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Energy-based and force-based approaches are two basic ways to establish an adhesion

model. For the adhesion of tape-like thin films, the Kendall equation considers the overall

energy balance but inherently contains little information of the peel zone geometry and

stress distribution. The peel zone model provides an empirical approximate of the peel

front from the approach of a force description and coincides well with experimental results

for a wide range of peel angles. However, the peel-zone model itself has not been unified

with the Kendall equation yet. We propose a two-layer spring contact tape peeling model

which considers the balance between the stretching force of the backing layer and the

adhesive force transferred through the adhesive layer. The model provides an analytic

shape description of the curved bifurcation region of the peel front. An approximate

analytic solution of the peel force reduces to the Kendall equation by considering a

Kendall-like energy conservation critical criterion, which further supports the proposed

model. Further analysis of the relationship between the length of the peel zone and the

adhesive force provides insight into the validity of the peel zone model. The proposed

model provides a new insight in the tape peeling process and mathematically builds a

potential bridge between the Kendall model and the peel-zone model.

Keywords: spring contact model, tape peeling, adhesive separation, Kendall equation, peel-zone model

INTRODUCTION

Adhesion describes the common phenomenon that two well-contacted solids have the tendency
to stick together due to van der Waals force or other intermolecular interactions. Adhesion is
ubiquitous not only in daily life but also has many applications in industry (Sanchis et al., 2008;
Yan et al., 2012; Liu et al., 2018), in the medical field (Falde et al., 2016; Labernadie et al., 2017)
and even in biological systems (Arzt et al., 2003). One of the most famous examples is the gecko’s
unique ability to climb vertical walls and walk upside down on ceilings with the help of the strong
adhesion force generated between the hairy pads at the end of gecko feet and the opposing surfaces
(Autumn et al., 2000), which still draws interest in the biomimetic research community.
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The geometry of contact bodies plays an important role in
the macroscopic adhesion behaviors. For example, two solids
surfaces in everyday-life generally show weak macroscopic
adhesion. One of the most important reasons is that the
roughness of surfaces hinders the intimate contact of the two
bodies (Persson et al., 2005; Fan et al., 2011; Ciavarella, 2016).
A spherical body and a thin film are two kinds of widely-used
basic geometric models to describe the bulk adhesion and tape
peeling behaviors, respectively. The classical approach to describe
the adhesion force is to apply an energy balance (Popov et al.,
2017; Popova and Popov, 2018), which assumes that the total
energy of the adhesive system remains constant during adhesive
contact process

Ue + Up + γ = constant (1)

where Ue is the elastic energy stored in the system, Up is the
potential energy associated with the external force, and γ is
the adhesion energy or the work to create new surface during
peeling. Based on this principle, the Johnson-Kendall-Robert
(JKR) model (Johnson et al., 1971; Kendall, 1971) is proposed
to describe the adhesion interaction between elastic spherical
bodies, and the Kendall equation (Kendall, 1975) is widely used
to explain the relationship between the peel force and the peel
angle of adhesive tape.

The energy balance approach is simple and effective to
describe the adhesion force, but it inherently lacks detailed
information about the shape of adhesive zone and the generation
of the adhesion force. While the approach of force balance
considers the adhesive force at the peel zone directly and provides
more information about adhesion process. From the view of the
spring contactmodel and based on theMethod of Dimensionality
Reduction (Popov and Heß, 2015; Lyashenko et al., 2016), the
same results of spherical bodies contact adhesion can be obtained
as those predicted by the JKR model. In the case of the tape
peeling model, one important attempt based on the force balance
approach is the peel zone (denoted as PZ) model (Tian et al.,
2006; Pesika et al., 2007).

The PZ model assumes that the adhesive force is only
generated at the peel zone during the tape detachment. The
peeling process is also a common and important phenomenon in
bulk adhesion (Zeng et al., 2016), not only in tape peeling (Heepe
et al., 2017; Misseroni et al., 2018). Because of its simplicity
and the insight that it can provide for a particular system,
the PZ model has been widely applied and further developed
(Molinari and Ravichandran, 2008; Zhou et al., 2011). However,
the geometry of the peel zone in PZ model is an empirical
assumption, and the tape stretching effect is not considered. One
of the severest problems is the peel force predicted by the PZ
model goes to infinity when the peel angle approaches zero,
which is inconsistent with the Kendall equation and experimental
results.

The difficulty to describe the tape peeling behaviors from
the view of force balance is to precisely describe the geometry
of peeling tape. One of the prior attempts involved the

Abbreviations: PZ, Peel Zone; Eq, Equation; Ref, Reference.

incorporation of the spring contact model (Sato and Toda, 2004),
but the effect of the peel angle was not considered. In this
work, we proposed a spring contact tape model derived from
a similar two-layer spring model, but considers the effect of
the peel angle and the complex boundary conditions associated
with the system. One of the approximate analytic solutions is
shown to be consistent with Kendall equation by considering
an energy conservation critical criterion, which verifies the
reliability of the proposed spring contact model. The verification
of the assumptions of the PZ model based on the analysis
of the calculated geometry of the peel zone region builds a
potential bridge connecting the Kendall equation with the PZ
model. The proposed model is a complement for the peeling
model of thin adhesive film from the approach of a force
balance.

MODEL

Discussions of the Original Peel Zone
Models
The peel-zone models introduced in Tian et al. (2006) (denoted
as Case 1 in the following discussion) and Pesika et al. (2007)
(denoted asCase 2 in the following discussion) described the tape
peeling process successfully from the view of force description.
However, there are slight differences between the two models in
physical images.

Generally, the peel zone is defined as a limited zone that
exhibits an attractive force between the tape backing and the
substrate. In Case 1, the tape backing is hard enough that the
tape only shows bending deformation but without deformation
in the thickness direction. The direct van der Waals interaction
is considered between the tape backing and the substrate.
Combined with the classical Lennard-Jones potential, the peel
zone can be determined by the distance between the tape backing
and the substrate (e.g., between ε0 and 5ε0 in Figure 1A). Note
that the equilibrium distance for intermolecular interaction, ε0,
usually takes the value of∼0.3 nm. The peel zone in this case is in
nano-scale.

InCase 2, the tape is soft so that the van derWaals force causes
both the curvature of the backing and the deformation in the
thickness direction. Typically, this kind of tape can be modeled
by two independent layers, which include the backing layer for
stretching and bending, and the adhesive layer for adhering. The
stretching deformation of the adhesive layer is far greater than
the range of van der Waals interaction, and thus the shape of
the peel zone is mainly determined by the deformation of the
adhesive layer. The adhesive force is transferred through the
adhesive layer in the form of elastic force and the peel zone is
magnified by the deformation of the adhesive layer (shown in
Figure 1B). But essentially the adhesive force is generated by van
der Waals interaction between the substrate and the end of the
adhesive layer (shown in the insert in Figure 1B). In this case van
der Waals force determines the adhesion strength in the form of
interfacial energy.

If the energy dissipation within the tape is negligible and only
the elastic force of the adhesive layer is considered, the energy
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FIGURE 1 | Physical imagines of the peel zone description in Case 1 and Case 2. (A) Case 1: direct Van der Waals interaction between the tape and the substrate.

(B) Case 2:attractive force transferred through the adhesive layer.

conservation equation of the Kendall equation is still valid for
both the two cases.

Note that for Case 2, this adhesive layer can be either physical
entity or physical model. The former (e.g., commercial tape) type
of adhesive layer usually consists of a soft thin layer of adhesive,
the material of which is usually different from the backing layer.
Whereas, the latter (e.g., dry-adhesion tape) type of adhesive layer
is distinguished from the backing layer by the deformation. The
backing layer mainly deforms in the peel force direction, and the
adhesive layer deforms in the thickness direction. In this case the
adhesive layer and backing layer are artificially divided from the
same physical entity.

Spring Contact Tape Model
We established the spring contact tape model focusing on the
Case 2. This kind of adhesive tape generally consists of two layers,
which include the backing layer for stretching and adhesive layer
for adhering. Considering the small thickness of the backing
layer, the tape is considered infinitely flexible and the bending
modulus of elasticity is neglected. When the tape peeling velocity
is very small, the peeling process can be considered under a
quasi-static state and there is always a force balance based on
a Lagrangian description. The adhesion energy is also assumed
to be independent of the peeling velocity. Tape deformation is
assumed in the range of linear elasticity and the peel stress is
smaller than the ultimate strength of the tape. The tape should
be perfect without defect and peeled clearly from the substrate.

In this model, the adhesive layer is modeled by a series
of elastic springs which are bonded between the tape backing
and the substrate to transferred the adhesive force. Here the
elastic spring is to present the elastic deformation in thickness

direction. Considering that the displacement change induced by
the intermolecular interaction is much smaller than the elastic
deformation, the force-displacement relationship of the adhesive
layer is still considered to approximately satisfy the Hooke’s law.
Whereas, van der Waals interaction acts as the interfacial energy
to determine the adhesion strength, which in this model is the
maximum strength of the elastic spring before detaching from
the substrate.

On basis of these assumptions, the tape system can bemodeled
by two series of springs in two dimensions of the x-y plane as
shown in Figure 2. The tape backing layer is evenly divided into
N units of length dt. The units are represented by a set of end-
to-end linear springs (A) with a spring constant K/dt. Here,
K corresponds to the modulus of elasticity per unit length of
the tape backing, and it can be represented as K = Ebh (E is
the equivalent stretching modulus, b is the width of the tape
backing, and h is the thickness of the tape backing). Note that b
is assumed sufficiently large to consider the tape backing in plane
strain conditions. In this case the equivalent elastic modulus E =
Eb/1 − µ2 will be used to consider the Poisson effect (Eb is the
stretching modulus of the backing material and µ is the Poisson
ratio). The adhesive layer is represented by a set of side-by-side
linear springs (C) with a spring constant kdt, where k corresponds
to the modulus of elasticity per unit length of the adhesive layer
and can be represented as k = Eab/ξ (Ea is the stretching
modulus of the adhesive material, and ξ is the thickness of the
adhesive layer).

When peeling the tape slowly, both the backing layer and
adhesive layer stretch. The adhesive layer spring (C) stretches
with one end connecting with the fixed point on the substrate
(denoted as Qi) and the other end moving with flexible joint on
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FIGURE 2 | Schematic of the spring contact tape model.

the backing layer (denoted as Pi). In the coordinate system shown
in the Figure 2, the coordinates of Qi are described as (t, 0) and
the coordinates of Pi are described as (x (t) , y(t)).

As assumed above, the tape is peeled quasi-statically and the
force balance holds for each joint Pi at each moment. In order to
obtain the shape of the curve of the peeling tape, the force balance
at the joint Pi (1 ≤ i < N) (shown in the insert of Figure 2) is
considered as follows

K

dt

(
∣

∣

−→a1
∣

∣− dt
)

−→a1
∣

∣

−→a1
∣

∣

+
K

dt

(
∣

∣

−→a2
∣

∣− dt
)

−→a2
∣

∣

−→a2
∣

∣

+ kEcdt = 0 (2)

and it equals to

K
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(−→a1 +−→a2
)

− K

(
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∣

∣

−→a1
∣

∣

+
−→a2
∣

∣

−→a2
∣

∣

)

+ kEcdt = 0 (3)

where vectors −→a1 ,
−→a2 and Ec represent the springs connected with

joint Pi, respectively (shown in the insert of Figure 2). The initial
length of spring (A) is dt, whereas the initial length of spring (C)
ξ is neglected when considering the relatively large elongation.

Here, Ec = (t − x(t),−y(t)), −→a1 = (x(t + dt) − x(t), y(t +
dt) − y(t)) and −→a2 = (x(t − dt) − x(t), y(t − dt) − y(t)).
Considering N → ∞ and dt → 0, −→a1 = (dx (t) , dy (t)),
−→a2 = (−dx

(

t − dt
)

,−dy
(

t − dt
)

). If the function
of y and x is denoted as y = f (x), it follows that
∣

∣
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∣
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√
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∣
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)
2
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2
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(
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)

)
2
.

Considering the x-direction component of Equation (3)
[denoted as Eq. (3)], it follows that:

K

dt

(

x
(

t + dt
)

− x (t) + x(t − dt)− x(t)
)

−K





1
√

1+ f
′
(

x(t)
)2

−
1

√

1+ f
′
(

x
(
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))2





+kdt
(

t − x(t)
)

= 0. (4)

And the y-direction component is:

K

dt

(

y
(

t + dt
)

− y (t) + y(t − dt)− y(t)
)

−K





f
′ (

x(t)
)

√

1+ f
′
(

x(t)
)2

−
f
′ (

x
(

t − dt
))

√

1+ f
′
(

x
(

t − dt
))2





+kdt
(

−y(t)
)

= 0. (5)

Let ẋ = dx/dt andẏ = dy/dt. Denote that

p =
1

√

1+ f
′
(x)2

=
ẋ

√

ẋ2 + ẏ2
(6)

q =
f
′
(x)

√

1+ f
′
(x)2

=
ẏ

√

ẋ2 + ẏ2
(7)

Then Eqs. (4) and (5) can be written as

{

ẍ + λ2 (t − x) − ṗ = 0
ÿ + λ2

(

−y
)

− q̇ = 0
(8)

where λ =
√

k/K =
√

Ea/Ehξ is defined as adhesion factor with
dimension of 1/m. We also denote that ṗ = dp/dt andq̇ = dq/dt.

Such parametric differential equations determine the curve
of the shape of the peeling tape. The peel force F can be also
expressed based on the force balance equation at the separation
point P1 (shown in Figure 2) as:

∣

∣EF
∣

∣ =
K

dt

(∣

∣

−→a2
∣

∣− dt
)

t=0
= K

(

√

ẋ2 + ẏ2 − 1

)

t=0

(9)

The boundary conditions exist at both the left end and the
right end, which are geometric boundary conditions and force
boundary conditions, respectively. At the left end, the tape is
detached from the substrate with a peeling force EF at a peeling
angle θ . Therefore at the separation point (x(0), y(0)), the angle
between the spring (A) direction and the substrate reaches the
peeling angle θ , and the length of the spring (C) reaches
the critical value l0, which describes the ultimate length of the
adhesive layer at a certain peel angle. It follows that

{

f ′ (x) =
ẏ
ẋ = −tanθ (t → 0)

√

x2 + y2 = l0 (t → 0)
(10)

As a natural boundary condition, assume that there is no force at
the right end far away from the peeling point. Combined with Eq.
(9), it can be described as

{

ẋ2 + ẏ2 = 1 (t → ∞)

y = 0 (t → ∞)
(11)
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A special condition when the peel angle θ is zero can be calculated
easily. Stretching only occurs in the x direction so that y = 0 and
ẏ = 0. The differential equation Eq. (8-1) takes the form:

ẍ +λ2 (t − x) = 0. (12)

The solution is

x = C1e
−λt + C2e

λt + t. (13)

Considering the boundary conditions, it follows that C1 = l0 and
C2 = 0. Then the shape function of the peeling tape is calculated
as:

x = l0e
−λt + t. (14)

The peel force
∣

∣EF
∣

∣ = K(ẋ− 1)t=0 = Kλl0, or

F

b
= Eh

(

λl0
)

. (15)

Note that the peel force derived by the Kendall equation is

(

F

b

)2 1

2hE
+

(

F

b

)

(1− cosθ) − γ = 0. (16)

When θ is zero, the peel force per unit width predicted by the
Kendall equation is

F

b
= Eh

√

2γ

Eh
. (17)

Compared with Eq. (15), it can be obtained that

λl0 =
√

2γ /Eh, (18)

when the peel angle θ = 0. According to the Method of
Dimensionality Reduction, there is a similar separation criterion
for normal contact with adhesion

1lmax =

√

2πaγ

E
(19)

which is known as the rule of Heβ for the adhesive contact
(Popov and Heß, 2015). Here a is the contact radius in the one-
dimensional normal contact model. If we assume that the a can
be replaced with an introduced equivalent peeling parameter in
tape peeling that atape = 1/(πhλ2), Eq. (19) will take the same
form with Eq. (18).

However if the determined constant λl0 in Eq. (18) is accepted
for general situations that the peel angle θ is larger than zero,
the predicted peel forces against the peel angles will be smaller
than the predicted values of the Kendall equation. The reason is
that for normal adhesive contact between bulk bodies, all springs
separate from the substrate perpendicularly. However, for a thin

film adhesion (tape peeling process), the springs separate from
the substrate at a certain angle. In this case the equivalent peeling
parameter atape is constant but the separation criterion should be
dependent on the peeling angle θ .

Therefore, for a tape peeling process, the relationship of Eq.
(18) or Eq. (19) need to be modified to consider the angle
dependence. In the following section, an approximate analytical
solution and a Kendall-like energy approach are proposed to
determine the angle-depended separation criterion.

An Approximate Analytical Solution
An analytical solution to the above differential equations is not
trivial. An approximate analytical solution can be obtained if
the original length term of the tape backing is neglected when
describing the differential unit in the shape function. Then Eq.
(2) simplifies to

K

dt

(−→a1 +−→a2
)

+ kEcdt = 0 (20)

The differential equations take the following forms:

{

ẍ +λ2 (t − x) = 0
ÿ +λ2

(

−y
)

= 0,
(21)

which can be solved as

{

x = C1e
−λt + C2e

λt + t

y = C3e
−λt + C4e

λt .
(22)

Using the boundary condition (11-1), it follows that C2 = 0 and
C4 = 0, which simultaneously satisfy the boundary condition
(11-2). Moreover, Eqs. (22) also give us an explicit physical
meaning of the defined adhesion factor λ . That is, 1/λ describes
the characteristic decay length of the deformed zone. Physically,
a large elastic modulus (a large K) of the tape backing induce a
large 1/λ , which contributes to a large peel zone.

Using the boundary conditions (10-1) and (10-2), it follows
that

{
√

C1
2 + C3

2 = l0
λC3 = (1−λC1) tanθ

(23)

which can be solved as















C1 =
1−cosθ

(

cosθ+
√

l20λ
2−(sinθ)2

)

λ

C3 =
sinθ

(

cosθ+
√

l20λ
2−(sinθ)2

)

λ
.

(24)

Thus, the shape function of the peeling tape takes the form of

x =
C1

C3
y−

1

λ
lny+

1

λ
lnC3 (25)
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The peel force F still takes the form of Eq. (9) as
∣

∣EF
∣

∣ =

K
(

√

ẋ2 + ẏ2 − 1
)

t=0
= K|1−λC1|

cosθ − K. Considering K = Ebh,

it follows that

F

b
= Eh

(

cosθ − 1+

√

l20λ
2 − (sinθ)2

)

(26)

The following section describes how the parameter value l20λ
2 is

evaluated. Generally, there are two modes of the detachment
failure of the adhesive tape, which is determined by the location
of separation (Aubrey et al., 1969). One possible mode is
“cohesive separation,” which is characterized by failure within the
bulk of the adhesive layer and will induce damages in adhesive
layer such as the cavitation and fibrillation. In this case, the
critical length l0 is a certain value when neglecting the velocity
effect and it is determined by the ultimate strength of the adhesive
layer material. But more commonly the adhesive tape is peeled
by separating cleanly from the substrate with little residue, which
is referred to the “adhesive separation” mode. In this case the
critical length l0 is not determined by its own strength but by
the interfacial energy between the substrate and the adhesive.
It means that l0 is not constant but changes with the peeling
direction.

As we assumed that the tape is peeled without failure, it
is more meaningful to focus on the condition of “adhesive
separation.” However, it is difficult to describe the angle
dependent property of the critical length of the adhesive layer
from direct force description, since it will involve intermolecular
interaction. A Kendall-like approach is used to obtain an
approximate critical value. To avoid introducing the potential
energy item related with the peel force, we must focus on a
different peeling process from the Kendall equation.

We focus on the instant that the first spring of the adhesive
layer is detached from the substrate, we assume that the other
springs have no change yet (shown in Figure 3). In this case, the
tape backing only rotates a small angle dθ around the point O,
which induces that the movement of the peel force acting point,
AA′, is nearly perpendicular to the direction of the force (shown
in the insert of Figure 3). In this moment, the peel force F does
not produce work, and the energy input is all provided by the
elastic energy of the first detached spring. The tape backing is
considered to be little deformed until a small length dt of the
adhesive layer is detached from the substrate. Consider that this
process is an energy conservation process, it follows that

klo
2

2
dt = γ bdt + k.dt(1− cosθ) (27)

where kl20dt/2 is the maximum elastic energy released from the
detachment of the adhesive layer from the substrate, γ bdt is
the increase in the interfacial energy, and Kdt (1− cosθ) is the
approximate increase in elastic energy (Yu and Suo, 1998) stored
in the backing layer.

For the last term in the equation, a rough approximation is
given. Consider a spring with spring constant ks, the increased
elastic energy for increased elongation dx takes the form as dE =

1
2ks ·

(

x+ dx
)2

− 1
2ks · (x)

2 = ks · xdx. For the tape backing, we
have ks = K/x and roughly dx = dt (1− cosθ). The approximate
answer dE = K ·dt (1− cosθ) is obtained. It should be noted that
during the instant peeling process described above, the backing
layer of the tape is compressed, which is very difficult to occur
in real peeling experiments. This is because the tape is usually
very thin and flexible, which easily buckles under pressure force.
However, in this model the tape is modeled by springs and it
does have the ability to be compressed and deform as an elastic
material. Moreover, the above peeling process is instantaneous
and unstable. The tape shows the potential to be compressed, but
it is soon followed by stretching in a stable peeling process.

Considerλ=
√

k/K, the Eq. (27) is equivalent to

l20λ
2 =

2γ

Eh
+ 2 (1− cosθ) (28)

Note that when the peel angle θ = 0, the result λl0 =
√

2γ /Eh
coincides with the non-approximate solution in Eq. (17). If the
above relationship is still valid for a non-trivial peeling process,
combined with Eq. (26) it follows that

F

b
= Eh

(

cosθ − 1+

√

2γ

Eh
+ (1− cosθ)2

)

(29)

which exactly reproduces the solution of the Kendall equation
[the solution of Eq. (16)]. In other words, the Kendall equation
can also be interpreted by this proposed spring contact tape
model from the view of force balance, not only from the view
of energy balance. In addition, the proposed model is capable of
providing more information about peeling process like geometry
profile and stress distribution.

RESULTS AND DISCUSSION

Discussion About the Approximate
Analytical Solution
The numerical solution of the model is calculated and compared
to the approximate analytical solution of the model. The tape
parameter values needed are obtained from a typical peeling
process obtained from Reference (Pesika et al., 2007) [denoted
as Pesika et al. (2007)] and listed in Table 1. Note that the
stretching modulus E is absent in Pesika et al. (2007), and
therefore the Kendall equation is used when θ = 0◦ as (F/b)0◦ =
√

2dEγ to estimate the value. The value Ea/ξ is estimate by
γ = (Ea/2ξ)Rθ (1− cosθ) when θ = 90◦ based on the PZ
model.

The differential equations of the model [Eqs. (8-1) and (8-
2)] are solved by “shooting method” to obtain the numerical
solutions satisfying all the boundary conditions [Eqs. (10) and
(11)]. Instead of the value t reaching infinity, the maximum
t is set as 0.02 when conducting the numerical calculation.
The results show no difference compared with the condition
that the maximum t is set as 0.01, which means that here
t = 0.02 is large enough to satisfy “infinite.” To simplify the
calculation, the boundary condition Eq. (11-1) is replaced by

Frontiers in Mechanical Engineering | www.frontiersin.org 6 December 2018 | Volume 4 | Article 22

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Li et al. Spring Model of Tape Peeling

FIGURE 3 | Schematic of the instant that the first spring of the adhesive layer is detached from the substrate.

TABLE 1 | Parameters determined by the experiments [cited from Pesika et al.

(2007)] or derived from theoretical models.

γ

(N/m)

h

(mm)

(F/h)0◦

(N/m)

E

(Mpa)

(F/h)90◦

(N/m)

Ea/ξ (N/m3) λ (1/m)

270 0.1 1,500 41.67* 270 4.8××109* 1073.3*

Data marked with * is an estimated value from the Kendall equation or PZ model.

x = t (t → 0.02), for the calculated results still satisfy ẋ2 + ẏ2 =
1 (t → 0.02).

The critical values of l0 are obtained when the peel forces
against peel angles satisfy the Kendall equation. The relationships
of the values l20λ

2 and (1 − cosθ ) are shown in Figure 4. Note
that the relationship predicted by the approximate solution is a
linear correlation [Eq. (28)]. The approximate analytical results
coincide well with the numerical ones at small peel angles. There
are small differences at large peel angles, because the relative
small elongation cannot fully satisfy the model simplification
conditions. Generally, the approximate analytical result is in good
agreement with the full numerical solution.

The shape change of a peeling tape mainly occurs in the
peel zone, the shape of which can be approximately described
as a circular arc as shown in Figure 5A. In this work, the
fitting circle is determined by satisfying tangents to both the
peeling force at the separation point and the substrate. Both the
approximate and the full model predict the same trends of fitting
radii, which increases with the decrease of the peeling angle
(shown in Figure 5B). The difference of the radius predicted
by the approximate and full solution is under 15%, which
means that the two models show no significant differences for
predicting the shape of the peeling tape within the peel zone
region.

Neglecting the initial length of the differential unit has little
effect on the geometry property of the peeling tape. However, the
peel force predicted by the approximate solution based on Eq.
(18) takes the form

FIGURE 4 | The relationship between l20λ2 and (1− cosθ ). The data marked

with circle are predicted by the numerical solution, and the dashed line is

predicted by the approximate analytical solution.

∣

∣EF
∣

∣ = K

(

√

ẋ2 + ẏ2
)

=
K |1−λC1|

cosθ
(30)

which will show significant differences compared to the
numerical solution [Eq. (9)]. For consistency, the modified
parameters are introduced for compensating the initial length in
the approximate model:















C∗
1 =

1−cosθ

(

cosθ−1+
√

l20λ
2−(sinθ)2

)

λ

C∗
3 =

sinθ

(

cosθ−1+
√

l20λ
2−(sinθ)2

)

λ
.

(31)

The original parameters C1 and C3 are used to calculate the
approximate shape of the peeling tape. But when it comes to
the calculation of the force, the modified parameters C∗

1 and C∗
3
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FIGURE 5 | The prediction of the shape of tape at different peeling angle. (A)

The shapes of the curve of the peeling tape with the fitting curves of the peel

zone at peel angles 40 and 70◦, respectively. (B) The radius of the fitting circle

predicted by the numerical solution and the approximate analytical solution,

respectively. The insert is the relative difference.

should be used. For example, if C1 in Eq. (30) is replaced with C∗
1 ,

the peel force will coincide with Eq. (29). Based on these rules, the
approximate model can provide reliable approximate analytical
expressions of both geometry and stress of a peeling tape.

Explanations of the Peel-Zone Model
The basic principle of the PZmodel is that the normal component
of the peel force (the adhesive force) is only generated in the
peel zone (shown in Figure 6) (Tian et al., 2006; Pesika et al.,
2007). The original PZ model was established based on the three
assumptions to simplify the problem (Pesika et al., 2007), which
are as follows:

(i) The shape of the curve of the tape backing is approximately
circular in the all-important local region of the peel zone.

(ii) The separation point is assumed to remain at the same
normal distance from the detaching surface for all peel angles θ .

(iii) The normal component of the peel force (the adhesive
force), F⊥, generated in the peel zone is proportional to the area
of the peel zone, i.e., F⊥ ∝ sb in Figure 6.

In the view of spring contact model, the three assumptions
can be explained theoretically. But note that the peel-zone is only
valid at large peel angle (i.e., θ ≥ 40◦ ).

FIGURE 6 | Schematic of the peel zone in the PZ model [modified from Pesika

et al. (2007)].

The coordinate of the separation point can be calculated by
Eqs. (15) and (16) as (C1,C3). When a circular arc is used to fit
the shape of the tape backing at the peel zone [assumption (i)],
the radius of the fitting circle takes the forms

Rad =
C3

1− cosθ
=

sinθ

(

cosθ +
√

2γ
Ed

+ (1− cosθ)2
)

λ(1− cosθ)
(32)

To evaluate the goodness of circle fit, the coefficient of
determination R2 is calculated by

R2 = 1−
SSE

SST
(33)

where SST =
∑

(xi − x̄i)
2 and SSE =

∑

(xi − x̂i)
2. The results

show that all values of R2 are larger than 0.995, which indicates
that a circle is a good approximation of the shape of the curve at
the peel zone for the whole angles ranging from 0 to 90◦ (shown
in the insert of Figure 7).

The assumption (ii) assumes that separation point remains at
the same normal distance from the detaching surface. This can be
explained that the springs of the adhesive layer are approximately
perpendicular to the substrate in the real experiments so that the
critical length l0 keeps constant. Based on this assumption, the
area of the peel zone in assumption (iii) is the projected area of
the peel zone and it can be described as S = sb = Rad∗bsinθ . The
adhesive force can be expressed as Fad = Fsinθ , the relationship
of adhesive per unit Fad/b and s is shown in Figure 7. When
the peel angle θ is larger than 40◦, the adhesive force is nearly
proportional to the projected area of the peel zone.

However, the PZ model fails to predict the peel force when
the peel angle is small. This is because it neglects the stretching
effect of the backing layer, so that the area of the peel zone will

Frontiers in Mechanical Engineering | www.frontiersin.org 8 December 2018 | Volume 4 | Article 22

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Li et al. Spring Model of Tape Peeling

FIGURE 7 | The relationships between the adhesive and the projected length

of the peel zone. The insert is the coefficient of determination R2 when using a

circle to fit the peel zone.

be overestimated and will even tend to be infinity when the peel
angle reaches zero. Combined with the Eq. (30), the predicted
projected area of the peel zone in this model S = Rad · bsinθ ∝

sin2θ/(1 − cosθ), which tends to be a finite value when the peel
angle θ tends to be zero. However, based on the original PZ
model, the radius of the peeling front Rad_PZ ∝ 1/(1 − cosθ)
and the area of the peel zone S_PZ = Rad_PZ ∗ bsinθ ∝
sinθ/(1−cosθ) will tend to be infinity when the peel angle θ tends
to be zero.

Applicability and Limitation of Proposed
Model
In this work only the “adhesive separation” mode of the tape
peeing is considered, which means the critical value l0 of the
length of the spring (C) predicted by Eq. (28) is determined by the
adhesion energy. But when the stretching strength of the adhesive
layer is weaker than the adhesion strength at the interface, the
separation occurs within the bulk of the adhesive layer. Given that
the critical value l0 predicted by Eq. (28) increases with the peel
angle, the critical value l0 may keep at a certain value and the tape
failure may turn into the “cohesive separation” mode at a large
peel angle (i.e., at θ > 60◦ ). In this case, the energy-conservation
based Kendall equation is not valid, considering the dissipation
of energy in the adhesive layer. For the proposed model, the
critical value l0 based on Eq. (28) can be modified to take the
form as

{

l20λ
2 = 2γ

Eh
+ 2 (1− cosθ) (θ ≤ π/3)

l20λ
2 = 2γ

Eh
+ 1 (θ > π/3)

(34)

Combined with the Eq. (26), the predicted peel force may be
smaller at large peel angles compared with the Kendall equation,
which is consistent with the experimental results recorded in
Pesika et al. (2007).

Since this proposed spring contact model contains more
information about force generation than the Kendall equation,

it provides greater insight into the tape peeling process.
The proposed model can be modified to apply to many
complex situations. One meaningful modification is to consider
the viscoelastic properties of polymers materials, which can
significantly affect the peeling force as a function of the peeling
velocity (Urahama, 1989). It is a valid approach to describe the
viscoelastic adhesive layer by replacing the spring element (C) in
Figure 2 with the Kelvin element, which is a parallel connection
of spring and dashpot with spring constant k and viscosity η.
In this case the force acting on the element is given as σ =
kε(τ ) + ηε̇(τ ) where ε(τ ) is the time dependent displacement
and ε̇(τ ) is its time derivative. Combined with the similar force
balance in Eq. (2), the differential equations take the form as

{

K ∂2x
∂t2

+ k (t − x) − η ∂x
∂τ

− K
∂g
∂t = 0

K
∂2y

∂t2
− ky− η

∂y
∂τ

− K ∂h
∂t = 0

(35)

For a steady state peeling process, a time-space equivalent
relationship takes the form as:

{

x (t, τ) = vτ − x(t − vτ , 0)
y (t, τ) = y(t − vτ , 0)

(36)

where v is the peeling velocity, and τ is the time. Besides the
original boundary conditions Eqs. (10) and (11), the boundary
conditions at the separation point also contain the peeling
velocity. According to the geometric relationships, it can be
obtained that

{ ∂x
∂τ

= v− v(1+ ε)cosθ (t → 0)
∂y
∂τ

= v(1+ ε)sinθ (t → 0)
(37)

where ε is elongation ratio and takes the form as ε = F/Ehb.
Another modification is to consider the direct van der Waals

interaction with the substrate (for Case 1 in Figure 1A), which
can be used to describe nano-scale adhesive contacts, such as
geckos sticking on walls. The micro spatula pads in geckos’ toes
are made up of β -keratin with Young’s modulus E of ∼1.5
GPa and the typical thickness h is about 5 nm (Autumn et al.,
2006). When a gecko walks on a wall or ceiling, the tape-like
peeling behavior of the spatula pads plays a significant role in
its controllable adhesion (Tian et al., 2006). In this case the
spring element of the adhesive layer can be substituted by the
molecular force field, which can be obtained by the modified
Lennard-Jones potential (Israelachvili, 1991). By integration of
the Lennard-Jones potential, the interaction force (gradient of
potential function) between two surfaces takes the forms as
Zhang et al. (2011)

fad
(

y
)

=
8γ

3ε0

[

(

ε0

y

)9

−

(

ε0

y

)3
]

, (38)

where,ε0 is the equilibrium separation. When a two-dimensional
tape with only backing layer adheres to a smooth surface, a force
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balance between the stretching force and vertical van der Waals
force at any joint of the backing layer is considered. It follows that

{

ẍ − ġ = 0

Kÿ + fad(y)− Kḣ = 0.
(39)

Note that these equations are only valid at the peel zone where
the tape slightly separates from surface, for the existence of the
friction force at contact zone is not considered. But it is enough
to calculate the normal adhesive force, based on the principle of
the PZ model (Tian et al., 2006).

However, the tape peeling behaviors in actual experiments
are generally too complex to be modeled precisely. One of the
important factors is that the peeling stressmay cause the failure of
the tapematerial. For tape backing, the large peel stress may cause
significant “necking effect” and even plastic deformation so that
both the tape thickness h and the width b will decrease, especially
at small peel angles. In this case, two-dimensional descriptions
will no longer apply and the tape models will underestimate
the peel force. For adhesive layer, the large peel stress may
cause damage such as the cavitation and fibrillation, which will
induce inhomogeneity and non-linear force (Urahama, 1989).
Another important factor is the bending modulus of the tape
backing. It can not only affect the stress distribution, but also
affect the profile of the peel zone. For example, the tangential
direction of the curve of the tape at the separation point is
assumed to coincide with the peel angle in the proposed model.
However, there is always a transition curve outside the peel
zone between the separation point and the peel direction due
to the bending modulus (Zhou et al., 2011), which may bring
the deviations between the mathematic model and experimental
results.

SUMMARY AND CONCLUSIONS

The proposed two-layer spring contact tape model considers
the force balance between the stretching force and the adhesive
force along the whole backing layer. For the common “adhesive
separation” tape failure mode, the critical length of the adhesive
layer is considered to be determined by the interfacial adhesion
energy and changes with the peel angle. One approximate
analytic solution of the shape description of the curve of the
peeling tape is provided when neglecting the original length
term in the differential equations. The result shows no significant
difference with the full numerical solution for a typical tape
peeling process. The predicted peel force is shown to be
equivalent to the classic Kendall equation for tape peeling,
by considering an approximate energy conservation critical
criterion. Furthermore, based on the predicted peeling profile
and adhesive force, the empirically based assumptions of the
PZ model are clarified. It allows one to understand the subtle
differences between PZ model and the Kendall equation. Finally,
the further potential applications and also the limitations of the
proposed model are discussed.
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