Experiments and
Results, we evaluate our proposed method with applications to
MCI and ASD identification. In section Discussions, we discuss
our findings and several aspects that affect the final performance.
Then, we conclude the paper in section Conclusion.

RELATED METHODS

In this section, we first summarize the existing correlation-based
FCN methods into a matrix-regularized learning framework in
Table 1. Then, we specifically describe several representative
FCN estimation methods, including PC (Biswal et al., 1995),
sparse representation (SR) (Lee et al., 2011) and the MLE-based
HoFCN estimation (Zhou et al., 2018).

Pearson’s Correlation
As the most popular and simplest method to estimate FCN, PC
with its mathematical expression is defined as follows:

Wij =
(xi − xi)

T(xj − xj)
√

(xi − xi)
T(xi − xi)

√

(xj − xj)
T(xj − xj)

(1)

where xi ∈ RV , i = 1, 2, · · · , P, is the extracted time series from
the ith ROI, V is the number of temporal image volumes, P is
the total number of ROIs, xi ∈ RV is the mean of xi, and Wi,j

is the correlation weight between the ith and jth ROIs. Without
loss of generality, we suppose xi is centralized by xi − xi and

normalized by

√

(xi − xi)
T(xi − xi) , and thus we can express PC

asWij = xi
Txj, or, its equivalent matrix form

W = XTX, (2)

where X = [x1, x2, · · · , xP] ∈ RV×P is the rs-fMRI data matrix.
In practice, we can treat Equation (2) as the solution of the

following optimization problem

minW

∥

∥

∥
W − XTX

∥

∥

∥

2

F
, (3)

where ‖·‖F represents F-norm of a matrix. In this way, we can
put PC into the matrix-regularized learning framework reported
in Table 1 for a unified understanding.

Sparse Representation
SR is one of commonly-used methods for calculating
(regularized) partial correlation. The mathematical model
of SR is given as follows:

minW
∑n

i=1

∥

∥

∥

∥

xi −
∑

j 6=i
Wijxj

∥

∥

∥

∥

2

+λ
∑

j 6=i

∣

∣Wij

∣

∣ . (4)

Similar to PC, it can be rewritten as the following matrix form,

minW ‖X − XW‖2F + λ ‖W‖1, s.t.Wii = 0, ∀i = 1, · · · , P, (5)

where ‖·‖F and ‖·‖1 denote F-norm and l1-norm of the matrix,
respectively. The constraint Wii = 0 plays a role in removing
xi from X to avoid trivial solution.

Based on the idea of sparsity, many extended SRmethods have
been developed for constructing FCNs, including sparse group
representation (Wee et al., 2014), weighted sparse representation
(Yu et al., 2017), weighted sparse group representation (Yu et al.,
2017), sparse low-rank representation (Qiao et al., 2016) and
sparse PC (Li et al., 2017), to name a few. Most of these methods
can be unified in the matrix-regularized leaning framework as
shown in Table 1.

MLE-Based HoFCN Estimation
As discussed in section Introduction, many HoFCN estimation
methods have been proposed in recent years. Here, we only
review the MLE-based method (Zhou et al., 2018) due to its clear
probabilistic explanation, and shortly we will use this method
(named HoFCNMLE) as a baseline for developing our approach.

The HoFCNMLE method includes two main steps. First, a set
of low-order FCNs are estimated in a series of sliding windows.
Then, the resulted low-order FCNs are used as samples for
estimating HoFCN by MLE with an assumption that the low-
order FCN samples follow a matrix-variant normal distribution
(Zhang and Schneider, 2010). As a result, the HoFCN, Ω , can be
achieved by the following iteration formula (generally, with the
identity matrix I as an initial estimation of Ω).

Ω =
1

KP

∑K

k=1
(Wk−M)Ω−1(Wk −M)T (6)

where Wk is the kth low-order FCN associated with the kth
sliding window, andM = 1

K

∑K
k=1Wk is the mean of all the low-

order FCNs. Please refer to Zhou et al. (2018) for details of the
theoretical formulation and probabilistic explanation.

THE PROPOSED METHOD

Motivation
As discussed earlier, despite its empirical effectiveness in
identifying neuropsychiatric disorders, the typically estimated
HoFCN may contain some noisy connections that inherit from
the low-order FCNs. In general, the weak connections in HoFCN
are removed according to a given threshold, prior to the statistical
analysis or classification. However, the thresholding scheme is
heuristic and only consider the sparsity aspect of FCN. Therefore,
in this section we develop amore flexible approach for improving
HoFCN based on the matrix-regularized learning framework,
not only aiming to reduce noisy connections of HoFCN, but
also introducemore informative structures (i.e., modularity) than
just sparsity into HoFCN. In particular, we will consider both
sparsity andmodularity as the priors of HoFCN, due to their well-
accepted neuroscientific basis (Sporns, 2011; Sporns and Betzel,
2016). To our best knowledge, this is the first work to employ the
modularity prior in HoFCN estimation.
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Model: Learning Neighborhood Networks
With Regularizers
For reaching the above goals, we adopt a simple two-step learning
strategy. First, we obtain an initial estimation of HoFCN (denoted
by Ω0) based on the MLE method as described in section
MLE-based HoFCN Estimation. Second, we learn an optimal
neighborhood network of the initially estimated HoFCNΩ0 with
sparsity and modularity priors, respectively, as regularizers of the
objective function.

More specifically, sparsity can usually be encoded by l1-norm
regularizer (Lee et al., 2011), and thus the optimal neighborhood
network of HoFCNwith sparsity prior (named S-HoFCN) can be
achieved as follows:

min
Ω
‖Ω −Ω0‖

2
F + µ ‖Ω‖1, (7)

where Ω0 is the initially estimated HoFCN byMLEmethod, Ω is
the improved HoFCN that needs to be sparse and simultaneously
keep as the spatial neighbor of Ω0, and µ is the regularized
parameter for controlling the balance between the sparsity of Ω

and its distance from Ω0.
Furthermore, modularity means that some group structures

exist in the network, where the nodes within a group are
densely connected, while the nodes between groups are sparsely
connected (Sporns and Betzel, 2016). Notably, it has been
proved that the modularity of a network can be described by a
combination of trace (nuclear) norm and l1-norm under mild
conditions (Liu G. et al., 2013; Qiao et al., 2016). Therefore, we
optimize the neighborhood network of HoFCN with modularity
prior (namedM-HoFCN), as follows,

minΩ‖Ω −Ω0‖
2
F + µ1 ‖Ω‖1 + µ2 ‖Ω‖∗ , (8)

where µ1 and µ2 are regularized parameters used to control the
balance between the three terms in the optimization problem.
Specially, when µ2 = 0, Equation (8) reduces to S-HoFCN as
given in Equation (7), meaning that the sparsity is a necessary but
not sufficient condition for modularity. Note that the proposed
models in both Equations (7, 8) are also fit for matrix-regularized
learning framework described in Table 1.

Algorithm
Here, we only give the optimization algorithm for solving M-
HoFCN, since S-HoFCN is a special case of M-HoFCN. Note
that the objective function in Equation (8) is convex, but the l1-
norm and trace norm are both indifferentiable. To address this
kind of optimization problem, a number of algorithms have been
developed in the machine learning community (Tomioka and
Sugiyama, 2009; Richard et al., 2012; Zhuang et al., 2012; Oymak
et al., 2014). We choose the proximal method (Combettes and
Pesquet, 2009; Bertsekas, 2012) to solve Equation (8), due to its
simplicity and efficiency.

In particular, we first consider the data fitting term f (Ω) =

‖Ω −Ω0‖
2
F in Equation (8). Since it is differentiable, we can

calculate its gradient with respect toΩ , and get∇f (Ω) = 2(Ω−
Ω0). As a result, we have the gradient descent step as follows,

Ωk = Ωk−1 − αk · ∇f
(

Ωk−1

)

, (9)

where αk is the step size.
Then, according to the definition of proximal operator

(Combettes and Pesquet, 2009), the proximal operator of l1-norm
(i.e., µ1 ‖Ω‖1) is given as follows,

proxµ1‖·‖1
(Ω) = [sgn

(

Ωij

)

×max
(

abs
(

Ωij

)

− µ1

)

, 0]
p×p

,

(10)

where sgn (·) and abs (·) are sign and absolute functions,
respectively. Equation (10) in fact imposes a soft-threshold
operation on the entries of Ω . Similarly, the proximal operator
of trace norm µ2 ‖Ω‖∗ is equivalent to a shrinkage operation on
the singular value of Ω (Ji and Ye, 2009), as follows.

proxµ2‖·‖∗
(Ω) = Udiag (max {σ1 − µ2, 0} ,

· · · , max {σn − µ2, 0})V
T , (11)

where Udiag(σ1, · · · , σn)V
T is the singular value decomposition

of matrix Ω .
Finally, to circumvent the case that the current Ωk moves

out of the “feasible region” regularized by l1-norm ‖Ω‖1 and
trace norm ‖Ω‖∗ , we use the proximal operations proxµ1‖·‖1

and
proxµ2‖·‖∗

on Ωk, respectively, as given in Equations (10, 11).
Hence, we get a simple algorithm to solve Equation (8) as shown
in Table 2.

EXPERIMENTS AND RESULTS

In this section, we first evaluate the proposed method by
identifying subjects with MCI from NCs based on ADNI
dataset (http://adni.loni.ucla.edu), and then conduct an ASD
identification task based on ABIDE database (http://fcon_
1000.projects.nitrc.org/indi/abide/) for further illustrating the
generalization of the proposed method.

Data Acquisition and Preprocessing
For MCI identification, 137 subjects (including 68 MCIs and
69 NCs) were selected in our study. The subjects were age-
matched and scanned by 3.0T Philips scanners. SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/) toolbox was used to process the
acquired rs-fMRI data. For each subject, the scanning time
was 7min, corresponding to 140 volumes. Subjects with more
than 2.5min of large framewise displacement (FD > 0.5) were
excluded before data inclusion. To keep signal stabilization,
the first 3 volumes of each subject were also removed, and
the remaining volumes were corrected for subsequent analysis.

TABLE 2 | Algorithm for solving M-HoFCN in Equation (8).

Initialize Ω with Ω0

Iterate:

1. Ω ← Ω − α · 2(Ω −Ω0)

2. Ω ← proxµ1‖·‖1
(Ω) = [sgn

(

Ωij

)

×max

(

abs
(

Ωij

)

− µ1
)

, 0]
p×p

3. Ω ← proxµ2‖·‖*
(Ω) = Udiag(max

{

σ1 − µ2, 0
}

, · · · , max

{

σn − µ2, 0
}

)VT
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During the scan, a rigid-body transformation was applied to
correct head motion, and the subjects with head motion larger
than 2mm or 2◦ were excluded. The rs-fMRI images were
registered to the Montreal Neurological Institute (MNI) space
and spatially smoothed by a Gaussian kernel with full width
at half maximum of 6 × 6 × 6 mm3. To further reduce the
influences of nuisance signals, regression of ventricle and white
matter signals as well as Friston 24-parameter model (Friston
et al., 1996) were also performed. Using Automated Anatomical
Labeling (AAL) template (Tzourio-Mazoyer et al., 2002), the pre-
processed BOLD signals were divided into 116 ROIs, among
which 90 ROIs are in the cerebra and the rest 26 are in the
cerebella. For each ROI, prior to FCN estimation, its mean rs-
fMRI time series was band-pass filtered from 0.015 to 0.15Hz. At
last, all the mean time series of the whole brain were put into a
data matrix X ∈ R137×116.

For ASD identification, we use the same preprocessed dataset
as in Wee et al. (2016). Specifically, 92 subjects including 45 ASD
patients and 47 typically developing NCs (with ages between 7
and 15 years old) from this dataset are selected. All rs-fMRI
images were acquired using a standard echo-planar imaging
sequence on a clinical routine 3T Siemens Allegra scanner.
During 6min rs-fMRI scanning procedure, the subjects were
required to relax with their eyes focusing on a white fixation
cross in the middle of the black background screen projected
on a screen. The imaging parameters include the flip angle
as 90◦, 33 slices, TR/TE as 2000/15ms with 180 volumes,
and 4.0mm voxel thickness. The fMRI data were preprocessed
by SPM8. Specifically, the first 10 rs-fMRI volumes of each
subject were discarded. The remaining volumes were calibrated
as follows: (1) normalization to MNI space with resolution
3 × 3 × 3 mm3; (2) regression of nuisance signals (ventricle,
white matter, global signals, and head-motion) with Friston
24-parameter model; (3) band-pass filtering (0.01–0.08Hz); (4)
signal de-trending. After that, the BOLD time series signals
were partitioned into 116 ROIs, according to the AAL atlas.

At last, we put these time series into a data matrix X ∈

R170×116.

FCN Construction
With the preprocessed rs-fMRI data, we calculate the improved
HoFCNs using the proposed S-HoFCN andM-HoFCNmethods,
respectively.Moreover, for comparison, we construct FCNs based
on the baseline methods including PC, SR and HoFCNMLE.

In Figure 1, we show the adjacency matrices of a certain FCN
constructed by five different methods for MCI identification.
The regularized parametric values used in SR, S-HoFCN and
M-HoFCN are λ = 24, µ = 2−3 and µ1 = 24, µ2 =

2−3, respectively. For the high-order methods, the width of
sliding windows is fixed to N = 70, and step size s = 1.
As seen from Figure 1, the networks based on PC and
HoFCNMLE are dense, meaning that both low-order and high-
order correlations without sparsity constraints may cause some
“noisy” connections. In contrast, the networks based on SR,
S-HoFCN, and M-HoFCN are sparse due to the introduction
of l1-norm regularizer. Further, we note that M-HoFCN shows
clearermodular structures than S-HoFCN, since the combination
of l1-norm and trace norm regularizers has been proved to
result in modularity (Qiao et al., 2016). Finally, it is observed
that the high-order FCNs shown in Figures 1C–E tend to have
more fine-grained modularity than the low-order FCNs shown
in Figures 1A,B, which is consistent with the conclusion that the
HoFCNs may be able to capture more subtle network structures
as discussed in Zhang et al. (2016).

Feature Selection and Classification
In our experiments, we adopt the edge weights of FCN or
HoFCN as features for MCI/ASD identifications. Although the
edge weights include the full information of the networks, it
typically causes the curse of dimensionality, since the number of
feature dimension, i.e., 116× (116− 1)/2 = 6670, is far greater
than the sample size (i.e., the number of subjects). To address

FIGURE 1 | The FBN adjacency matrices constructed by five different methods. (A) PC, (B) SR, (C) HoFCNMLE, (D) S-HoFCN, and (E) M-HoFCN.

Frontiers in Neuroscience | www.frontiersin.org 5 December 2018 | Volume 12 | Article 959

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhou et al. Improving Sparsity and Modularity of High-Order FCNs

this problem, we first employ the two-sample t-test (p = 0.05) to
select features before MCI/ASD classifications.

We use the linear support vector machine (SVM) (Chang and
Lin, 2011) with default C = 1 for conducting the classification
task. A leave-one-out cross validation (LOOCV) is adopted in
our experiments to estimate the classification performance of
different methods. It works in a way that in each run only one
of T samples (subjects) is adopted for testing while the rest T − 1
samples are used for training a classifier. Therefore, we can obtain
the final performance by averaging results of all the runs.

In general, one or more hyperparameters are involved in
the FCN estimation methods. Specifically, for the regularization
parameters (i.e., λ in SR, µ in S-HoFCN and µ1, µ2 in M-
HoFCN), we conduct a line or grid search in the range of
(2−5, 2−4, · · · , 20, · · · , 24, 25). Note that no such parameters are
involved in PC and HoFCNMLE. For a fair comparation, we
introduce a thresholding parameter into PC and HoFCNMLE

to sparsify the initially estimated FCNs by removing the
weakly connected edges. To be consistent, we employ 11
threshold values that correspond to different levels of sparsity

(1%, 10%, · · · , 90%, 100%) for PC and HoFCNMLE. For example,
10% means that the threshold value is set to remove 90% edges
from the FCN, while 100% means all edges are preserved.

To obtain the optimal parameters for each method, we use
an inner LOOCV procedure on the training data. Given a
parametric value, in the current T − 1 training samples for the
classification task, we use T − 2 samples to select features (t-test
with p = 0.05) and train a classifier (SVM with C = 1), while
the rest one to validate the performance of the trained classifier.
Once the best validation performance is achieved by averaging
the accuracies of all the inner LOOCV runs, we can determine the
optimal value of the parameter for the current training samples. It
is worth noting that there are sliding window parameters used in
estimating the initial HoFCNs. We will have a detailed discussion
about this problem in Section Sensitivity to Network Modeling
Parameters.

In Figure 2, we display the pipeline of MCI identification used
in our experiments. Based on the preprocessed fMRI data, we
first estimate the initial HoFCNs based on the MLE method,
and then improve the initially estimated HoFCNs by introducing

FIGURE 2 | The pipeline of MCI/ASD identifications used in this study.
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sparsity and modularity priors, respectively. Finally, we apply the
improved HoFCNs to identify patients suffering from MCI or
ASD via the LOOCV scheme.

To evaluate the different FCN estimation methods, we
adopt accuracy (ACC), sensitivity (SEN) and specificity (SPE)
(Sokolova et al., 2006) as performance metrics. Their definitions
are given in Table 3, where TP, TN, FP, and FN indicate
true positive, true negative, false positive and false negative,
respectively. Of note, in this work, we treat MCI/ASD patients
as the positive class while the NCs as the negative.

Classification Results
In Table 4, we report the classification results of five different
methods for MCI classification task. For the three HoFCN
methods, we report the best result based on different sizes of
sliding windows (N = 50, s = 1 for HoFCNMLE; N = 70,
s = 2 for S-HoFCN; and N = 70, s = 6 for M-HoFCN).
As shown in Table 4, with respect to ACC and SPE, the
proposed methods outperform the baseline methods, and they
are consistently better than HoFCNMLE. Especially for M-
HoFCN, it achieves the best performance. Therefore, we argue
that the modularity prior is of vital importance in removing
the noisy connections and improving the reliability of HoFCNs.
However, we note that, in terms of SEN, the proposed methods
do not work well. In the next section, we will further investigate
this phenomenon.

In Table 5, we simply report the best experimental results of
ASD identification. For three HoFCN methods, s is fixed with 1,
whileN = 90, 110, 70 forHoFCNMLE, S-HoFCN, andM-HoFCN,
respectively. In terms of ACC, the proposed methods perform
better than low-order FCNs, and better than the results reported
in Wee et al. (2016). Similar to the results on MCI dataset, the
M-HoFCN method also achieves the best performance, meaning
that the modularity prior plays an important role in FCN
modeling.

TABLE 3 | Definitions of the performance metrics involved in this paper.

Performance metric Abbreviation Definition

accuracy ACC TP+TN
TP+FP+TN+FN

sensitivity SEN TP
TP+FN

specificity SPE TN
TN+FP

TABLE 4 | The classification results based on five different methods for MCI

identification, with N = 50, s = 1 for HoFCNMLE, N = 70, s = 2 for S-HoFCN, and

N = 70, s = 6 for M-HoFCN.

Method ACC SEN SPE

PC 0.7956 0.8824 0.7101

SR 0.7810 0.8088 0.7536

HoFCNMLE 0.8248 0.8824 0.7681

S-HoFCN 0.8540 0.8676 0.8406

M-HoFCN 0.8613 0.8382 0.8841

DISCUSSIONS

Sensitivity to Network Modeling
Parameters
In this study, the involved parameters can be divided into
two groups, i.e., sliding window parameters of HoFCNs and
the regularization parameters (or threshold values) in the
network estimationmodels. As discussed earlier, we have selected
the optimal regularized parameter via inner LOOCV. In the
following, we will discuss the sensitivity to the parameters of
sliding windows (i.e., width N and step size s) of three HoFCN
methods (HoFCNMLE, S-HoFCN and M-HoFCN). To this end,
we conduct experiments for MCI/ASD identifications under
three cases:

Case 1: Varied window widths N = 50, 70, 90, 110 and fixed
step size s = 1 for MCI identification. Figure 3 shows the
classification results of three HoFCNmethods under this case.
(Of note, in both Figures 3–5, we simply use MLE, S and M
to represent the corresponding HoFCNMLE, S-HoFCN and
M-HoFCN methods, respectively.) It can be observed that
our proposed methods perform better than HoFCNMLE and
have the best performance at N = 70. For ACC, M-HoFCN
has 100% possibilities to outperform HoFCNMLE, and 75%
possibilities to outperform S-HoFCN. For SEN and SPE, M-
HoFCN has 75% possibilities to work better than HoFCNMLE.
That is, M-HoFCN is the best method for MCI classification.
Additionally, we note that the bigger value of N tends to result
in worse performance, which is consistent with the finding of
choosing window sizes in Hindriks et al. (2016).

Case 2: Fixed window width N = 70 and varied step sizes s = 1,
2, 4, 6, 8 for MCI identification. We choose N = 70 since, as
shown in Figure 3, the HoFCN methods tend to have the best
performance at 70. In this way, we show classification results
based on three HoFCN methods in Figure 4. By comparison,
for ACC, the proposed methods have 100% possibilities to
outperform HoFCNMLE, and M-HoFCN has 80% possibilities
to outperform S-HoFCN; for SEN and SPE, S-HoFCN and M-
HoFCN both have 80% possibilities to perform better than
HoFCNMLE. As such, our proposed methods at least have
80% possibilities that perform better than HoFCNMLE, and
M-HoFCN has the best performance at N =7 0, s = 6, while
S-HoFCN at N = 70, s = 2. By using the fixed window

TABLE 5 | Comparison of the best classification results based on six different

methods for ASD identification. Here, we empirically fix s = 1, and N = 90, 110,

70 for HoFCNMLE, S-HoFCN and M-HoFCN, respectively.

Method ACC SEN SPE

PC 0.6304 0.6222 0.6383

SR 0.5543 0.6000 0.5106

Wee et al., 2016 0.7070 0.8140 0.6120

HoFCNMLE 0.7391 0.8000 0.6809

S-HoFCN 0.7391 0.7778 0.7021

M-HoFCN 0.7500 0.8000 0.7021
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FIGURE 3 | Comparison of classification results based on three HoFCN methods for MCI identification, with varied window widths N = 50, 70, 90, 110 and fixed step

size s = 1. The proposed methods (especially M-HoFCN) are consistently better than HoFCNMLE, and they tend to have the best classification performance at N = 70.

FIGURE 4 | Comparison of classification results based on three HoFCN methods for MCI identification, with different step size s = 1, 2, 4, 6, 8 and fixed window

width N = 70. Our proposed methods have 80% possibilities to perform better than HoFCNMLE.

FIGURE 5 | Comparison of classification results based on three HoFCN methods for ASD identification, with varied N = 50, 70, 90, 110, 130 and fixed s = 1. Note

that M-HoFCN achieves the best performance in average.

width N = 70, we find that the performances of three HoFCN
methods with varied step sizes are relatively stable.

Case 3: Varied window widths N = 50, 70, 90, 110, 130 and
fixed s = 1 for ASD identification. As shown in Figure 5, S-
HoFCN has 80% possibilities to work better than HoFCNMLE

for ACC and SPE, and 60% for SEN; M-HoFCN has 100%
possibilities to outperform HoFCNMLE for SPE, and 60% for
ACC and SEN. For different methods, HoFCNMLE gets the
best performance at N = 90, while S-HoFCN at N = 110 and

M-HoFCN at N = 70. Compared with the performance of
three HoFCN methods, we found that M-HoFCN averagely
achieves the best performance and it remains more stable than
the other two methods. It is consistent with the finding inMCI
identification.

Parcellation of the Brain
We adopt AAL atlas with 116 ROIs as network nodes in this work.
To date, there exists different ROI definitions in different brain
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anatomical/functional templates, such as AAL, Harvard-Oxford
(http://www.fmrib.ox.ac.uk/fsl/), Eickhoff-Zilles (Eickhoff et al.,
2005) and Automatic Non-linear Imaging Matching and
Anatomical Labeling (ANIMAL) (Collins et al., 1995; Wang
et al., 2009), etc. As reported in Wang et al. (2009), AAL
and ANIMAL templates can lead to significant differences in
network topological properties. Craddock et al. also revealed
that ROI size had great impact on the network performance
analysis, and 200 ROIs can offer better interpretability (Craddock
et al., 2012). Therefore, we further conduct experiments for
constructing FCNs with 200 ROIs from (Craddock et al.,
2012), and take ASD classification as an example for evaluating
the influence of different parcellation schemes on the final
accuracy. Experimental results show that the proposed M-
HoFCN still achieves the best ACC (0.6923), compared
with PC (0.6248), SR (0.5167), HoFCNMLE (0.6811), and S-
HoFCN (0.6730), which further illustrates the importance of
using modularity prior in FCN estimation. Note, however,
that the performance of most methods reduces greatly with
200 ROIs. The possible reason is that 200 ROIs, resulting
in 200× (200− 1)/2=19900 edges, cause the challenge for
feature selection or the “curse of dimensionality,” since limited
training samples are involved. In the future, we plan to
further investigate the influence of differently selected templates
on the network properties and the subsequent classification
performance.

Head Motion Artifacts
As we know, the FCN estimation based on rs-fMRI data is
sensitive to the head motion (Van Dijk et al., 2012; Power et al.,
2014). To eliminate the influence of head motion artifacts, a
commonly used method is data scrubbing that removes some
volumes based on FD or DVARS (Power et al., 2012). However,
in this study, we did not perform scrubbing operation to exclude
volumes since dynamic information is necessarily encoded by
the sliding window scheme for estimating initial low-order
FCNs. The removal of volumes would disrupt the autocorrelation
structure of data, which is problematic related to temporal
filtering and dynamic information encoding (Janine et al., 2017).
In fact, several related studies (Chen et al., 2016, 2017) also
did not suggest scrubbing operation due to the same reason.
Additionally, the data scrubbing often removes relatively high
amount of data, thus reducing the statistical power, and, in
practice, how to determine a suitable threshold of FD is still an
open problem.

To further study the impact of head motion artifacts
on the classification performance, we conduct the network
modeling methods without regression of Friston 24-parameters.
With fixed parameters such as N = 70 and s = 1, the
experimental ACCs for ASD identification are PC (0.6750),
SR (0.6104), HoFCNMLE (0.6511), S-HoFCN (0.6430), and M-
HoFCN (0.6458), respectively. Compared with the results in
Table 5, we note that most of the methods tend to decrease ACC,
meaning that head motion artifacts have a significant influence
on the classification performance. In other words, regressing out
the headmotion artifacts can contribute to achieve better (at least
more discriminative) FCNs.

Top Discriminative Features
As previously mentioned in section Feature Selection and
Classification, we adopt the edge weights of estimated FCN as
features for classification. Here, we use two-sample t-test to re-
select the features for MCI and ASD identification problems,
respectively, based on the proposed M-HoFCN method, since it
achieves the best performance. In particular, after constructing
FCNs by M-HoFCN model (N = 70, s= 6 for MCI; and N = 70,
s = 1 for ASD), we apply t-test to select discriminative features
in order of their p-values (< 0.001). In this way, we select 72
and 67 discriminative features for MCI and ASD identification
tasks, respectively, and visualize the features in Figure 6. Of
note, the thickness of each arc represents the discriminative
power that is inversely proportional to the corresponding p-
value.

From Figure 6A, we found that the top discriminative
features (i.e., functional connections) and their corresponding
brain regions include right inferior frontal gyrus, bilateral
hippocampus, bilateral parahippocampal gyrus, right pallidum,
right caudate, left middle temporal gyrus, left cerebellum 6, etc.
The findings are partially consistent with previous studies (Wolf
et al., 2003; Albert et al., 2011; Solodkin et al., 2013). In particular,
the right inferior frontal gyrus (Salvatore et al., 2015), bilateral
hippocampus (Chen et al., 2016), bilateral parahippocampal
gyrus (Echávarri et al., 2011), right pallidum (Supekar et al., 2008;
Albert et al., 2011), right caudate (Albert et al., 2011), left middle
temporal gyrus (Kosicek and Hecimovic, 2013; Chen et al., 2016),
and left cerebellum 6 (Suk et al., 2015) are all reported as potential
biomarkers for MCI or AD identification. However, currently it
is an open problem for explaining these FCN-based biomarkers.
In the future, we plan to provide further experimental evidences
toward the biological explanation of those involved functional
connectivity or brain regions.

In terms of the selected features as shown in Figure 6B,
brain regions that may contribute to ASD identification in
this work include the left precentral gyrus, right middle
frontal gyrus, right hippocampus, bilateral parahippocampal
gyrus, right amygdala, bilateral putamen, left caudate, bilateral
pallidum, and bilateral middle temporal, many of which are
widely reported in the previous studies associated with ASD
identification (Sparks et al., 2002; Haznedar et al., 2006; Rojas
et al., 2006; Toal et al., 2009; Ecker et al., 2010; Qiu et al.,
2010).

Limitations
In this work, we only use PC as a cornerstone in construction
of HoFCN due to its simplicity and popularity. However, as
we described above, PC can only capture the full correlation,
and thus partial correlation-based methods such as SR may
be considered in practice. Besides, many researchers have
devoted their efforts to FCN estimation methods based on
group analysis. For example, Liu et al. proposed a hierarchical
Markov random field model to capture both group and subject
FCNs simultaneously, which can take within-subject coherence
and between-subject consistency of the network label maps
into account (Liu et al., 2014); Ghanbari et al. designed a
multi-layer graph clustering algorithm to extract hub-networks
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FIGURE 6 | The most discriminative features (network connections) involved in the classification tasks by using t-test with p < 0.001. Note that the thickness of the

arcs is inversely proportional to the corresponding p-value for indicating the discriminative power of the features. (A) MCI and (B) ASD.

by non-negative matrix factorization and applied the hubs to
characterize population commonalities and subject variations
between ASD and typically developing children (Ghanbari et al.,
2017); Kam et al. proposed a multiple FCN model using
hierarchical clustering and applied it for ASD diagnosis (Kam
et al., 2017). These methods provide a different understanding
toward brain structure and group/subject analysis, which we can
consider in our future studies.

CONCLUSION

In this paper, we develop an effective way of improving
HoFCN estimation, by learning a neighborhood networks of
the initial HoFCN with sparsity and modularity priors as
regularizers, respectively. We apply our proposed methods to
identify subjects with MCI and ASD from their corresponding
NCs. In both MCI and ASD identifications, our proposed
HoFCN methods consistently outperform the baseline methods.
Especially, the M-HoFCN tends to achieve the best performance,

which illustrates the importance of the modularity prior in FCN
estimation.
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