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Abstract. Decades of hydrograph separation studies have
estimated the proportions of recent precipitation in stream-
flow using end-member mixing of chemical or isotopic trac-
ers. Here I propose an ensemble approach to hydrograph
separation that uses regressions between tracer fluctuations
in precipitation and discharge to estimate the average frac-
tion of new water (e.g., same-day or same-week precipita-
tion) in streamflow across an ensemble of time steps. The
points comprising this ensemble can be selected to isolate
conditions of particular interest, making it possible to study
how the new water fraction varies as a function of catch-
ment and storm characteristics. Even when new water frac-
tions are highly variable over time, one can show mathemat-
ically (and confirm with benchmark tests) that ensemble hy-
drograph separation will accurately estimate their average.
Because ensemble hydrograph separation is based on corre-
lations between tracer fluctuations rather than on tracer mass
balances, it does not require that the end-member signatures
are constant over time, or that all the end-members are sam-
pled or even known, and it is relatively unaffected by evapo-
rative isotopic fractionation.

Ensemble hydrograph separation can also be extended
to a multiple regression that estimates the average (or
“marginal”) transit time distribution (TTD) directly from ob-
servational data. This approach can estimate both “back-
ward” transit time distributions (the fraction of streamflow
that originated as rainfall at different lag times) and “for-
ward” transit time distributions (the fraction of rainfall that
will become future streamflow at different lag times), with
and without volume-weighting, up to a user-determined max-
imum time lag. The approach makes no assumption about

the shapes of the transit time distributions, nor does it as-
sume that they are time-invariant, and it does not require
continuous time series of tracer measurements. Benchmark
tests with a nonlinear, nonstationary catchment model con-
firm that ensemble hydrograph separation reliably quantifies
both new water fractions and transit time distributions across
widely varying catchment behaviors, using either daily or
weekly tracer concentrations as input. Numerical experi-
ments with the benchmark model also illustrate how ensem-
ble hydrograph separation can be used to quantify the effects
of rainfall intensity, flow regime, and antecedent wetness on
new water fractions and transit time distributions.

1 Introduction

For nearly 50 years, chemical and isotopic tracers have been
used to quantify the relative contributions of different water
sources to streamflow following precipitation events (Pinder
and Jones, 1969; Hubert et al., 1969); see also reviews by
Buttle (1994) and Klaus and McDonnell (2013), and refer-
ences therein. As reviewed by Klaus and McDonnell (2013),
chemical and isotopic hydrograph separation studies have
led to many important insights into runoff generation. Fore-
most among these has been the realization that even at storm-
flow peaks, stream discharge is often composed primarily of
“old” catchment storage rather than “new” recent precipi-
tation (Sklash et al., 1976; Sklash, 1990; Neal and Rosier,
1990; Buttle, 1994). The previous dominant paradigm, based
on little more than intuition, had held that because stream-
flow responds promptly to rainfall, the storm hydrograph
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must consist primarily of precipitation that reaches the chan-
nel quickly. Isotope hydrograph separations showed that
this intuition is often wrong, because the isotopic signa-
tures of stormflow often resemble baseflow or groundwater
rather than recent precipitation. These observations have not
only overthrown the previous dominant paradigm, but also
launched decades of research aimed at unraveling the para-
dox of how catchments store water for weeks or months,
but release it within minutes following the onset of rainfall
(Kirchner, 2003).

The foundations of conventional two-component hydro-
graph separation are straightforward. If one assumes that
streamflow is a mixture of two end-members of fixed compo-
sition, which I will call for simplicity “new” and “old” water,
then at any time j the mass balance for the water itself is

Qj =Qnewj +Qoldj , (1)

and the mass balance for a conservative tracer is

QjCQj =QnewjCnew+QoldjCold, (2)

where Q denotes water flux and C denotes the concentration
of a passive chemical tracer or the δ value of 18O or 2H. One
can straightforwardly solve Eqs. (1) and (2) to express the
fraction of new water in streamflow at any time j as

Fnewj =
Qnewj

Qj

=
CQj −Cold

Cnew−Cold
. (3)

In typical applications, the new water is recent precipita-
tion and the tracer signature of the old water is obtained from
pre-event baseflow, which is generally assumed to originate
from long-term groundwater storage.

The assumptions underlying conventional hydrograph sep-
aration can be summarized as follows:

1. Streamflow is a mixture formed entirely from the sam-
pled end-members; contributions from other possible
streamflow sources (such as vadose zone water or sur-
face storage) are negligible.

2. The samples of the end-members are representative
(e.g., the sampled precipitation accurately reflects all
precipitation, and the sampled baseflow reflects all pre-
event water).

3. The tracer signatures of the end-members are constant
through time, or their variations can be taken into ac-
count.

4. The tracer signatures of the end-members are signifi-
cantly different from one another.

As reviewed by Rodhe (1987), Sklash (1990), But-
tle (1994), and Klaus and McDonnell (2013), each of these
assumptions can be problematic in practice:

1. Hydrograph separation studies often lead to implausible
(including negative) inferred contributions of new wa-
ter, and such anomalous results are sometimes attributed
to contributions from un-sampled end-members (e.g.,
von Freyberg et al., 2017). In such cases, assumption
no. 1 is clearly not met.

2. The isotopic composition of precipitation can vary con-
siderably within an event, both spatially and temporally,
even in small catchments (e.g., McDonnell et al., 1990;
McGuire et al., 2005; Fischer et al., 2017; von Frey-
berg et al., 2017). Likewise, the isotopic signature of the
baseflow or groundwater end-member has been shown
to vary in space and time during snowmelt and rain-
fall events (e.g., Hooper and Shoemaker, 1986; Rodhe,
1987; Bishop, 1991; McDonnell et al., 1991). In these
cases, assumptions no. 2 and 3 are not met. Various
schemes have been proposed to address this spatial and
temporal variability by weighting the isotopic compo-
sitions of individual samples, but the validity of these
schemes typically rests on strong assumptions about the
nature of the runoff generation process and the hetero-
geneity to be averaged over.

3. When the difference between Cnew and Cold is not large
compared to their uncertainties, Eq. (3) becomes un-
stable and the resulting hydrograph separations become
unreliable. This problem can be detected using Gaus-
sian error propagation (Genereux, 1998), but Bansah
and Ali (2017) report that less than 20 % of the hydro-
graph separation studies they reviewed have used it.

One can agree with Buttle (1994) that “despite frequent vi-
olations of some of its underlying assumptions, the isotopic
hydrograph separation approach has proven to be sufficiently
robust to be applied to the study of runoff generation in
an increasing number of basins,” at least as a characteriza-
tion of the community’s widespread acceptance of the tech-
nique. Nonetheless, there is clearly room for new and dif-
ferent ways to quantify stormflow generation. In addition,
weekly or even daily isotope measurements are now becom-
ing available for many catchments, sometimes spanning peri-
ods of many years, and despite their many uses (particularly
for calibrating hydrological models) there is an obvious need
for new ways to extract hydrological insights from such time
series.

Here I propose a new method for using isotopes and other
conservative tracers to quantify the origins of streamflow.
This method is based on statistical correlations among tracer
fluctuations in streamflow and one or more candidate water
sources, rather than mass balances. As such, it exploits the
temporal variability in candidate end-members, rather than
requiring them to be constant. It also does not require strict
mass balance and thus is relatively insensitive to the presence
of unmeasured end-members. Because this method quanti-
fies the average proportions of source waters in streamflow
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across an ensemble of events or time steps, it does not answer
the same question that traditional hydrograph separation does
(namely, how fractions of new and old water change over
time during individual storm events). Instead, it can answer
new and different questions, such as how the average frac-
tions of new and old water vary with stream discharge or pre-
cipitation intensity, antecedent moisture, etc. The proposed
method is designed to provide insights into stormflow gener-
ation from regularly sampled time series, even if those time
series have gaps and even if they are sampled at frequencies
much lower than the storm response timescale of the catch-
ment.

The purpose of this paper is to describe the method, doc-
ument its mathematical foundations, and test it against a
benchmark model, in which the method’s results can be ver-
ified by age tracking. Applications to real-world catchments
will follow in future papers. Because the proposed method is
new and thus must be fully documented, several parts of the
presentation (most notably Sect. 4.2–4.4 and Appendix B)
necessarily contain strong doses of math. The math can be
skipped, or lightly skimmed, by those who only need a gen-
eral sense of the analysis. A table of symbols is provided at
the end of the text.

2 Estimating new water fractions by ensemble
hydrograph separation

Here I propose a new type of hydrograph separation based on
correlations between tracer fluctuations in streamflow and in
one or more end-members. This new approach to hydrograph
separation does not have the same goal as conventional hy-
drograph separation. It does not estimate the contributions of
end-members to streamflow for each time step (as in Eq. 3).
Instead, it estimates the average end-member contributions to
streamflow over an ensemble of time steps – hence its name,
ensemble hydrograph separation. The ensemble of time steps
may be chosen to reflect different catchment conditions and
thus used to map out how those catchment conditions influ-
ence end-member contributions to streamflow.

2.1 Basic equations

I will first illustrate this approach with a simple example of
a time-varying mixing model. Let us assume that we have
measured tracer concentrations in streamflow, and in at least
one contributing end-member, over an ensemble of time in-
tervals j . The simplest possible mass balance for the water
that makes up streamflow would be

Qj =Qnewj +Qoldj , (4)

where Qnew represents the water flux in streamflow Q that
originates from recent precipitation (or, potentially, any other
end-member in which tracers can be measured) during time
interval j . All other contributions to streamflow are lumped

together as Qold. Conservative mixing implies that

Qj CQj =Qnewj Cnewj +Qoldj Coldj , (5)

where CQ and Cnew are the tracer concentrations in the
stream and the new water, and Cold is the tracer signature
of all other sources that contribute to streamflow. Combining
Eqs. (4) and (5), we directly obtain

CQj = Fnewj Cnewj +
(
1−Fnewj

)
Coldj , (6)

where Fnewj =Qnewj /Qj is the fractional contribution of
Qnew to streamflow Q. Equation (6) can be rewritten as

CQj −Coldj = Fnewj
(
Cnewj −Coldj

)
, (7)

which in turn could be rearranged as a conventional mixing
model (Eq. 3), with the important difference that the new
and old water concentrations are time-varying rather than
constant. If we represent the old water composition using
the streamwater concentration during the previous time step,
Eq. (7) becomes

CQj −CQj−1 = Fnewj
(
Cnewj −CQj−1

)
. (8)

The lagged concentration CQj−1 serves as a reference
level for measuring fluctuations in precipitation and stream-
flow tracer concentrations and the correlations between them.
Thus, it is not necessary that CQj−1 consists entirely of old
water as defined in conventional hydrograph separations (i.e.,
groundwater or baseflow water). It is only necessary that
CQj−1 contains no new water (that is, no precipitation that fell
during time step j ), and this condition is automatically met
because CQj−1 is measured during the previous time step.
The net effect of CQj−1 is to factor out the legacy effects of
previous tracer inputs and to filter out long-term variations
in CQ that could otherwise lead to spurious correlations with
Cnew.

The ensemble hydrograph separation approach is based on
the observation that Eq. (8) is almost equivalent to the con-
ventional linear regression equation,

yj = β xj +α+ εj , yj = CQj −CQj−1 ,

xj = Cnewj −CQj−1 , (9)

where the intercept α and the error term εj can be viewed
as subsuming any bias or random error introduced by mea-
surement noise, evapoconcentration effects, and so forth. The
analogy between Eqs. (9) and (8) suggests that it may be
possible to estimate the average value of Fnewj from the re-
gression slope of a scatterplot of the streamflow concentra-
tion CQj against the new water concentration Cnewj , both
expressed relative to the lagged streamflow concentration
CQj−1 .

However, astute readers will notice an important differ-
ence between Eqs. (8) and (9): in Eq. (9), the regression
slope β is a constant, whereas in Eq. (8) Fnewj varies from
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one time step to the next. It is not obvious how an esti-
mate of the (constant) slope β will be related to the (non-
constant) Fnewj or whether this relationship could be affected
by the other variables in Eq. (8). The answer to this question
can be derived analytically and tested using numerical ex-
periments (see Appendix A). As explained in Appendix A,
the regression slope in a scatterplot of CQj −CQj−1 versus
Cnewj −CQj−1 (Fig. A1d) will closely approximate the aver-
age value of Fnewj (averaged over the ensemble of time steps
j ), under rather general conditions:

1. The slope of the relationship between Fnewj andCnewj−

CQj−1 , times the mean of Cnewj −CQj−1 , should be
small compared to the average Fnew. This will usu-
ally be true for conservative tracers, for two reasons.
First, because all streamflow is ultimately derived from
new water, mass conservation implies that the mean of
Cnewj −CQj−1 should usually be small. Second, unless
there is a correlation between storm size and tracer con-
centration (not just between storm size and tracer vari-
ance), the slope of the relationship between Fnewj and
Cnewj −CQj−1 should also be small. Thus the product of
these two small terms should be small.

2. Points with large leverage in the scatterplot (i.e., with
Cnewj −CQj−1 values far above and below the mean)
should not be systematically associated with either high
or low values of Fnewj . Such a systematic association is
unlikely unless large storms (which are likely to gener-
ate large new water fractions) are also associated with
both very high and very low tracer concentrations.

3. As expected for typical sampling and measurement er-
rors, the error term εj should not be strongly correlated
with Cnewj −CQj−1 .

Thus the analysis in Appendix A shows that a reasonable es-
timate of the ensemble average of Fnew should, under typi-
cal conditions, be obtainable from the regression slope β̂ of
a plot of xj = CQj −CQj−1 versus yj = Cnewj −CQj−1 (i.e.,
Eq. 9; Fig. A1d).

The least-squares solution of Eq. (9) can be expressed in
several equivalent ways. For consistency with the analysis
that will be developed in Sect. 4 below, I will use the follow-
ing formulation, which is mathematically equivalent to those
more commonly seen:

Fnew = β̂ =
cov

(
yj , xj

)
var
(
xj
) , (10)

where β̂ is the least-squares estimate of β, and Fnew is the av-
erage of the Fnewj over the ensemble of points j . Values of yj
that lack a corresponding xj , or vice versa (due to sampling
gaps, for example, or lack of precipitation), are omitted.

2.2 Uncertainties

The uncertainty in Fnew, expressed as a standard error, can
be written as

SE(Fnew)= SE
(
β̂
)
=
sy

sx

√
1− r2

xy
√
neff− 2

=
β̂

√
neff− 2

√
1
r2
xy

− 1, (11)

where sx and sy are the standard deviations of x and y, rxy is
the correlation between them, and neff is the effective sample
size, which can be adjusted to account for serial correlation
in the residuals (Bayley and Hammersley, 1946; Brooks and
Carruthers, 1953; Matalas and Langbein, 1962):

neff ≈ nxy

[
1+ rsc

1− rsc
−

2
nxy

rsc
(
1− rnsc

)
(1− rsc)

2

]−1

, (12)

where nxy is the number of pairs of xj and yj , and rsc is the
lag-1 serial correlation in the regression residuals yj−β̂ xj−
α. For large nxy , Eq. (12) can be approximated as (Mitchell
et al., 1966)

neff ≈ nxy

[
1− rsc

1+ rsc

]
, (13)

where for all positive rsc, Eq. (13) is conservative (it under-
estimates neff from Eq. 12), and for rsc = 0.5 and nxy > 50,
for example, Eqs. (12) and (13) differ by less than 3 %. If the
scatterplot of yj = CQj −CQj−1 versus xj = Cnewj −CQj−1

contains outliers, a robust fitting technique such as itera-
tively reweighted least squares (IRLS) may yield more reli-
able estimates of Fnew than ordinary least-squares regression.
However, the analyses presented here are based on outlier-
free synthetic data generated from a benchmark model (see
Sect. 3), so in this paper I have used conventional least
squares (Eqs. 10–11) instead.

2.3 New water fraction for time steps with
precipitation

The meaning of the new water fraction Fnew depends on how
the new water and streamwater are sampled. For example,
if the new water concentrations Cnew are measured in daily
bulk precipitation samples and the stream water concentra-
tions CQ are measured in instantaneous grab samples taken
at the end of each 24 h precipitation sampling period, then
Fnew will estimate the average fraction of streamflow that
is composed of precipitation from the preceding 24 h. If the
sampling interval is weekly instead of daily, then Fnew will
estimate the average fraction of streamflow that consists of
precipitation from the preceding week. This will generally
be larger than the Fnew calculated from daily sampling, for
the obvious reason that on average more precipitation will
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have fallen during the previous week than during the previ-
ous 24 h, so this precipitation will comprise a larger fraction
of streamflow. Also, if the weekly streamflow concentrations
are measured in integrated composite samples rather than in-
stantaneous grab samples, then Fnew will estimate the frac-
tion of same-week precipitation in average weekly stream-
flow rather than in the instantaneous end-of-week stream-
flow. The general rule is: Fnew should generally estimate
whatever new water has been sampled as Cnew, expressed as
a fraction of whatever streamflow has been sampled as CQ.

In all of these cases, β̂ from Eq. (10) estimates the average
fraction of new water in streamflow during time steps with
precipitation, because time steps without precipitation lack a
new water tracer concentration Cnewj and thus must be left
out from the regression in Eq. (9). Using Qp to denote dis-
charge during periods with precipitation, we can represent
this event new water fraction as QpFnew.

2.4 New water fraction for all time steps

Periods without precipitation will inherently lack same-day
(or same-week) precipitation in streamflow. Thus we can cal-
culate the average fraction of new water in streamflow during
all time steps, including those without precipitation, as

QFnew=
QpFnew

np

n
= β̂

np

n
, (14)

where QFnew is the new water fraction of all discharge,
QpFnew is the new water fraction of discharge during time
steps with precipitation (as estimated by the regression slope
β̂, from Eq. 10), and np/n is the fraction of time steps that
have precipitation. The ratio np/n in Eq. (14) accounts for
the fact that during time steps without rain, the new water
contribution to streamflow is inherently zero. The same ratio
is also used to estimate the uncertainty in QFnew:

SE
(

QFnew

)
=
np

n
SE
(
β̂
)
=

QFnew
√
neff− 2

√
1
r2
xy

− 1. (15)

2.5 Volume-weighted new water fractions

The regression derived through Eqs. (4)–(9) gives each time
interval j equal weight. As a result, β̂ from Eq. (10) can
be interpreted as estimating the time-weighted average new
water fraction. Alternatively, one can estimate the volume-
weighted new water fraction,

β̂∗ =

∑
j∈(xy)

Qj

(
yj − y

∗

(xy)

)(
xj − x̄

∗

(xy)

)
∑

j∈(xy)

Qj

(
xj − x

∗

(xy)

)2 , (16)

where x∗(xy) and ȳ∗(xy) are the volume-weighted means of x
and y (averaged over all j for which xj and yj are not miss-
ing),

x∗(xy) =

∑
j∈(xy)

Qjxj∑
j∈(xy)

Qj

, y∗(xy) =

∑
j∈(xy)

Qjyj∑
j∈(xy)

Qj

, (17)

and the notation j ∈ (xy) indicates sums taken over all j for
which xj and yj are not missing. Equations (16)–(17) yield
the slope coefficient for linear regressions like Eq. (9), but
with each point weighted by the discharge Qj . We can de-
note the weighted regression slope β̂∗ as QpF ∗new, the volume-
weighted new water fraction of time intervals with precipita-
tion, where the asterisk indicates volume-weighting.

If, instead, one wants to estimate the new water fraction in
all discharge (during periods with and without precipitation),
following the approach in Sect. 2.4 one simply rescales this
regression slope by the sum of discharge during time steps
with precipitation, divided by total discharge:

QF ∗new=
QpF ∗new

Qp

Q

np

n
= β̂∗

Qp

Q

np

n
, (18)

where QF ∗new is the volume-weighted new water fraction of
all discharge, QpF ∗new is the fitted regression slope β̂ from
Eq. (16),Qp is the average discharge for time steps with pre-
cipitation, Q is the average discharge for all time steps (in-
cluding during rainless periods), and np/n is the fraction of
time steps with rain.

Because the volume-weighting will typically be uneven,
the effective sample size will typically be smaller than n; for
example, in the extreme case that one sample had nearly all
the weight and the other samples had nearly none, the effec-
tive sample size would be roughly 1 instead of nxy . Thus,
uncertainty estimates for these volume-weighted new wa-
ter fractions should take account of the unevenness of the
weighting. One can account for uneven weighting by calcu-
lating the effective sample size, following Kish (1995), as

neff =

(∑
Qj (xy)

)2∑(
Q2
j (xy)

) , (19)

where the notationQj (xy) indicates discharge at time steps j
for which pairs of xj and yj exist. Equation (19) evaluates to
nxy (as it should) in the case of evenly weighted samples and
declines toward 1 (as it should) if a single sample has much
greater weight than the others. To obtain an estimate of the
effective sample size that accounts for both serial correlation
and uneven weighting, one can multiply the expressions in
Eqs. (19) and (12) or (13). Combining these approaches, one
can estimate the standard error of QF ∗new as

SE
(

QF ∗new

)
=

∑
Qp∑
Q

SE
(
β̂∗
)
=

QF ∗new
√
neff− 2

√
1
r2
xy

− 1,
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neff =

(∑
Qj(xy)

)2∑(
Q2
j(xy)

) [
1− rsc

1+ rsc

]
, (20)

where β̂∗ is the fitted regression slope from Eq. (16).

2.6 New water fraction of precipitation

One can also express the flux of new water as a fraction of
precipitation rather than discharge. Recently, von Freyberg et
al. (2018) have noted, in the context of conventional hydro-
graph separation, that expressing event water as a proportion
of precipitation rather than discharge may lead to different
insights into catchment storm response. Analogously, within
the ensemble hydrograph separation framework we can esti-
mate the new water fraction of precipitation, denoted PFnew,
as

PFnew =
QpFnew

Qp

P p
, (21)

where QpFnew is the new water fraction of discharge during
time steps with precipitation (as estimated by the regression
slope β̂, from Eq. 10), and Qp and P p are the average dis-
charge and precipitation during these time steps. An alterna-
tive strategy is to recast Eq. (8) by multiplying both sides by
Qj/Pj , such that the Fnew on the right-hand side now ex-
presses new water as a fraction of precipitation,

Qj

Pj

(
CQj −CQj−1

)
=

(
Qj

Pj
Fnewj

)(
Cnewj −CQj−1

)
=

PFnewj
(
Cnewj −CQj−1

)
. (22)

This yields a linear regression similar to Eq. (9), but with
yj rescaled,

yj = β xj +α+ εj , yj =
Qj

Pj

(
CQj −CQj−1

)
,

xj =
(
Cnewj −CQj−1

)
, (23)

where the regression slope β̂, which can be calculated from
Eq. (10) with the new values yj , should approximate the av-
erage new water fraction of precipitation PFnew.

The approaches represented by Eqs. (21) and (22)–(23) are
not equivalent. Equation (21) is based on the ad hoc assump-
tion – which is verified by the benchmark tests in Sect. 3.3–
3.5 – that the average of PFnewj (new water in streamflow, as
a fraction of precipitation) should approximate the average
Fnewj (new water in streamflow, as a fraction of discharge),
rescaled by the ratio of average dischargeQpj to average pre-
cipitation Ppj . This is only an approximation, of course; it
relies on the approximation that appears in the middle of the
following chain of expressions:

PFnew =
〈PFnew

〉
p =

〈
Fnewj

Qj

Pj

〉
p
≈ 〈Fnew〉p

〈
Qj

〉
p〈

Pj
〉
p

=
QpFnew

Qp

P p
, (24)

where the “p” subscripts on the angled brackets indicate
averages taken only over time intervals with precipitation.
Whether this is a good approximation will depend on how
Pj , Qj , and Fnewj are distributed, and how they are cor-
related with one another. By contrast, the approach out-
lined in Eqs. (22)–(23) is based on the exact substitution of
FnewjQj/Pj for PFnewj , which requires no approximations.
The same substitution also leads to two other algebraically
equivalent formulations of Eq. (22),

(
CQj −CQj−1

)
=

PFnewj
Pj

Qj

(
Cnewj −CQj−1

)
(25)

and

Qj

(
CQj −CQj−1

)
=

PFnewj Pj
(
Cnewj −CQj−1

)
. (26)

But although Eqs. (22), (25), and (26) are algebraically
equivalent, their statistical behavior is different when they
are used as regression equations to estimate the average value
of PFnew. The regression estimate of PFnew depends on the
distributions of Pj ,Qj , and Fnewj and their correlations with
each other, and benchmark testing shows that Eq. (22) yields
reasonably accurate estimates of PFnew, but Eqs. (25) and
(26) do not. One can also note that the approach outlined in
Eq. (21) – the other approach that is successful in benchmark
tests – represents an ad hoc time averaging of Pj and Qj in
Eq. (22), because it is formally equivalent to

Qp

P p

(
CQj −CQj−1

)
=

PFnewj
(
Cnewj −CQj−1

)
. (27)

The precise interpretation of PFnew depends on how
streamflow is sampled. If the streamflow tracer concentra-
tions come from integrated composite samples over each day
or week, then PFnew can be interpreted as the fraction of
precipitation that becomes same-day or same-week stream-
flow. If the streamflow tracer concentrations instead come
from instantaneous grab samples (as is more typical), then
PFnew can be interpreted as the rate of new water discharge
at that time (typically the end of the precipitation sampling
interval), as a fraction of the average rate of precipitation.
Adapting terminology from the literature of transit time dis-
tributions (TTDs), we can call PFnew the “forward” new wa-
ter fraction because it represents the fraction of precipitation
that will exit as streamflow soon (during the same time step),
and call QpFnew and QFnew “backward” new water fractions
because they represent the fraction of streamflow that entered
the catchment a short time ago. Although the backward new
water fraction of discharge comes in two forms (QpFnew or
QFnew), depending on whether one includes or excludes rain-
less periods, the forward new water fraction PFnew can only
be defined for time steps with precipitation (otherwise PFnew
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represents the ratio between zero new water and zero precip-
itation and thus is undefined).

Readers should keep in mind that although PFnew repre-
sents the fraction of precipitation that becomes same-day (or
same-week) streamflow, different fractions of precipitation
may leave the catchment the same day (or week) by other
pathways, most notably by evapotranspiration. One could
also estimate PFnew for water that leaves the catchment by
evapotranspiration if one had tracer time series for evapo-
transpiration fluxes, but at present such time series are not
available. Thus, to echo the principle outlined in Sect. 2.3
above, the new water fraction of precipitation does not repre-
sent the forward new water fraction for all possible pathways,
but only whatever pathway has been sampled.

2.7 Volume-weighted new water fraction of
precipitation

The new water fraction of precipitation as estimated by
Eq. (21) is a time-weighted average, in which each day with
precipitation counts equally. One may also want to estimate
the volume-weighted new water fraction of precipitation,
which we can denote as PF ∗new, in keeping with the naming
conventions used above. We can estimate PF ∗new at least two
different ways. The first method involves recognizing that we
are seeking the ratio between the total volume of new water
– that is, same-day precipitation reaching streamflow – and
the total volume of precipitation. This will equal the volume-
weighted new water fraction of discharge (total new water
divided by total discharge, which has already been derived
in Sect. 2.5 above), rescaled by the ratio of total discharge to
total precipitation:

PF ∗new =
QF ∗new

Q

P
=

QpF ∗new
Qp

P

np

n
, (28)

where Q and P are the average rates of discharge and pre-
cipitation (averaged over all time steps), Qp is the average
discharge on days with rain, and np/n is the fraction of time
steps with rain. An alternative strategy, which yields nearly
equivalent results in benchmark tests, precipitation-weights
the regression for PFnew (Eq. 22), yielding

β̂∗ =

∑
j∈(xy)

Pj

(
yj − y

∗

(xy)

)(
xj − x

∗

(xy)

)
∑

j∈(xy)

Pj

(
xj − x

∗

(xy)

)2 ,

yj =
Qj

Pj

(
CQj −CQj−1

)
, xj =

(
Cnewj −CQj−1

)
, (29)

where x∗(xy) and y∗(xy) are the precipitation-weighted means
of x and y (averaged over all j for which xj and yj are not
missing),

x∗(xy) =

∑
j∈(xy)

Pjxj∑
j∈(xy)

Pj
, y∗(xy) =

∑
j∈(xy)

Pjyj∑
j∈(xy)

Pj
, (30)

and where the regression slope β̂∗ approximates the
precipitation-weighted average forward new water fraction
PF ∗new.

3 Testing ensemble hydrograph separation with a
simple non-stationary benchmark model

3.1 Benchmark model

To test the methods outlined in Sect. 2 above, I use synthetic
data generated by a simple two-box lumped-parameter catch-
ment model. This model is documented in greater detail in
Kirchner (2016a) and will be described only briefly here. As
shown in Fig. 1a, drainage L from the upper box is a power
function of the storage Su within the box; a fraction η of this
drainage flows directly to streamflow, and the complemen-
tary fraction 1− η recharges the lower box, which drains to
streamflow at a rate Ql that is a power function of its storage
Sl . The model’s behavior is determined by five parameters:
the equilibrium storage levels Su, ref and Sl, ref in the upper
and lower boxes, their drainage exponents bu and bl , and the
drainage partitioning coefficient η. For simplicity, evapotran-
spiration is not explicitly simulated; instead, the precipita-
tion inputs can be considered to be effective precipitation,
net of evapotranspiration losses. Discharge from both boxes
is assumed to be non-age selective, meaning that discharge
is taken proportionally from each part of the age distribu-
tion. Tracer concentrations and mean ages are tracked under
the assumption that the boxes are each well mixed but also
distinct from one another, so their tracer concentrations and
water ages will differ. Water ages and tracer concentrations
are also tracked in daily age bins up to an age of 70 days,
and mean water ages are tracked in both the upper and lower
boxes.

The model operates at a daily time step, with the storage
evolution of the lower box calculated by a weighted combi-
nation of the partly implicit trapezoidal method (for greater
accuracy) and the fully implicit backward Euler method (for
guaranteed stability). Unlike in Kirchner (2016a), here the
storage evolution of the upper box is calculated by forward
Euler integration at 50 sub-daily time steps of 0.02 days
(roughly 30 min) each. At this time step, forward Euler in-
tegration is stable across the entire parameter ranges used in
this paper and is more accurate than daily time steps of trape-
zoidal or backward Euler integration (which are still ade-
quate for the lower box, where storage volumes change more
slowly). Following Kirchner (2016a), the model is driven
with three different real-world daily rainfall time series, rep-
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Figure 1. Schematic diagram of the benchmark model (a), with 2-year excerpts from illustrative simulations of its behavior (b–i). Model
parameters for simulations of damped catchment response (b, d, f, h) are Su, ref = 100 mm, Sl, ref = 1000 mm, bu = 10, bl = 3, and η = 0.3.
For simulations of flashy catchment response (c, e, g, i), all but one of the parameters are the same; only η is changed to 0.8 and a different
random realization of precipitation isotopes is used. The same daily precipitation time series (Smith River, Mediterranean climate) is used
in both cases. The isotopic composition of streamflow exhibits complex dynamics over multiple timescales (blue line in d, e), as dominance
shifts between the upper and lower boxes (green and orange lines, respectively, in d, e). Like the discharge and its isotopic composition, the
fraction of discharge comprised of same-day precipitation (the new water fraction of discharge, QFnew, f, g) exhibits complex nonstationary
dynamics. Nonetheless, its long-term average (dashed blue line) is well predicted by ensemble hydrograph separation (solid blue line); the
same is true of the discharge-weighted average (dashed and solid red lines). The fraction of precipitation appearing in same-day discharge
(the forward new water fraction, PFnew, h, i) is somewhat less variable, but both its average and precipitation-weighted average are also well
predicted by ensemble hydrograph separation (solid and dashed blue and red lines). In several cases the dashed and solid lines cannot be
distinguished because they overlap.

resenting a range of climatic regimes: a humid maritime cli-
mate with frequent rainfall and moderate seasonality (Plyn-
limon, Wales; Köppen climate zone Cfb), a Mediterranean
climate marked by wet winters and very dry summers (Smith
River, California, USA; Köppen climate zone Csb), and a
humid temperate climate with very little seasonal variation
in average rainfall (Broad River, Georgia, USA; Köppen cli-
mate zone Cfa). Synthetic daily precipitation tracer (deu-
terium) concentrations are generated randomly from a nor-
mal distribution with a standard deviation of 20 ‰ and a lag-
1 serial correlation of 0.5, superimposed on a seasonal cy-
cle with an amplitude of 10 ‰. The model is initialized at
the equilibrium storage levels Su, ref and Sl, ref, with age dis-
tributions and tracer concentrations corresponding to steady-
state equilibrium values at the mean input fluxes of water and

tracer. The model is then run for a 1-year spin-up period; the
results reported here are from 5-year simulations following
this spin-up period.

For the simulations shown here, the drainage exponents
bu and bl are randomly chosen from uniform distributions of
logarithms spanning the range of 1–20, and the partitioning
coefficient η is randomly chosen from a uniform distribu-
tion ranging from 0.1 to 0.9. The reference storage levels
Su,ref and Sl, ref are randomly chosen from a uniform dis-
tribution of logarithms spanning the ranges of 50–200 mm
and 200–2000 mm, respectively. These parameter distribu-
tions encompass a wide range of possible behaviors, includ-
ing both strong and damped response to rainfall inputs.

I illustrate the behavior of the model using two particular
parameter sets, one that gives damped response to precipi-
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tation (Su, ref = 100 mm, Sl, ref = 1000 mm, bu = 10, bl = 3,
and η = 0.3) and one that gives a more rapid response (the
same parameters, except η = 0.8). These parameter values
are not preferable to others in any particular way; they sim-
ply generate strongly contrasting streamflow and tracer re-
sponses that look plausible as examples of small catchment
behavior. They can be interpreted as the behavior of two con-
trasting model catchments, which for simplicity (but with
some linguistic imprecision) I will call the “damped catch-
ment” and the “flashy catchment”, as shorthand for “model
catchment with parameters giving more damped response”
and “model catchment with parameters giving more flashy
response”.

The model also simulates the sampling process and its as-
sociated errors. I assume that tracer concentrations cannot
be measured when precipitation rates are below a threshold
of Pthreshold =1 mm day−1, such that tracer samples below
this threshold will be missing. I further assume that 5 % of
all other precipitation tracer measurements, and 5 % of all
streamflow tracer measurements, will be lost at random times
due to sampling or analysis failures. I have also added Gaus-
sian random errors (with a standard deviation of 1 ‰) to all
tracer measurements.

3.2 Benchmark model behavior

Panels b–i of Fig. 1 show 2 years of simulated daily behav-
ior driven by the Smith River daily precipitation record ap-
plied to the damped and flashy catchment parameter sets. The
simulated stream discharge responds promptly to rainfall in-
puts, and unsurprisingly the discharge response is larger in
the flashy catchment (Fig. 1b, c). The streamflow isotopic
response is strongly damped in both catchments, with iso-
tope ratios between events returning to a relatively stable
baseline value composed mostly of discharge from the lower
box (Fig. 1d, e). Like the stream discharge and the isotope
tracer time series, the instantaneous new water fractions (de-
termined by age tracking within the model) also exhibit com-
plex nonstationary dynamics (Fig. 1f–i). Despite the com-
plexity of the modeled time-series behavior, ensemble hydro-
graph separation (Eqs. 14, 18, 21, and 28) accurately predicts
the averages of these new water fractions, both unweighted
and time-weighted, as can be seen by comparing the dashed
and solid lines (which sometimes overlap) in Fig. 1f–i.

It should be emphasized that the ensemble hydrograph
separation and the benchmark model are completely inde-
pendent of one another. The ensemble hydrograph separa-
tion does not know (or assume) anything about the internal
workings of the benchmark model; it knows only the input
and output water fluxes and their isotope signatures. This is
crucial for it to work in the real world, where any particu-
lar assumptions about the processes driving runoff could po-
tentially be violated. Likewise, the benchmark model is not
designed to conform to the assumptions underlying the en-
semble hydrograph separation method. It would be relatively

trivial to model a tracer time series assuming that new water
constituted a fixed fraction of discharge, and then demon-
strate that this fraction can be retrieved from the tracer be-
havior. What Fig. 1 demonstrates is much less obvious, and
more important: that even when the new water fraction is
highly dynamic and nonstationary, an appropriate analysis of
tracer behavior can accurately estimate its mean.

3.3 Benchmark tests: random parameter sets

This result holds not just for the two parameter sets shown in
Fig. 1, but throughout the parameter ranges that are tested in
the benchmark model. The scatterplots shown in Fig. 2 show
new water fractions estimated by ensemble hydrograph sep-
aration, compared to the true average new water fractions de-
termined by age tracking in the benchmark model, for 1000
random parameter sets spanning the parameter ranges de-
scribed in Sect. 3.1. Figure 2 shows that ensemble hydro-
graph separation yields reasonably accurate estimates of av-
erage event new water fractions (Fig. 2a, b), new water frac-
tions of discharge (Fig. 2c) and precipitation (Fig. 2d), and
volume-weighted new water fractions (Fig. 2e, f). Estimates
derived from single years of data (Fig. 2b) understandably
exhibit greater scatter than those derived from 5 years of
data (Fig. 2a), but in all of the plots shown in Fig. 2 there
is no evidence of significant bias (the data clouds cluster
around the 1 : 1 lines). The scatter of the points around the
1 : 1 line generally agrees with the standard errors estimated
from Eqs. (11), (15), and (20), suggesting that these uncer-
tainty estimates are also reliable.

Mean transit times have often been estimated in the catch-
ment hydrology literature, often under the assumption that
they should also be correlated with other timescales of catch-
ment transport and mixing as well. This naturally leads to
the question, in the context of the present study, of whether
there is a systematic relationship between mean transit times
and new water fractions, such that they could potentially be
predicted from one another. The benchmark model allows a
direct test of this conjecture, because it tracks mean water
ages as well as new water fractions. Figure 3a shows that,
across the 1000 random parameter sets from Fig. 2, the rela-
tionship between new water fractions and mean transit times
is a nearly perfect shotgun blast: mean transit times vary
from about 40 to 400 days and new water fractions vary from
nearly zero to nearly 0.1, with almost no correlation between
them. Both of these quantities are estimated from age track-
ing in the benchmark model, so their lack of any systematic
relationship does not arise from difficulties in estimating ei-
ther of them from tracer data. It instead arises because the up-
per tails of transit time distributions (reflecting the amounts
of streamflow with very old ages) exert strong influence on
mean transit times, but have no effect on new water fractions
(reflecting same-day streamflow).

I have recently proposed the “young water fraction”, the
fraction of streamflow younger than about 2.3 months, as a
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Figure 2. New water fractions predicted from tracer dynamics using ensemble hydrograph separation, compared to averages of time-varying
new water fractions determined from age tracking in the benchmark model. Diagonal lines show perfect agreement. Each scatterplot shows
1000 points, each of which represents an individual catchment, with its own individual random set of model parameters (i.e., catchment
characteristics), randomly generated precipitation tracer time series, and random set of measurement errors and missing values (see Sect. 3.1).
The daily precipitation amounts are the same (Smith River time series; Mediterranean climate) in each case. The event new water fraction (a,
b) is the average fraction of new (same-day) water in streamflow during time steps with precipitation, as described in Sect. 2.3. Panel (a)
shows event new water fractions estimated from 5 years of simulated tracer data; panel (b) shows the same quantity estimated from single
years (each year is denoted by a different color). Averaging over the 5 years reduces both the range and the scatter, compared to the single-
year estimates. The new water fraction of discharge (c) is the fraction of same-day precipitation in streamflow, averaged over all time steps
including rainless periods (Eq. 14, Sect. 2.4); its flow-weighted counterpart (e) is calculated using Eqs. (16)–(18) of Sect. 2.5. The forward
new water fraction (the fraction of precipitation that becomes same-day streamflow; d) is calculated using Eq. (21), and its precipitation-
weighted counterpart (f) is calculated using Eq. (28). In all cases there is little evidence of bias, and the scatter around the 1 : 1 line is
relatively small.

more robust metric of water age than the mean transit time
(Kirchner, 2016b). Figure 3b shows that, like the mean transit
time, the young water fraction is also a poor predictor of the
new water fraction, beyond the obvious constraint that new
water (≤1 day old) must be a small fraction of young water
(≤ 69 days old). The new water fraction will only be corre-
lated with the young water fraction or mean transit time if the
shape of the underlying transit time distribution is held con-

stant, which is not the case for the 1000 random parameter
sets considered here and is not likely to be true in real-world
catchments either.

3.4 Benchmark tests: weekly tracer sampling

Many long-term water isotope time series have been sampled
at weekly intervals. Can new water fractions be estimated re-
liably from such sparsely sampled records? To find out, I ag-
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Figure 3. Average new water fractions (same-day precipitation in streamflow) for the 1000 simulated catchments (i.e., 1000 model parameter
sets) shown in Fig. 2, compared to the catchment mean transit time and the young water fraction Fyw (the fraction of streamflow younger
than 2.3 months). All values plotted here are determined from age tracking within the benchmark model, and thus are true values, without
any errors associated with estimating these quantities from tracer data. Neither mean transit time nor the young water fraction can reliably
predict the fraction of new water in streamflow.

gregated the benchmark model’s daily time series to weekly
intervals, volume-weighting the isotopic composition of pre-
cipitation to simulate the effects of weekly bulk precipitation
sampling, and subsampling streamflow isotopes every sev-
enth day to simulate weekly grab sampling. I then performed
ensemble hydrograph separation on the aggregated weekly
data, using the methods presented in Sect. 2.

Figure 4 shows the behavior of the benchmark model at
weekly resolution for both the damped and flashy catch-
ments. At the weekly timescale, the benchmark model ex-
hibits complex nonstationary dynamics in discharge (panels
a, b), water isotopes (panels c, d), and new water fractions
(panels e, h). Nonetheless – and even though the weekly sam-
pling timescale is much longer than the timescales of hydro-
logic response in the system – ensemble hydrograph separa-
tion yields reasonable estimates for the mean new water frac-
tions of both precipitation and discharge (both unweighted
and flow-weighted), as one can see by comparing the dashed
and solid lines in Fig. 4e–h.

A comparison of Figs. 1 and 4 shows that the isotopic
signature of precipitation is less variable among the weekly
samples than among the daily samples, reflecting the fact that
the weekly bulk samples of precipitation will inherently aver-
age over the sub-weekly variability in daily rainfall. By con-
trast, the weekly grab samples of streamflow lose all informa-
tion about what is happening on shorter timescales. The new
water fractions calculated from the weekly data are distinctly
higher than those calculated from the daily data, owing to the
fact that the definition of new water depends on the sampling
frequency: the proportion of water ≤ 7 days old (new un-
der weekly sampling) can never be less than the proportion
≤ 1 day old (new under daily sampling).

Figure 5 shows scatterplots comparing new water fractions
estimated by ensemble hydrograph separation and those de-

termined by age tracking in the benchmark model, analo-
gous to Fig. 2 but for weekly instead of daily sampling. The
weekly new water fractions are larger than the daily ones,
for the reasons described above, and exhibit more scatter be-
cause they are based on fewer data points than their daily
counterparts are. A small overestimation bias is visually ev-
ident in Fig. 2d and an even smaller underestimation bias is
evident in Fig. 2c. These reservations notwithstanding, Fig. 5
shows that ensemble hydrograph separation can reliably pre-
dict new water fractions of both discharge and precipitation,
with and without volume-weighting, based on weekly tracer
samples.

3.5 Variations in new water fractions with discharge,
precipitation, and seasonality

Ensemble hydrograph separation does not require continuous
data as input, so it can be used to estimate Fnew values for
(potentially discontinuous) subsets of a time series that re-
flect conditions of particular interest. For example, if we split
the time series shown in Fig. 1 into several discharge ranges,
we can see that at higher flows, tracer fluctuations in the
stream are more strongly correlated with tracer fluctuations
in precipitation (Fig. 6a, b). Each of the regression slopes in
Fig. 6a, b defines the event new water fraction QpFnew for
the corresponding discharge range. Repeating this analysis
for each 10 % interval of the discharge distribution (0th–10th
percentile, 10th–20th percentile, etc.), plus the 95th–100th
percentile, yields the profiles of QpFnew as functions of dis-
charge, as shown by the blue dots in Fig. 6c–h. The green
squares show the corresponding forward new water fractions
PFnew for comparison. The light blue and light green lines
show the corresponding true new water fractions determined
by age tracking in the benchmark model.
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Figure 4. Illustrative simulations of weekly water fluxes, deuterium concentrations, and new water fractions. The benchmark model, pre-
cipitation forcing, and parameter values are identical to those in Fig. 1. Although the isotope tracer concentrations and new water fractions
exhibit complex nonstationary dynamics, ensemble hydrograph separation yields reasonable estimates of the average backward and forward
weekly new water fractions, as shown in (e, f) and (g, h), respectively. Panels (a) and (b) show weekly average rates of precipitation and
discharge. Panels (c) and (d) show the weekly volume-weighted isotopic composition of precipitation (mimicking what would be collected
in a weekly rain sample) and the instantaneous composition of discharge at the end of each week (mimicking what would be collected in a
weekly grab sample). Panels (e) and (f) show the fraction of discharge that is composed of same-week precipitation (the weekly new water
fraction; yellow lines), as determined from model age tracking, and its long-term average (dashed blue line), compared to the new water
fraction predicted by ensemble hydrograph separation (solid blue line) from the weekly samples shown in (b). Panels (g) and (h) show the
fraction of precipitation that becomes same-week discharge (the weekly new water fraction of precipitation, or forward new water fraction,
yellow lines), as determined from model age tracking, and its long-term average (dashed blue line), compared to the new water fraction
predicted by ensemble hydrograph separation (solid blue line). Discharge-weighted and precipitation-weighted average new water fractions,
and their predicted values, are shown by red solid and dashed lines.

If, instead, we split the time series shown in Fig. 1 into
subsets reflecting ranges of precipitation rates rather than
discharge, we obtain Fig. 7. Figure 7 is a counterpart to
Fig. 6, but with QpFnew and PFnew plotted as functions of
rainfall rates rather than discharge. The two figures exhibit
broadly similar behavior. Unsurprisingly, new water frac-
tions are higher at higher discharges and rainfall rates, be-
cause under these conditions a higher fraction of discharge
comes from the upper box, which has younger water. For-

ward new water fractions are typically smaller than event
new water fractions, because during storms the rainfall rate
is higher than the streamflow rate, so the ratio between same-
day streamflow and the total rainfall rate (PFnew) will neces-
sarily be smaller than the ratio between same-day streamflow
and the total streamflow rate (QpFnew). Exceptions to this rule
arise when rainfall rates are lower than discharge rates, such
as during periods of light rainfall while streamflow is still un-
dergoing recession from previous heavy rain. Thus the green

Hydrol. Earth Syst. Sci., 23, 303–349, 2019 www.hydrol-earth-syst-sci.net/23/303/2019/



J. W. Kirchner: Ensemble hydrograph separation 315

Figure 5. New water fractions estimated from weekly tracer dynamics using ensemble hydrograph separation, compared to averages of
time-varying new water fractions determined from age tracking in the benchmark model. Plots are similar to those in Fig. 2, except here they
are derived from simulated weekly sampling of tracer concentrations in precipitation and streamflow. Diagonal lines show perfect agreement.
Each scatterplot shows 1000 points, each representing an individual random set of parameters, a randomly generated precipitation tracer time
series, and a random set of measurement errors and missing values (see Sect. 3.1). The daily precipitation amounts are the same (Smith River
time series) in each case. The event new water fraction (a, b) is the average fraction of new (same-day) water in streamflow during time steps
with precipitation, as described in Sect. 2.3. Panel (a) shows event new water fractions estimated from 5 years of simulated weekly tracer
data; panel (b) shows the same quantity estimated from single years of simulated weekly tracer data (each year is denoted by a different
color). Averaging over the 5 years reduces scatter compared to the individual-year estimates. The new water fraction of discharge (c) is the
fraction of same-day precipitation in streamflow, averaged over all time steps including rainless periods (Eq. 14, Sect. 2.4); its flow-weighted
counterpart (e) is calculated using Eqs. (16)–(18) of Sect. 2.5. The forward new water fraction (the fraction of precipitation that becomes
same-day streamflow; d) is calculated using Eq. (21), and its precipitation-weighted counterpart (f) is calculated using Eq. (28). There is only
slight visual evidence of bias, and the scatter around the 1 : 1 line is small compared to the range spanned by the new water fractions.

and blue curves cross over one another at the left-hand edges
of Fig. 7c–h, whereas in Fig. 6c–h they do not.

Three conclusions can be drawn from Figs. 6 and 7. First,
in these model catchments, new water fractions vary dramat-
ically between low flows and high flows, and between low
and high precipitation rates, with the event new water frac-
tion QpFnew and the forward new water fraction PFnew di-
verging from one another more at higher flows and higher

rainfall forcing. Second, different catchment parameters (dif-
ferent columns in Fig. 6) and different precipitation forcings
(different rows in Fig. 6) yield different patterns in the rela-
tionships between the new water fractions QpFnew and PFnew
on the one hand and precipitation and discharge on the other.
And third, these patterns are accurately quantified by ensem-
ble hydrograph separation, which matches the age-tracking
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Figure 6. Variations in new water fractions across ranges of discharge. (a, b) Relationship between tracer concentrations in precipitation and
streamflow in the benchmark model run shown in Fig. 1, stratified by percentiles of the frequency distribution of discharge, for damped and
rapid response parameter sets. In these coordinates, the slopes of the regression lines through the ensembles of points estimate their average
event new water fractions QpFnew (Eq. 10; Sect. 2.3). (c–h) Variation in new water fractions across discharge bins in the benchmark model.
Dark blue and green symbols show estimates of the event new water fraction of discharge (QpFnew) and the forward new water fraction
(fraction of precipitation appearing in same-day streamflow, PFnew, Eq. 21) for each decile of the daily discharge distribution (the leftmost
10 points) and the uppermost 5 % (the rightmost point). Error bars show standard errors, where these are larger than the plotting symbols.
Light blue and light green lines show the corresponding true new water fractions measured by age tracking in the benchmark model. The
three rows (c–d, e–f, and g–h) show catchment response to three different precipitation climatologies (Smith River, Plynlimon, and Broad
River), for both the damped response parameter set (c, e, g) and the flashy response parameter set (d, f, h). The new water fractions QpFnew
and PFnew vary strongly with discharge. Ensemble hydrograph separation accurately estimates both QpFnew and PFnew across the full range
of discharge for all three forcings and both parameter sets.
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Figure 7. Variations in new water fractions across ranges of precipitation. (a, b) Relationship between tracer concentrations in precipitation
and streamflow in the benchmark model run shown in Fig. 1, stratified by percentiles of the frequency distribution of precipitation, for
damped and rapid response parameter sets. In these coordinates, the slope of the regression line through each ensemble of points estimates
its average event new water fraction QpFnew (Eq. 10; Sect. 2.3). (c–h) Variation in new water fractions across precipitation bins in the
benchmark model. Dark blue and green symbols show estimates of the event new water fraction of discharge (QpFnew) and the forward
new water fraction (PFnew, the fraction of precipitation appearing in same-day streamflow; Eq. 21). Average QpFnew and PFnew values are
plotted for each decile of the daily precipitation distribution (the leftmost 10 points) and the uppermost 5 % (the rightmost point), excluding
precipitation amounts less than 1 mm day−1 (see text). Error bars show standard errors, where these are larger than the plotting symbols.
Light blue and light green lines show the corresponding true new water fractions measured by age tracking in the benchmark model. The
three rows (c–d, e–f, and g–h) show catchment response to three different precipitation climatologies (Smith River, Plynlimon, and Broad
River), for both the damped response parameter set (c, e, g) and the flashy response parameter set (d, f, h). The new water fractions QpFnew
and PFnew vary strongly with daily precipitation. Ensemble hydrograph separation accurately estimates both QpFnew and PFnew across the
full range of precipitation for all three forcings and both parameter sets.
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results (shown by the solid lines) within the estimated stan-
dard errors in most cases.

Thus the patterns describing how new water fractions
change with precipitation and discharge may be useful as
signatures of catchment transport behavior and can be esti-
mated directly from tracer time series using ensemble hy-
drograph separation. These observations raise the question
of whether any of these signatures of behavior, as inferred
from the patterns in these plots (if not the individual numer-
ical values), might imply something useful about the charac-
teristics of the catchments themselves, ideally in a way that
is not substantially confounded by precipitation climatology.
A comprehensive answer is not possible within the scope of
this paper, since it focuses mostly on just two parameter sets
and three precipitation records. But as a first approach, one
can try superimposing the results in Figs. 6 and 7 on consis-
tent axes (note that the axes in these figures’ various panels
differ from one another in order to show the full range of
behavior). Doing so yields Fig. 8, which overlays the age-
tracking results from Figs. 6c–h and 7c–h in its left- and
right-hand panels, respectively. In Fig. 8, catchments with
the damped and flashy parameter sets are denoted by green
and blue curves, respectively, with different levels of bright-
ness corresponding to the three different precipitation clima-
tologies. The key question is: are there patterns in QpFnew
or PFnew that clearly distinguish the flashy catchment from
the damped catchment, regardless of the precipitation forc-
ing? Figure 8a shows an example where this is not the case;
instead, the two catchments’ behaviors largely overlap in a
tangle of blue and green lines. In the other three panels, how-
ever (and particularly for the trends in PFnew as a function of
precipitation rates, as shown in Fig. 8d), the blue and green
curves are relatively distinct from one another, but the dif-
ferent climatologies largely overlap for each catchment. This
result suggests that these traces may be useful as diagnostic
signatures of catchment characteristics, which are relatively
insensitive to precipitation climatology. However, Fig. 8 can
only be considered a preliminary indication of what might be
possible, rather than a definitive demonstration.

The behavior summarized in Figs. 6–8 shows that, in gen-
eral, new water fractions are functions of both catchment
characteristics and precipitation climatology. Moreover, new
water fractions will depend on the sequence of precipita-
tion events, not just on their frequency distribution, because
they will depend on antecedent wetness. Thus although the
ensemble hydrograph separation approach does not require
continuous data, and thus can be applied to time series with
data gaps, any inferred new water fractions will obviously
represent only the particular time intervals that are included
in the analysis.

One implication of the forgoing considerations is that sea-
sonal differences in storm size and frequency should also be
reflected in seasonal variations in new water fractions. Fig-
ure 9a shows a scatterplot of tracer fluctuations in stream-
flow and precipitation, color-coded by season, for the flashy

catchment simulation shown in Fig. 1. The regression lines
(whose slopes define the event new water fractions QpFnew
for the corresponding seasons) show that tracer concentra-
tions in streamflow and precipitation are more tightly cou-
pled in winter and spring than in summer and autumn. Panels
b–d of Fig. 9 demonstrate large variations in the event new
water fraction QpFnew, the new water fraction of discharge
QFnew, and the forward new water fraction of precipitation
PFnew from month to month, with a broad seasonal trend to-
wards larger new water fractions in winter and spring. The
month-to-month variations in the age-tracking results (the
smooth curves) are usually quantified by the ensemble hy-
drograph separation estimates (the solid dots) within their
calculated uncertainties (as shown by the error bars). Thus
Fig. 9 suggests that ensemble hydrograph separation can be
used to quantify how catchment transport behavior is shaped
by seasonal patterns in precipitation forcing.

3.6 Effects of evaporative fractionation

Any analysis based on water isotopes must deal with the
potential effects of isotopic fractionation due to evaporation
(e.g., Laudon et al., 2002; Taylor et al., 2002; Sprenger et al.,
2017; Benettin et al., 2018). A detailed treatment of evapora-
tive fractionation would necessarily be site-specific and thus
beyond the scope of this paper. Nonetheless, it is possible to
make a simple first estimate of how much evaporative frac-
tionation could affect new water fractions estimated from en-
semble hydrograph separation. The benchmark model does
not explicitly simulate evapotranspiration and its effects on
the catchment mass balance, but the issue to be addressed
here is different: how much could evaporative fractionation
alter the isotope values measured in streamflow, and how
could this affect the resulting estimates of new water frac-
tions?

To explore this question, I first adjusted the isotope val-
ues of infiltration entering the model in Fig. 1 to mimic the
effects of seasonally varying evaporative fractionation. I as-
sumed that evaporative fractionation was a sinusoidal func-
tion of the time of year, ranging from zero in midwinter to
20 ‰ in midsummer. Thus I assumed that evaporative frac-
tionation effectively doubled the seasonal isotopic cycle in
the water entering the model catchment (but not in the sam-
pled rainfall itself, since any fractionation that occurs be-
fore the rainfall is sampled will not distort the ensemble hy-
drograph separation). I then calculated new water fractions
based on the time series of sampled precipitation tracer con-
centrations and of streamflow tracer concentrations (altered
by the lagged and mixed effects of evaporative fractionation),
and compared these to the true new water fractions calculated
by age tracking within the model.

The results are shown in Fig. 10, which compares 1000
Monte Carlo trials with evaporative fractionation (the blue
dots) and another 1000 Monte Carlo trials without evapora-
tive fractionation (the gray dots). One can see that, in these
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Figure 8. Effects of precipitation climatology and catchment properties on discharge dependence and precipitation dependence of new
water fractions. The lines plotted here superimpose the model age-tracking results (solid lines) from Figs. 6 and 7. Panels (a) and (d) show
how event new water fractions (QpFnew, Sect. 2.3) and forward new water fractions (PFnew, Sect. 2.6) vary as functions of discharge and
precipitation, respectively. Green and blue lines show benchmark model behavior under the flashy and damped parameter sets, with three
levels of brightness corresponding to the three different precipitation climatologies: Mediterranean climate (Smith River, lightest colors),
humid maritime climate (Plynlimon, intermediate colors), and humid temperate climate (Broad River, darkest colors). When event new water
fractions are plotted as functions of discharge (a), different catchments and precipitation climatologies overlap. By contrast, in the other three
panels (and particularly in d, which shows forward new water fractions as functions of precipitation), the lines for the flashy catchment and
the damped catchment are clearly distinct from one another, regardless of precipitation climatology. This suggests that these patterns may be
diagnostic of the internal workings of the catchment, but relatively insensitive to the particular rainfall forcing.

simulations, evaporative fractionation leads to a slight ten-
dency to underestimate new water fractions. Nonetheless, the
blue and gray dots largely overlap, and both generally fol-
low the 1 : 1 lines. These results are reassuring, because the
modeled fractionation effects were designed to be a worst-
case scenario, in the following sense. Because ensemble hy-
drograph separation is based on patterns of fluctuations in
precipitation and streamflow tracers, any fractionation pro-
cess that created a constant offset between inputs and out-
puts would introduce no bias. For the same reason, any frac-
tionation process that was uncorrelated to the input isotopic
signature would also introduce no bias; thus, for example,
the modeled seasonal fractionation cycle would have had no
effect if there were no seasonal pattern in the precipitation
isotopes themselves. But because the seasonal fractionation
cycle is correlated with the seasonal pattern in the precipita-
tion isotopes, it can potentially bias the resulting estimates of
new water fractions. The fact that these biases are small, as
shown in Fig. 10, suggests that ensemble hydrograph sepa-
ration should yield realistic estimates of new water fractions,

even with substantial confounding by evaporative fractiona-
tion.

4 Estimating transit time distributions by ensemble
hydrograph separation

A natural extension of the approach outlined in Sect. 2 would
be to quantify the contributions of precipitation to streamflow
over a range of lag times: to quantify, in other words, the
catchment transit time distribution. In principle this should
be straightforward, although in practice several challenges
must be overcome. Below, I describe these issues and outline
techniques for addressing them. Readers who are not inter-
ested in the methodological details can proceed directly from
Sect. 4.1 to 4.5, skipping over Sect. 4.2–4.4.

4.1 Definitions

I assume that catchment inputs and outputs are sampled at
the same fixed time interval 1t and define the time that a
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Figure 9. Seasonality in new water fractions under Mediterranean
climate precipitation forcing. (a) Relationship between tracer con-
centrations in precipitation and streamflow in the flashy benchmark
model run shown in Fig. 1, stratified by season. Each season’s event
new water fraction can be estimated from the slope of the regression
line fitted to the corresponding set of points. (b, c, d) Average event
new water fractions (QpFnew), new water fractions of discharge
(QFnew), and forward new water fractions of precipitation (PFnew)
calculated from ensembles of all points within each month, across
the 5 years of benchmark model simulations. Error bars show stan-
dard errors, where these are larger than the plotting symbols. Curves
are drawn through true monthly average new water fractions, as de-
termined by age tracking in the benchmark model. Ensemble hy-
drograph separation reproduces this seasonal pattern in new water
fractions reasonably well. The uncertainty estimates also realisti-
cally predict the average deviation of the ensemble hydrograph sep-
aration estimates from the true age-tracking determinations. Values
shown here are generated by the benchmark model with the flashy
catchment parameter set and Smith River (Mediterranean climate)
precipitation forcing. The new water fractions would exhibit less
pronounced seasonality if the rainfall forcing were less strongly sea-
sonal or the catchment response were less flashy.

parcel of water enters the catchment (via rainfall, snowmelt,
etc.) as ti and the time that it exits via streamflow as tj . The
lag interval between precipitation and streamflow is indexed
as k = j− i. Pi is the rate that precipitation or snowmelt (net
of evaporative losses) enters the catchment at time ti , and
Qj is the rate of discharge that exits the catchment at time
tj . CPi and CQj are the tracer concentrations in precipitation
and streamflow, respectively. The water flux that enters as
precipitation at time ti and leaves as streamflow k time steps
later (at time tj = ti+k) is represented as qj+k . The sum of
qjk over all lag times k (corresponding to all previous entry
times i = j−k) is the total dischargeQj . Each of the qjk will
be a fraction of the total precipitation falling at time ti=j−k
and a (typically different) fraction of the total discharge at
time tj . The fraction of discharge exiting at time tj that en-
tered k time steps earlier is qjk/Qj , and the distribution of
qjk/Qj over lag time k yields the transit time distribution
conditioned on the exit time tj (also called the “backward”
transit time distribution). The fraction of precipitation enter-
ing at time ti that subsequently leaves as streamflow k time
steps later is qjk/Pj−k = qi+k, k/Pi , and the distribution of
qi+k, k/Pi over lag time k yields the transit time distribution
conditioned on the entry time ti (also called the “forward”
transit time distribution).

In practice, precipitation fluxes are typically measured
as averages over discrete time intervals, and tracer concen-
trations in precipitation are likewise volume-averaged over
discrete intervals (such as a day or a week) during which
the sample accumulates in the precipitation collector. By
contrast, discharge fluxes are typically measured instanta-
neously, and discharge tracer concentrations are typically
measured in instantaneous grab samples. In most of what
follows, I will assume that Pi and CPi are averages over
the interval t(i−1) < t ≤ ti , and Qj and CQj are instanta-
neous values at t = tj . However, in a few catchment stud-
ies, discharge concentrations have instead been measured in
time-integrated samples. The analysis presented below is the
same, whether the discharge tracer concentrations CQj are
instantaneous at t = tj or are integrated over each time in-
terval t(j−1) < t ≤ tj . The interpretation is slightly different,
however, because the average lag time corresponding to a
given lag interval k will depend on how precipitation and
streamflow are sampled. Usually, streamwater samples are
collected more or less instantaneously (grab sampling), and
precipitation samples are integrated over the time interval
that the sampler is open. A typical daily sampling scheme,
for example, might involve collecting a precipitation sample
at noon (which integrates precipitation that fell over the pre-
vious 24 h) and also collecting a grab sample of streamflow
at noon. In this case, the average lag time between a raindrop
falling as precipitation and being sampled in the same day’s
streamflow (i.e., k = 0) would be 12 h, assuming that, on av-
erage, the probability of rainfall is independent of the time of
day. Thus in this conventional sampling scheme, the average
lag time will be (k+ 0.5)1t , where 1t is the sampling in-
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Figure 10. Effects of seasonally varying evaporative fractionation on new water fractions estimated by ensemble hydrograph separation.
Points show new water fractions predicted from tracer fluctuations in precipitation and streamflow (on the vertical axis), compared to averages
of time-varying new water fractions determined by age tracking in the benchmark model (on the horizontal axis). Blue points show 1000
model runs in which precipitation undergoes seasonally varying evaporative fractionation ranging from zero in winter to 20 ‰ in summer.
Gray background points show 1000 model runs without evaporative fractionation (analogous to Fig. 2). Each model run has a different
random set of model parameters, measurement errors, and missing values, but the precipitation driver (Smith River daily precipitation) is
the same in all cases. The blue data clouds closely follow the 1 : 1 line, indicating that ensemble hydrograph separation can reliably estimate
new water fractions even in the presence of substantial evaporative fractionation.

terval. If, instead, the stream samples were daily composites,
then (for example) the same-day raindrops appearing in the
first hour’s subsample of streamflow would have an average
lag time of 30 min, the second hour’s would be 60 min, and
so forth, and therefore the daily average lag time would be
6 h. Thus if stream samples are time-integrated composites,
the average lag time will be (k+ 0.25)1t .

I now outline the fundamentals of the ensemble hydro-
graph separation approach to estimating transit time distribu-
tions. Conservation of water mass requires that the discharge
at time step j equals the contributions from all lag times k
(corresponding to all previous entry times i = j − k):

Qj =

∑
k≥0
qjk. (31)

Because tracing contributions to streamflow from all pre-
vious time steps would be impractical, it will be necessary
to truncate the summation in Eq. (31) at some maximum lag,
which I will denote as m, and to combine the unmeasured
older contributions in a water flux Qolderj :

Qj =

m∑
k=0

qjk +Qolderj ,

Qolderj =

∞∑
k=m+1

qjk = Qj −

m∑
k=0

qjk. (32)

Conservation of tracer mass requires that the tracer fluxes add
up similarly, again with a catch-all flux QolderjColderj :

Qj CQj =

m∑
k=0

qjkCPj−k +QolderjColderj

=

m∑
k=0

qjkCPj−k +

(
Qj −

m∑
k=0

qjk

)
Colderj . (33)

Dividing Eq. (33) by Qj and rearranging terms directly
yields

(
CQj −Colderj

)
=

m∑
k=0

qjk

Qj

(
CPj−k −Colderj

)
, (34)

which readers will recognize as the multi-lag counterpart of
Eq. (7).

Analogous to the approach in Sect. 2, here I account for
the concentration of older inputs Colderj using the streamflow
concentration at lagm+1, just beyond the longest lagm, with
the goal of filtering out long-term patterns that could other-
wise distort the correlations between CPj−k and CQj . Thus
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CQj−m−1 serves as a reference level for measuring fluctua-
tions in precipitation and streamflow tracer concentrations,
analogous to CQj−1 in Eq. (8). Adding a bias term α and an
error term εj yields(
CQj −CQj−m−1

)
=

m∑
k=0

qjk

Qj

(
CPj−k −CQj−m−1

)
+α+ εj , (35)

which almost looks like a conventional multiple linear re-
gression equation,

yj =

m∑
k=0

βk xjk +α+ εj , (36)

where

yj =
(
CQj −CQj−m−1

)
and xjk =

(
CPj−k −CQj−m−1

)
, (37)

with the difference that the coefficients βk in Eq. (36) are
constant over all exit times j and differ only as a function
of the lag time k, whereas the qjk/Qj terms in Eq. (35) can
differ among both lag times k and exit times j . Nonetheless,
by analogy with the mathematical arguments in Appendix A
and those at the end of Appendix B, one can expect that βk
will closely approximate the average of the time-varying con-
tributions qjk/Qj to streamflow over the ensemble of exit
times j (please note that this is not the same as assuming that
the transit time distribution is time-invariant). Substituting
βk as an ensemble estimate of qjk/Qj , one obtains the en-
semble hydrograph separation equation for estimating transit
time distributions,(
CQj −CQj−m−1

)
=

m∑
k=0

βk
(
CPj−k −CQj−m−1

)
+α+ εj . (38)

When appropriately rescaled as described in Sect. 4.5–
4.7 below, the coefficients βk in Eq. (38) – or more pre-
cisely, their regression estimates β̂k – can be used to estimate
the time-averaged (also sometimes called “marginal”) transit
time distribution.

4.2 Solution method

Using Y to represent the vector of reference-corrected
streamflow tracer concentrations yj = CQj −CQj−m−1 and
X to represent the matrix of reference-corrected input
tracer concentrations xjk = CPj−k −CQj−m−1 , we can rewrite
Eq. (38) in the array form of a multiple regression equation:

Y =

m∑
k=0

βkXk +α+ ε, (39)

where Xk is the kth column vector of X, and ε is the vec-
tor of the errors εj . The least-squares solution for multiple
regressions like Eq. (39) can be expressed in matrix form as

β̂0
β̂1
β̂2
.
.
.

β̂m

=



cov(X0,X0) cov(X0,X1) cov(X0,X2)

· · · cov(X0,Xm)

cov(X1,X0) cov(X1,X1) cov(X1,X2)

· · · cov(X1,Xm)

cov(X2,X0) cov(X2,X1) cov(X2,X2)

· · · cov(X2,Xm)

.

.

.
.
.
.

.

.

.

cov(Xm,X0) cov(Xm,X1) cov(Xm,X2)

· · · cov(Xm,Xm)



−1



cov(X0, Y )

cov(X1, Y )

cov(X2, Y )

.

.

.
cov(Xm, Y )

,

(40)

where the regression coefficients β̂k are the least-squares es-
timators of the true (but unknowable) coefficients βk . Equa-
tion (40) is the multidimensional counterpart to Eq. (10). The
first term on the right-hand side of Eq. (40) is the inverse of
the matrix of the covariances of the Xk at each lag with each
other lag, and the second term is a vector of the covariances
between Y and the Xk at each lag. Equation (40) is equiva-
lent to the more widely known “normal equation” for solving
multiple regressions,

β̂ =
(
XTX

)−1 XTY , (41)

if one first normalizes Y and each of the Xk by subtract-
ing their respective means; doing so has no effect on the es-
timates of the regression coefficients β̂k . (The elements of
the square matrix XTX are the covariances between the Xk’s
at each pair of lags, multiplied by the number of samples;
likewise the elements of the column matrix XTY are the co-
variances between each of the Xk’s and Y , multiplied by the
number of samples.)

Astute readers will immediately notice a fundamental
problem with applying Eqs. (40) or (41) in practice, namely
that they require precipitation tracer concentrations CPj−k for
all time steps j = 1 . . . n and lags k = 0 . . .m. In every prac-
tical case, many precipitation tracer concentrations will be
missing, for two reasons. Some tracer concentrations will be
missing due to sampling or measurement failures, and many
more will be inherently missing because precipitation tracer
concentrations cannot exist for time steps without precipita-
tion. As we will see shortly, missing measurements that arise
for these two different reasons must be handled in two dif-
ferent ways. But regardless of its origins, each missing tracer
concentration CPi at time step i will create a diagonal line of
missing values xj, k in the matrix X, causing a missing value
in the first column (k = 0) at j = i, and another in the second
column (k = 1) at j = i+ 1, and so on up to the last column
(k =m) at j = i+m.

So-called “missing data problems” arise frequently in
the statistical literature, and several approaches have been
proposed for handling them (Little, 1992). One approach,
termed “listwise deletion” or “complete-case analysis”, in-
volves discarding all cases (meaning all rows j in the matrix
X) in which any variables are missing and analyzing only
the remaining (complete) cases. In our situation, this would
mean analyzing only exit times tj that are preceded by un-
broken series of rainy periods, up to the maximum lag m for
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which we want to estimate the coefficients β̂k . Such ensem-
bles of points would be mathematically convenient, but they
would also be very strongly biased in a hydrological sense,
because they would represent periods of unusually consistent
rainfall (and thus unusually wet catchment conditions). Fur-
thermore, if the maximum lag m is sufficiently long, records
with continuous rainfall over all m+1 lags (k = 0 . . .m) will
become impossible to find. For these reasons, complete-case
analysis is not a feasible approach to our problem.

A second class of approaches to the missing data problem
involves imputing values to the missing data (Little, 1992). In
our case, however, many of the missing data are not simply
unmeasured, but cannot exist at all (because rainless days
have no rainfall concentrations), so it is not obvious how to
impute the missing values.

A third approach, termed “pairwise deletion” or
“available-case analysis”, first proposed by Glasser (1964),
entails evaluating each of the covariances in Eq. (40) using
any cases for which the necessary pairs of observations exist.
Thus the covariances in Eq. (40) are replaced by

cov(Xk,X`)(k`) =
1

n(k`)− 1

∑
j∈(k`)

(
xjk − xk(k`)

)(
xj`− x`(k`)

)
(42)

and

cov(Xk, Y )(ky) =
1

n(ky)− 1

∑
j∈(ky)

(
xjk − xk(ky)

)(
yj − y(ky)

)
,

(43)

where the notation (k`) indicates terms that are evaluated
over all cases j for which both xjk and xj` exist (e.g., xk(k`)
is the mean of the column vector Xk for rows j where nei-
ther xjk nor xj` is missing, and n(k`) is the number of such
cases), and (ky) indicates terms that are evaluated over all
cases j for which xjk and yj exist.

Glasser’s approach can potentially handle the problem of
tracer measurements that are missing at random due to sam-
pling or analysis failures. However, it will not correctly han-
dle the problem of tracer concentrations that are missing
due to a lack of sufficient precipitation, because it assumes
that the missing values occur randomly and therefore that
Eqs. (42)–(43) are unbiased estimators of the covariances
that one would obtain if no samples were missing. But when
little or no precipitation falls on the catchment, it delivers
little or no tracer to subsequent streamflow, and thus its con-
tribution to the covariance between precipitation and stream-
flow concentrations will be nearly zero. Therefore different
handling is required for precipitation tracer concentrations
that are missing because they were not measured, versus
those that are missing because they never existed at all (be-
cause no rain fell). As shown in Appendix B, periods with-
out precipitation must be taken into account with weighting
factors on the off-diagonal elements of the covariance ma-

trix (because the tracer covariances will be less strongly cou-
pled to one another, the less frequently precipitation falls).
When the approach outlined in Appendix B is combined with
Glasser’s method for estimating each of the covariances, the
end result is

β̂0

β̂1

β̂2

.

.

.

β̂m


=



cov(X0,X0)(0, 0)
nx0x1

nx0

cov(X0,X1)(0, 1)
nx0x2

nx0

cov(X0,X2)(0, 2)

· · ·
nx0xm

nx0

cov(X0,Xm)(0,m)

nx1x0

nx1

cov(X1,X0)(1, 0) cov(X1,X1)(1, 1)
nx1x2

nx1

cov(X1,X2)(1, 2)

· · ·
nx1xm

nx1

cov(X1,Xm)(1,m)

nx2x0

nx2

cov(X2,X0)(2, 0)
nx2x1

nx2

cov(X2,X1)(2, 1) cov(X2,X2)(2, 2)

· · ·
nx2xm

nx2

cov(X2,Xm)(2,m)

.

.

.

.

.

.

.

.

.

nxmx0

nxm
cov(Xm,X0)(m, 0)

nxmx1

nxm
cov(Xm,X1)(m, 1)

nxmx2

nxm
cov(Xm,X2)(m, 2)

· · · cov(Xm,Xm)(m,m)



−1



cov(X0, Y )(0, y)
cov(X1, Y )(1, y)
cov(X2, Y )(2, y)

.

.

.

cov(Xm, Y )(m, y)

 , (44)

where the covariance terms are defined by Eqs. (42)–(43),
nxk is the number of time steps j for which precipitation fell
at time i = j − k (whether or not that precipitation was sam-
pled and analyzed), and nxkx` is the number of time steps j
for which precipitation fell at both j − k and j − ` (again,
whether or not those precipitation events were sampled and
analyzed). As explained in Appendix B, the estimated coef-
ficients β̂k will closely approximate the average of the time-
varying coefficients βj, k = qjk/Qj , averaged over times j
for which precipitation fell at times i = j − k (but not over
rainless periods, from which no streamflow can originate
and thus βj, k = qjk/Qj must be zero). In practice, a single
droplet of mist does not make a rainstorm, so there will be
some threshold rate of precipitation below which there will
be too little water to have any detectable effect on streamflow
(and too little water to analyze). Thus nxk and nxkx` will be
determined by counting the time steps that exceed this pre-
cipitation threshold:

nxk =

n∑
j=1

{
1 : Pj−k ≥ Pthreshold
0 : Pj−k < Pthreshold

,

nxkx` =

n∑
j=1

{
1 : Pj−k ≥ Pthreshold and Pj−` ≥ Pthreshold
0 : Pj−k < Pthreshold or Pj−` < Pthreshold

. (45)

In the calculations presented here, I have assumed a pre-
cipitation threshold of 1 mm day−1, but expert judgment may

www.hydrol-earth-syst-sci.net/23/303/2019/ Hydrol. Earth Syst. Sci., 23, 303–349, 2019



324 J. W. Kirchner: Ensemble hydrograph separation

lead to other values of Pthreshold in real-world situations. Note
that some measurements will usually also be missing due
to sampling or measurement failures in addition to precipi-
tation intermittency. Thus n(ky) and n(k`) in Eqs. (42)–(43),
which account for both types of missing data, will typically
be smaller than nxk and nxkx` in Eq. (44).

4.3 Tikhonov–Phillips regularization

Gaps in the underlying data imply that, unlike covariance
matrices in conventional multiple regressions, the covariance
matrix in Eq. (40) is not guaranteed to be positive definite
(and thus may not be invertible). Even when the covari-
ance matrix is invertible, it may be ill-conditioned, making
its inversion unstable. This issue arises frequently in inver-
sion problems whenever different combinations of lagged in-
puts will have nearly equivalent effects on the output, mak-
ing it difficult for the inversion to decide among them (this
is the multidimensional analogue to nearly dividing by zero
in Eq. 10). In minimizing the sum of squared deviations
from the observations, inversions like Eq. (40) can poten-
tially yield wildly oscillating solutions, with huge negative
values of β̂k at some lags delicately balancing huge positive
values at other lags. Such results are not just unrealistic; they
are also unstable, with tiny differences in the underlying data
potentially having huge effects on the β̂k estimates.

A standard therapy for this disease is Tikhonov–Phillips
regularization (Phillips, 1962; Tikhonov, 1963). This tech-
nique (also known by many other names, including
Tikhonov regularization, Tikhonov–Miller regularization,
and the Phillips–Twomey method) is commonly used to solve
ill-conditioned geophysical inversion problems (Zhadanov,
2015) but is less widely known in hydrology. Whereas con-
ventional least-squares inversion finds the set of parameters
β̂k that will minimize the misfit between the predicted and
observed yj , no matter how strange those β̂k values may be,
Tikhonov–Phillips regularization adds a second criterion that
quantifies the strangeness of the β̂k values themselves and
finds the set of parameters β̂k that will minimize the sum of
both criteria. Phillips (1962) first showed how this joint min-
imization could be formulated as a simple extension of the
normal matrix approach to solving linear inversion problems.
This formulation, applied to our problem, is(
β̂k

)
= (C+ λH)−1 (cov(Xk, Y )(ky)

)
, (46)

where C is the matrix of covariance terms in Eq. (44), and
the parameter λ controls the relative weight given to the two
criteria, namely the mean squared deviations of the predicted
and observed yj values (controlled by the covariance matrix
C) and the deviations from ideal behavior of the β̂k values
(controlled by the matrix H).

The form of H is determined by the criterion of reason-
ableness that is applied to the β̂k . One possible criterion
(among many that can be found in the literature) can be called

“parsimony”: minimize the mean square of the β̂k , thus pe-
nalizing solutions with large β̂k values. Minimizing the func-
tional

〈
β̂2
k

〉
yields the identity matrix for H (Tikhonov, 1963):

H=


1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0
0 · · · 0 0 1

 . (47)

This approach, also called “ridge regression” because it
adds a “ridge” of extra weight along the diagonal of the co-
variance matrix, was Tikhonov’s original regularization crite-
rion and is widely used in geophysical inversions (including
unit hydrograph estimation). In our case, however, it would
have the undesirable effect of creating a systematic under-
estimation bias in our estimates of recent contributions to
streamflow, by always making the β̂k smaller than they would
be otherwise.

A second possible criterion is consistency: minimize the
variance of the β̂k , thus penalizing solutions with individual
β̂k values that differ greatly from the mean of all the β̂k . Min-

imizing the functional
〈(
β̂k −

〈
β̂k

〉)2
〉
, where angled brack-

ets indicate averages from k = 0 to k =m, leads to an H ma-
trix of the form (Press et al., 1992)

H=



1 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . .
...

0 · · · 0 −1 2 −1 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 1


. (48)

Like Eq. (47), this minimum-variance criterion is also
widely used and has the advantage that, unlike Eq. (47), it
does not lead to systematic biases in the average β̂k values.
However, if the transit time distribution is strongly skewed,
with large contributions to streamflow at short lags, minimiz-
ing the variance of the β̂k will tend to suppress this short-
lag peak in the transit time distribution. This distortion of
the transit time distribution is undesirable when one seeks to
quantify recent contributions to streamflow.

A third possible criterion is smoothness: minimize
the mean square of the second derivatives of the β̂k ,
thus penalizing β̂k values that deviate greatly from their
neighbors. Minimizing the second derivative functional〈(
β̂k−1− 2β̂k + β̂k+1

)2
〉
, where the angled brackets indicate

an average from k = 1 to k =m− 1, leads to an H matrix of
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the form (Phillips, 1962; Press et al., 1992)

H=



1 −2 1 0 0 0 0 · · · 0
−2 5 −4 1 0 0 0 · · · 0
1 −4 6 −4 1 0 0 · · · 0
0 1 −4 6 −4 1 0 · · · 0
.
.
.

. . .
.
.
.

0 · · · 0 1 −4 6 −4 1 0
0 · · · 0 0 1 −4 6 −4 1
0 · · · 0 0 0 1 −4 5 −2
0 · · · 0 0 0 0 1 −2 1


. (49)

This criterion, first used by Phillips (1962), has the advan-
tage of strongly suppressing rapid oscillations in the β̂k while
barely affecting the larger-scale structure of the inferred tran-
sit time distribution. Therefore this will be the regularization
criterion employed here.

The solution to Eq. (46) will depend on the value of the pa-
rameter λ, which determines the relative weight given to the
regularization criterion versus the goodness-of-fit criterion.
How should the value of λ be chosen? One can first note that,
for λH to be dimensionally consistent with the covariance
matrix, λ must have the same dimensions as the variance of
Xk . The second point to note is that the regularization crite-
rion and the goodness-of-fit criterion will have roughly equal
weight in determining the β̂k if the trace of λH equals the
trace of the covariance matrix C (Press et al., 1992). Com-
bining these two considerations, we can define a dimension-
less parameter ν that ranges between 0 and 1 and expresses
the fractional weight given to the regularization criterion, and
then calculate the corresponding value of λ as

λ=
ν

1− ν
Tr(C)
Tr(H)

. (50)

As one can see from Eq. (50), when ν = 0.5, the trace of
λH will equal the trace of the covariance matrix C, and the
two criteria will have roughly equal weight in determining
the β̂k . As ν grows toward 1, the solution will be increasingly
dominated by the regularization criterion; conversely, if ν =
0 the regularization criterion will be ignored, and Eq. (46)
will become equivalent to Eq. (40).

The question remains as to what the most appropriate
value of ν (or λ) would be for any particular situation. An ap-
propriate degree of regularization will prevent the predicted
values of yj from fitting the data more closely than they
should (that is, it will prevent “fitting the noise” with unreal-
istic values of β̂k). Thus a theoretically optimal value of ν or
λ would be one that makes the variance of the prediction er-
rors of the yj similar to the expected variance of the εj (Press
et al., 1992). This approach will not work for our problem,
for three reasons. First, the variance of the εj is not known a
priori. Second, directly calculating the predicted yj , and thus
the prediction errors, is impossible if many values of xjk are
missing, as will usually be the case. Third, and perhaps most
importantly, Eq. (39) is, strictly speaking, structurally incor-
rect for our system, because β̂k is only an approximation to
the time-varying qjk/Qj . Therefore in our case a more prag-

matic approach (which is also taken in many geophysical ap-
plications of regularization methods) is to follow the advice
of Phillips (1962) that

in practice several values . . . should be tried and the
best value should be the one that appears to take
out the oscillation without appreciably smoothing
the [solution],

while keeping in mind that an element of subjectivity is in-
evitably introduced. In the analyses presented here, ν = 0.5
and thus the regularization criterion and the least-squares cri-
terion have roughly equal weight in determining the values
of the β̂k . Regularization usually has little effect on the es-
timated transit time distributions presented below, but it can
serve as a safeguard against obtaining wildly unrealistic re-
sults, particularly with large fractions of missing measure-
ments.

4.4 Uncertainties

In conventional multiple regression analysis, calculating the
uncertainties in the β̂k requires estimating the variance s2

ε of
the prediction errors εj :

s2
ε =

n− 1
n− (m+ 1)− 1

var
(
εj
)

εj = yj −

m∑
k=0

β̂k xjk −α =
(
CQj −CQj−m−1

)
−

m∑
k=0

β̂k
(
CPj−k −CQj−m−1

)
−α. (51)

It may seem that calculating Eq. (51) is impossible in
our case, because values of CPj−k are missing for all days
i = j −k without rain. However, as noted in Sect. 4.2 above,
for those points the true value of βj, k is known to be zero,
so the rainless terms can simply be ignored because they will
have no effect on the predicted yj . Thus if sampling and mea-
surement failures account for only a small fraction of the
missing tracer concentrations, Eq. (51) may yield adequate
estimates of s2

ε . Where there are many sampling and mea-
surement failures, we can use the error variance formula of
Glasser (1964), adapted to our problem as

s2
ε =

n− 1
n− (m+ 1)− 1

(
s2
y −

m∑
k=0

β̂k

(nxk
n

)
cov(Xk,Y )(ky)

)
, (52)

which is the mean square error of the estimated yj values.
The factor nxk/n accounts for the fact that there are n values
of yj , but only nxk of them are affected by β̂k; for the other
n−nxk , xjk is missing and β̂k has no influence on yj . In both
Eqs. (51) and (52), the factor n−1

n−(m+1)−1 corrects for degrees
of freedom. If one removes this degree-of-freedom correc-
tion, one gets the population mean square error (i.e., the error
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variance of the fit to these particular data). With the degree-
of-freedom correction, one gets the sample mean square er-
ror (i.e., an estimate of the prediction error for data drawn
from the same population, but not used to fit the model in
the first place). When applied to complete data sets (without
missing values and without regularization), Eq. (52) equals
the conventional error variance for multiple regression, and it
usually works reasonably well with missing values and with
unbiased regularization, e.g., with the consistency criterion
of Eq. (48) or the smoothness criterion of Eq. (49). However,
unlike in conventional multiple regression, there is no abso-
lute guarantee that the variance of the predicted values (the
summation in Eq. 52) will be smaller than the variance of the
observed values of yj . Users should therefore be aware that
Eq. (52) could potentially yield nonsensical negative values
(or unrealistically small positive values) for the error vari-
ance in particular cases.

In conventional multiple regression, the covariance matrix
of the coefficients β̂k equals the inverse of the covariance ma-
trix C, scaled by the error variance s2

ε divided by the sample
size n. This approach must be adapted to account for the ef-
fects of regularization, yielding the following expression for
the covariances of the β̂k:(

cov
(
β̂k, β̂`

))
=
s2
ε

neff
(C+ λH)−1 (C)(C+ λH)−1, (53)

where s2
ε is the error variance as estimated in Eqs. (51) or

(52), and neff is the sample size n, adjusted to account for se-
rial correlation in the residuals using Eq. (13). (Where there
are so many measurement or analysis failures that residuals
cannot be calculated reliably, it is better to guess a reasonable
value for their serial correlation than to assume it is zero,
which will typically lead to overestimates of neff and thus
underestimates of the associated uncertainties.) The standard
errors of the β̂k will be the square roots of the diagonal ele-
ments of the matrix defined by Eq. (53),

SE
(
β̂k

)
=

sε
√
neff

√[
(C+ λH)−1 (C)(C+ λH)−1]

kk
. (54)

Benchmark data sets verify that Eqs. (53) and (54) perform
as they should: the root-mean-square averages of the calcu-
lated SE

(
β̂k

)
are close to the root-mean-square averages,

over many replicate data sets, of the deviation of the fitted
coefficients β̂k from the true βk used to generate the synthetic
data. This result holds both with and without substantial frac-
tions of missing values, strong correlations among the Xk ,
and substantial additive noise.

There is one important caveat to this generalization, how-
ever: it holds only if the assumptions underlying the regular-
ization criterion are actually true. For example, if the true βk
vary smoothly with k, then regularization using Eq. (49) will
retrieve a set of smoothly varying coefficients β̂k that devi-
ate from the true βk by amounts that are well approximated

by the calculated standard errors SE
(
β̂k

)
. But if (say) the

true βk oscillate wildly from one k to the next, regulariza-
tion using Eq. (49) will generate a smoothly varying set of
β̂k which will deviate from the true (wildly oscillating) βk
by much more than the calculated standard errors SE

(
β̂k

)
as

calculated from Eq. (54). Regularization methods are forced
to assume that the βk obey the regularization criterion (with
the strength of this assumption determined by the parameter
λ), and thus they cannot be used to test whether this assump-
tion is true. Thus what the calculated standard errors tell us is
that, if the true βk vary smoothly over k, then the estimation
errors of the β̂k should be on the order of SE

(
β̂k

)
.

4.5 Transit time distribution of discharge

The coefficients β̂k determined by Eqs. (40)–(54) estimate
the average contribution to discharge Qj that originated as
precipitation k time steps earlier; that is, they estimate the av-
erage of qjk/Qj for combinations of times j and k for which
precipitation occurred at i = j − k. They do not account for
times i when no precipitation occurred and thus for which
qjk = 0 at the corresponding time steps j = i+ k.

To estimate the average contribution qjk/Qj of precipita-
tion to discharge across all time steps, both with and without
precipitation, we need to include values of qjk = 0 for times
without precipitation (and thus without any contribution of
precipitation to discharge). This is done by rescaling the co-
efficients β̂k and their uncertainties SE

(
β̂k

)
by nxk/n, the

ratio of event time steps (those with precipitation) to all time
steps. We also need to divide by the time step length 1t to
obtain the transit time distribution in the correct dimensions
(fraction per unit time). With these normalizations, the co-
efficients β̂k yield the transit time distribution of discharge
QTTDk (also termed the backward transit time distribution,
or the transit time distribution conditioned on exit time):

QTTDk =
β̂k

1t

nxk

n
, SE

(
QTTDk

)
=

SE
(
β̂k

)
1t

nxk

n
. (55)

These transit time distributions can be tested by compar-
ing them to time-averaged streamwater age distributions cal-
culated by age tracking in the benchmark model (Sect. 3.1).
Figure 11 shows the results of several such tests, using
both daily and weekly tracer data as input (left and right
columns, respectively). The light blue curves indicate the
true time-averaged transit time distribution (determined from
age tracking in the benchmark model), the dark blue sym-
bols show transit time distributions estimated from one tracer
time series, and the gray data clouds show 200 more transit
time distributions from the same model with different real-
izations of the random inputs. The weekly TTDs are larger,
in absolute terms, than the daily TTDs, because streamflow
will always contain at least as much water that originated as
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Figure 11. Transit time distributions of discharge estimated by ensemble hydrograph separation based on both daily and weekly tracer
sampling, versus true transit time distributions determined by benchmark model age tracking (light blue curves). Panels (a–d) show TTDs
for the modeled flashy and damped catchments, both driven by Smith River (Mediterranean climate) precipitation. Dark blue symbols show
transit time distributions estimated from one time series. Data clouds show ensemble hydrograph separation results (slightly jittered on the
horizontal axis) from 200 different realizations of random precipitation tracer values, random missing data, and random measurement errors.
Ensemble hydrograph separation correctly reveals the shapes of the transit time distributions and also quantifies their values, within the
calculated uncertainties, at most lags. It can clearly distinguish the transit time distributions of the two catchments under either daily or
weekly tracer sampling.

precipitation during the previous week as during the previ-
ous day (for the simple reason that the previous day is part
of the previous week). Figure 11 shows that ensemble hy-
drograph separation correctly estimates the general shapes of
the TTDs and their quantitative values. Furthermore, the gray
data clouds show that no TTD estimates deviate too wildly
from the age-tracking curves.

Real-world transit time distributions could potentially
have different shapes from those shown in Fig. 11. To test
whether ensemble hydrograph separation can correctly es-
timate transit time distributions with more widely varying
shapes, I explored the benchmark model’s parameter space,
in some cases venturing beyond the nominal parameter
ranges outlined in Sect. 3.1. As Fig. 12 illustrates, widely dif-
fering time-averaged (or marginal) transit time distributions
generated by the benchmark model (solid lines) are well ap-
proximated by the ensemble hydrograph separation estimates
(blue dots) calculated from the tracer time series. The stan-
dard errors are overestimated for humped TTDs, which gen-
erate strongly autocorrelated time series. The reason appears
to be that when the benchmark model’s parameters gener-
ate a strongly autocorrelated tracer time series, the residuals
will also be strongly autocorrelated; thus the effective sample
size neff will be small (Eq. 13) and the resulting uncertain-
ties SE

(QTTDk
)

will be correspondingly large (Eqs. 54–55).

One can also see that in some TTDs the last few lags can
exhibit substantial deviations from the age-tracking results
(e.g., Figs. 11c and 12b). This may be an aliasing effect that
arises when CQj−m−1 does not adequately capture the effects
of the unmeasured older fluxes (see Eqs. 32–35), in which
case one would expect it to be strongest when the TTD does
not approach zero at the longest measured lags (such as in
Fig. 12b). It may also arise for other unknown reasons. In any
case, a pragmatic solution is to estimate the TTD over a few
more lags than desired, and then to simply ignore the last few
lags of the estimated TTD. These caveats notwithstanding,
Figs. 11 and 12 demonstrate that ensemble hydrograph sep-
aration can reliably quantify transit time distributions with
widely varying shapes.

4.6 Volume-weighted transit time distribution

The transit time distributions defined in Eq. (55) are ensem-
ble averages in which each day counts equally; that is, for a
given lag k, QTTDk estimates the average of the ratio qjk/Qj

across all time steps, including zeroes at time steps for which
there was no precipitation at the corresponding time step
i = j − k. Thus Eq. (55) estimates time-weighted average
TTDs, which quantify the distribution of temporal origins of
an average day of discharge.
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Figure 12. Transit time distributions (TTDs) of discharge estimated by ensemble hydrograph separation based on daily sampling, compared
to true TTDs determined by benchmark model age tracking (light blue curves), for four model parameter sets yielding diverse patterns of
transport behavior. Dark blue symbols show transit time distributions estimated from one time series. Data clouds show ensemble hydrograph
separation results (slightly jittered on the horizontal axis) from 200 different realizations of random precipitation tracer values, random
missing data, and random measurement errors. Vertical axis scales differ greatly. Ensemble hydrograph separation correctly reveals the
shapes of the TTDs and also quantifies their values at most lags. However, panels (b) and (c) show that standard errors are overestimated for
TTDs that result in strong serial correlation in the modeled time series (see text).

For many purposes, it would be useful to estimate the tem-
poral origins of an average liter of discharge instead, that
is, the volume-weighted TTD, which we can denote QTTD∗k
(where, following the convention in Sect. 2, the asterisk in-
dicates volume-weighting). Instead of estimating the average
of the ratio qjk/Qj (the time-weighted average), a volume-
weighted TTD approximates the ratio of the average qjk to
the averageQj across all time steps (the ratio of the averages
rather than the average of the ratios). This is the multidimen-
sional analogue to the volume-weighted new water fraction
presented in Sect. 2.4 and is handled similarly. The multiple
regression in Eq. (36) can be volume-weighted by replacing
the covariances in Eqs. (42)–(43) with volume-weighted co-
variances (Galassi et al., 2016) instead:

cov∗(Xk,X`)(k`) =∑
j∈(k`)

Qj( ∑
j∈(k`)

Qj

)2

−
∑

j∈(k`)

Q2
j

∑
j∈(kl)

(
xjk − x

∗
k(k`)

)(
xj`− x

∗
`(k`)

)
(56)

and

cov∗(Xk, Y )(ky) =∑
j∈(ky)

Qj( ∑
j∈(ky)

Qj

)2

−
∑

j∈(ky)

Q2
j

∑
j∈(ky)

(
xjk − x

∗

k(ky)

)(
yj − y

∗

(ky)

)
, (57)

where

x∗k(k`) =

∑
j∈(k`)

Qjxjk∑
j∈(k`)

Qj

, x∗`(k`) =

∑
j∈(k`)

Qjxj`∑
j∈(k`)

Qj

,

x∗k(ky) =

∑
j∈(ky)

Qjxjk∑
j∈(ky)

Qj

, and y∗(ky) =

∑
j∈(ky)

Qjyj∑
j∈(ky)

Qj

(58)

are the volume-weighted means of the Xk ′s, X`′s, and Y ′s,
and x’s and y’s, and where the notations j ∈ (k`) and j ∈
(ky) indicate sums taken over all j for which xjk and xj` (or,
respectively, xjk and yj ) are not missing. With these volume-
weighted covariances in place of the unweighted covariances
from Eqs. (42)–(43), the volume-weighted regression can be
solved by the same procedures described in Sect. 4.2–4.4,
yielding volume-weighted estimates of the coefficients β̂∗k
(where, as above, the asterisk indicates volume-weighting).
Following the approach of Sect. 2.5, one should account for
the unevenness of the weighting when calculating the effec-
tive sample size neff to be used in Eq. (54) to estimate the
uncertainties in the β̂∗k ,

neffk =

(∑
Qj (ky)

)2∑(
Q2
j (ky)

) , (59)
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where neffk is the effective sample size at lag k, and Qj(ky)

denotes discharge during time steps j for which pairs of yj
and xjk exist (for a given lag k).

To estimate the volume-weighted TTD, we must aver-
age over all discharge (including discharge after time steps
with no precipitation). Thus the coefficients β̂∗k and their
uncertainties should be rescaled, following the approach in
Sect. 2.5, as follows:

QTTD∗k =
Qxk

Q

nxk

n

β̂∗k

1t
,

SE
(

QTTD∗k
)
=
Qxk

Q

nxk

n

SE
(
β̂∗k

)
1t

, (60)

where Qxk is the average discharge during the nxk time steps
j for which precipitation fell at i = j − k, Q is the aver-
age discharge over all time steps (including rainless periods),
nxk/n is the fraction of time steps with precipitation, and

β̂∗k and SE
(
β̂∗k

)
are estimated from the multiple regression

in Eq. (54), with the effective sample size neffk defined in
Eq. (59). The ratioQxk/Q corrects for any differences in av-
erage discharge during sampled and un-sampled time steps,
and the ratio nxk/n corrects for rain-free periods, which con-
tribute no new water to streamflow.

4.7 Forward transit time distribution

In addition to the backward transit time distributions qjk/Qj ,
which estimate the fraction of streamflow that originated
as precipitation k time steps earlier, it may also be useful
to estimate forward transit time distributions qjk/Pj−k =
qi+k, k/Pi , which estimate the fraction of precipitation that
becomes streamflow k time steps later. Instantaneous, time-
varying forward and backward transit time distributions can
differ markedly at any point in time. For example, today’s
backward transit time distribution strongly depends on the
timing and magnitude of previous precipitation supplying to-
day’s streamflow, whereas the forward transit time distribu-
tion strongly depends on how future precipitation mobilizes
water stored from today’s rainfall. These individual differ-
ences become less prominent when averaged over a large en-
semble of events. Systematic differences nonetheless persist,
because forward transit time distributions are defined only
during periods with precipitation (otherwise both qjk and
Pj−k are both zero and their ratio is undefined), and during
these periods precipitation must be higher, on average, than
discharge (otherwise there can be no recharge of the storages
that supply discharge during rainless periods).

Forward transit time distributions are less straightforward
to estimate from tracers than backward distributions are, for
the simple reason that although streamflow is a mixture of
contributions from previous precipitation events, the con-
verse does not hold: that is, precipitation cannot be expressed
as a mixture of subsequent streamflows. Although it is alge-

braically straightforward to rewrite Eq. (35) as either(
CQj −CQj−m−1

)
=

m∑
k=0

qjk

Pj−k

(
Pj−k

Qj

(
CPj−k −CQj−m−1

))
+α+ εj (61)

or

Qj

(
CQj −CQj−m−1

)
=

m∑
k=0

qjk

Pj−k

(
Pj−k

(
CPj−k −CQj−m−1

))
+α+ εj . (62)

Regressions based on these equations do not reliably pre-
dict the average of qjk/Pj−k when applied to synthetic data
from the benchmark model. (Note that these are the multi-
dimensional counterparts to Eqs. 25 and 26, which likewise
fail benchmark tests. Although Eqs. 35, 61, and 62 are al-
gebraically equivalent, they behave differently as TTD esti-
mators because the variance introduced byQj will affect the
results differently when it appears on right-hand side versus
the left-hand side).

Instead, by analogy to Eq. (21), we can estimate the for-
ward transit time distribution from the regression coefficients
β̂k of Eq. (44), rescaled as

PTTDk =
β̂k

1t

Qxk

P xk
, SE

(PTTDk
)
=

SE
(
β̂k

)
1t

Qxk

P xk
, (63)

where

P xk =
1
nxk

n∑
j=1

{
Pj−k : Pj−k ≥ Pthreshold

0 : Pj−k < Pthreshold
(64)

is the average precipitation rate during time steps with pre-
cipitation, and

Qxk =
1
nxk

n∑
j=1

{
Qj : Pj−k ≥ Pthreshold
0 : Pj−k < Pthreshold

(65)

is the average of the discharges that occur k time steps after
each of these precipitation intervals. Figure 14 shows that
forward transit time distributions estimated with Eq. (63) are
broadly consistent with true forward TTDs calculated by age
tracking in the benchmark model.

It should be emphasized that PTTDk represents the for-
ward transit time distribution of water that enters the catch-
ment as precipitation and subsequently exits as streamflow,
because these are the entry and exit fluxes in which the trac-
ers are measured. The forward transit time distribution of
water that exits by other pathways (such as evapotranspira-
tion) may be different. That distribution will be unmeasur-
able without catchment-scale tracer data from those other
pathways, which are not available at present. Thus, echoing
the principle outlined in Sect. 2.3 and 2.6, one should not in-
terpret PTTDk as the forward transit time distribution of all
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Figure 13. Volume-weighted transit time distributions (TTDs) of discharge estimated by ensemble hydrograph separation (Eq. 60) compared
to benchmark model age tracking. Panels (a, b) and (c, d) show TTDs for rapid and damped response parameters, respectively; model is
driven by Smith River precipitation in both cases. Ensemble hydrograph separation estimates from tracer fluctuations (dark blue symbols) are
broadly consistent with true TTD from age tracking in the benchmark model (solid curve). Data clouds show ensemble hydrograph separation
results (slightly jittered on the horizontal axis) from 200 different realizations of random precipitation tracer values, random missing data,
and random measurement errors. Dashed curve is the unweighted benchmark model TTD from Fig. 11 for comparison.

Figure 14. Forward transit time distributions (the fraction of precipitation that leaves the catchment within one time step, two time steps,
and so on) estimated by ensemble hydrograph separation (Eq. 63) compared to benchmark model age tracking. Panels (a, b) and (c, d)
show TTDs for flashy and damped catchments, respectively; the model is driven by Smith River (Mediterranean climate) precipitation in
both cases. Ensemble hydrograph separation estimates from tracer fluctuations (dark blue symbols) are broadly consistent with true TTDs
from age tracking in the benchmark model (solid curve). Data clouds show ensemble hydrograph separation results (slightly jittered on the
horizontal axis) from 200 different realizations of random precipitation tracer values, random missing data, and random measurement errors.
Dashed curve is the benchmark model backward TTD from Fig. 11 for comparison.
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precipitation entering the catchment, but only of the precipi-
tation that exits as streamflow.

The volume-weighted forward transit time distribution
PTTD∗k can also be calculated by rescaling arguments, anal-
ogous to the approach in Sect. 2.7. The key is to recognize
that we are seeking the ratio between the total volume of pre-
cipitation that will leave the catchment k days after falling as
precipitation (the sum of qjk over all j ) and the total volume
of precipitation that fell on the catchment during the corre-
sponding rainy days. The numerator of this ratio is identical
to the numerator of the volume-weighted backward transit
time distribution QTTD∗k , but the denominator is total pre-
cipitation rather than total discharge. Thus the precipitation-
weighted forward transit time distribution can be estimated
as

PTTD∗k =
Q

P

QTTD∗k =
Qxk

P

nxk

n

β̂∗k

1t
,

SE
(PTTD∗k

)
=
Q

P
SE
(

QTTD∗k
)

=
Qxk

P

nxk

n

SE
(
β̂∗k

)
1t

. (66)

Because the benchmark model in Fig. 1 has no evaporative
losses and thus Q= P , benchmark tests of the precipitation-
weighted forward TTD (PTTD∗k) and the discharge-weighted
backward TTD (QTTD∗k) will yield identical results; thus the
benchmark test of QTTD∗k (Fig. 13) will not be repeated here
as a test of PTTD∗k .

4.8 Variations in transit time distributions with
discharge, precipitation, antecedent moisture, and
seasonality

Like the new water fraction Fnew, estimating the transit time
distribution QTTDk does not require unbroken time series.
Thus, using approaches similar to those outlined in Sect. 3.5,
one can estimate transit time distributions for subsets (includ-
ing discontinuous subsets) of the precipitation and stream-
flow time series that reflect conditions of particular interest.
In the case of new water fractions, subdividing the source
data is relatively simple, because new water fractions are es-
timated from precipitation and streamflow tracers at the same
time steps; thus when one subdivides the streamflow time se-
ries one also subdivides the precipitation time series, and vice
versa. Transit time distributions are not so simple, because
each discharge time j is potentially affected by k = 0 . . .m
precipitation time steps i = j − k; thus the precipitation and
streamflow time series can be subdivided differently, accord-
ing to different criteria.

For example, we can choose to subdivide the data set ac-
cording to the discharge time j , thus evaluating Eq. (36) only
for time steps j that meet particular criteria (for example, to
analyze time steps with high or low flows separately). Do-
ing so has the effect of creating blank rows in the vector

Y and matrix X in Eq. (39) for each excluded value of j .
Figure 15 shows the results of estimating transit time dis-
tributions QTTDk using only the highest 20 % of discharges
(the corresponding QTTDk’s calculated from the entire time
series are also shown for comparison). Because large in-
puts of recent precipitation are likely to result in high flows,
one would intuitively expect that high flows should contain
larger contributions from recent precipitation. But how much
larger? As Fig. 15 shows, this question can be answered, at
least on average, by examining the transit time distributions
of high-flow discharges. Figure 15 shows that ensemble hy-
drograph separation can accurately estimate the transit time
distributions of both high flows and normal flows, and thus
can accurately quantify how transport behavior is different
under high-flow conditions.

In a Mediterranean climate (as depicted by, for exam-
ple, the Smith River precipitation record shown in Fig. 1),
one would intuitively expect rainy-season streamflow to have
larger contributions from recent precipitation. Conversely,
one would expect that dry-season streamflow will have much
smaller contributions from recent rainfall (because there is so
little of it, among other reasons). But how big are the differ-
ences between rainy-season and dry-season transit time dis-
tributions? As an illustration of what may be possible with
real-world data, I took the 5-year daily and weekly time se-
ries for the benchmark model driven by the Mediterranean
climate (Smith River) precipitation record, separated them
into summer (dry) and winter (wet) seasons, and analyzed the
two seasons separately. Figure 16 shows that, as expected, the
contributions of recent precipitation to streamflow are much
larger during the wet season than the dry season. But more
importantly, Fig. 16 also shows that these differences can be
accurately quantified, directly from data.

The examples above are based on subdividing the data set
according to the discharge time j . It is also possible to sub-
divide the data according to precipitation times i = j−k that
meet particular criteria (for example, to analyze time steps
with large and small rainstorms separately). Doing so has the
effect of creating diagonal stripes of blanks in the matrix X
in Eq. (39) at j = i+ k for each excluded value of i. These
are in addition to the diagonal stripes of missing values that
arise because of sampling and measurement failures, or more
commonly because no rain fell. Thus they pose no new math-
ematical challenges and can be handled by the methods out-
lined in Sect. 4.2.

One question that can be explored by subdividing the time
series according to precipitation is whether larger rainfall
events propagate faster through catchments. Intuition sug-
gests that intense rainfall should lead to larger contributions
to streamflow from faster flow paths. But how much larger?
Figure 17 illustrates how this kind of question could po-
tentially be explored. In Fig. 17, the forward transit time
distributions of the highest 20 % of precipitation are com-
pared to the average transit time distributions of all precipi-
tation events, for the damped and flashy parameter sets and
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Figure 15. Transit time distributions QTTDk for high flows (the highest 20 % of daily discharges; solid curve and solid circles), compared to
transit time distributions for all flows (dashed curve and open squares). Solid circles and open squares show QTTDk estimates from ensemble
hydrograph separation (Eq. 55); solid and dashed curves show true QTTDk determined by age tracking in the benchmark model. Panels (a,
c, e) and (b, d, f) show TTDs for flashy and damped catchments, respectively; the three rows of panels represent three different precipitation
drivers. Note that vertical axis scales differ substantially. High flows have much larger contributions of recent precipitation than average
flows do. Ensemble hydrograph separation quantitatively captures this behavior across flashy and damped model catchments with all three
precipitation drivers.

all three precipitation climatologies. One can see that large
rain events are associated with much larger amounts of wa-
ter reaching the stream quickly, but this effect largely dis-
appears after about 2–3 days. Moreover, the magnitude and
timing of this effect are nearly the same in the estimates de-
rived from ensemble hydrograph separation and benchmark
model age tracking, suggesting that they could also be reli-
ably estimated from real-world data.

Antecedent wetness has been recognized as a controlling
factor in catchment storm response (e.g., Detty and McGuire,
2010; Merz et al., 2006; Penna et al., 2011), but its effects on
solute transport at the catchment scale have rarely been quan-
tified, outside of the context of calibrated simulation models
(e.g., van der Velde et al., 2012; Heidbüchel et al., 2012; Har-
man, 2015; Rodriguez et al., 2018). To assess whether the
antecedent moisture dependence of solute transport might

be measurable directly from field data, I binned the bench-
mark model time series into ranges of antecedent moisture
(as measured by the upper-box storage values Su at the end
of the previous day) and estimated the new water fractions
QFnew and PFnew using ensemble hydrograph separation. I
used the upper-box storage as a proxy for measurements of
soil moisture or shallow groundwater levels, which are com-
monly used as indicators of antecedent wetness in catchment
studies (one could use antecedent discharge as a proxy in-
stead; this would yield nearly equivalent results). As Fig. 18a
and c show, ensemble hydrograph separation accurately pre-
dicts how both backward and forward new water fractions
increase as functions of antecedent moisture.

To visualize how high antecedent moisture affects tran-
sit time distributions, I isolated the discharge times tj asso-
ciated with the highest 10 % of antecedent moisture values
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Figure 16. Backward and forward transit time distributions (a, b and c, d, respectively) compared for summer (May–October) and winter
(November–April) months, from the benchmark model with Mediterranean (Smith River) precipitation climatology and flashy catchment
parameters. Solid circles and open squares show estimates from ensemble hydrograph separation (Eqs. 55 and 63); solid and dashed curves
show the true TTDs determined by age tracking in the benchmark model. Panels (a, c) and (b, d) show TTDs estimated from daily and
weekly sampling, respectively. Owing to larger and more frequent rainfalls during winter (see Fig. 1), transit time distributions calculated
for the winter months show a much larger contribution of recent rainfall to current streamflow (a, b) and a much larger fraction of current
precipitation becoming streamflow in the near future (c, d). Ensemble hydrograph separation quantitatively captures the seasonal differences
in the benchmark model’s transit time distributions.

and calculated the corresponding backward transit time dis-
tribution QTTDk (Fig. 18b). This TTD shows that high an-
tecedent moisture is associated with large contributions of
recent rainfall to streamflow, up to lags of about 3–4 days.
The peak of the transit time distribution does not come at
the shortest possible lag (same-day precipitation), but in-
stead at a lag of 1.5 days (i.e., previous-day precipitation).
This is the inevitable result of selecting points with high
previous-day moisture, which are likely to be associated
with high previous-day precipitation (and thus high contri-
butions of that previous-day precipitation to current stream-
flow). Storms typically last about 2–3 days in the Smith River
precipitation record underlying the simulations in Fig. 18, so
much of the backward TTD could potentially just reflect the
pattern of precipitation, combined with the fact that points
with high antecedent moisture have been selected.

One can even question why one would expect a backward
TTD to help in understanding the effects of antecedent mois-
ture at all, given that the backward TTD will mostly reflect
precipitation inputs that came before and, in some cases, cre-
ated the antecedent moisture conditions themselves. A for-
ward TTD, on the other hand, might help in quantifying how
antecedent moisture affects the transmission of future pre-
cipitation to streamflow. I therefore isolated the precipita-
tion times ti = tj−k associated with the highest 10 % of an-

tecedent moisture values (thus, as explained above, filtering
the matrix X in Eq. 39 along diagonal lines) and calculated
the corresponding forward transit time distribution PTTDk
(Fig. 18d). As Fig. 18d shows, in this model system, high
antecedent moisture roughly doubles the proportion of pre-
cipitation that reaches the stream, but only out to lags of
approximately 2 days, beyond which there is no clearly de-
tectable effect. Naturally, these inferences pertain only to the
model system, and do not tell us how real-world catchments
might behave. However, because Fig. 18 shows that new wa-
ter fractions and transit time distributions could be accurately
quantified across a range of antecedent moisture conditions
directly from field data, it illustrates how ensemble hydro-
graph separation could be used to explore the effects of an-
tecedent moisture in real-world catchments.

5 Discussion

Over 20 years ago, Rodhe et al. (1996) wrote that transit
times, despite their importance to modeling discharge, were
“impractical to determine experimentally except in rare ma-
nipulative experiments where catchment inputs can be ad-
equately controlled.” Despite over two decades of effort,
including increasingly elaborate theoretical discussions of
transit time distributions, the problem identified by Rodhe
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Figure 17. Forward transit time distributions PTTDk for intense precipitation (the highest 20 % of daily precipitation totals; solid curve and
solid circles), compared to forward transit time distributions for all precipitation (dashed curve and open squares). Solid circles and open
squares show PTTDk estimates from ensemble hydrograph separation (Eq. 63); solid and dashed curves show the true PTTDk determined
by age tracking in the benchmark model. Panels (a, c, e) and (b, d, f) show TTDs for flashy and damped catchments, respectively; the three
rows of panels represent three different precipitation drivers. Note that vertical axis scales differ greatly. Despite a tendency for ensemble
hydrograph separation to over-predict PTTDk for short lag times, the differences between the ensemble hydrograph separation estimates for
intense precipitation and normal precipitation (open squares and solid circles) closely mirror the differences between the solid and dashed
curves. Thus ensemble hydrograph separation can estimate the relative effect of intense precipitation on forward transit times, across widely
differing precipitation drivers and catchment characteristics.

et al. remains: how can we measure transit times, and transit
time distributions, of real-world catchments under real-world
conditions? And how can we verify whether the estimates we
get are realistic ones? The theory and benchmark tests pre-
sented in Sects. 2–4 aim to provide a partial answer.

5.1 Comparisons with other approaches

Particularly because their names are similar, it is impor-
tant to recognize how ensemble hydrograph separation con-
trasts with conventional hydrograph separation. Although
one could view Eq. (9) as an algebraic rearrangement of the
conventional hydrograph separation equation (Eq. 3), with
both sides multiplied by (Cnew−Cold) and CQj−1 substituted

in place of Cold, there are important differences between the
two approaches:

1. Conventional hydrograph separation estimates the time-
varying new water fraction Fnewj at each individual
point in time. By contrast, ensemble hydrograph sep-
aration estimates the average new water fraction Fnew
over an ensemble of points (hence the name).

2. Conventional hydrograph separation assumes that the
end-member tracer signatures are constant, but ensem-
ble hydrograph separation assumes them to be time-
varying; indeed, it exploits their variability through time
as its main source of information.
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Figure 18. Effects of antecedent moisture on new water fractions and transit time distributions (a, b) and their forward counterparts (c, d).
Panels (a) and (c) show new water fractions from benchmark model age tracking (solid curves) and ensemble hydrograph separation (solid
circles) stratified by percentiles of antecedent moisture (previous-day storage Su in the benchmark model’s upper box). Panels (b) and (d)
show transit time distributions for high antecedent moisture conditions (the highest 10 % of previous-day storage levels in the upper box of
the benchmark model; solid curve and solid circles), compared to transit time distributions for all antecedent moisture levels (dashed curve
and open squares). All panels are derived from simulations with the flashy catchment parameter set driven by Smith River (Mediterranean
climate) precipitation time series. Error bars are 1 standard error.

3. Conventional hydrograph separation requires that all
end-members that contribute to streamflow must be
identified, sampled, and measured. Ensemble hydro-
graph separation, by contrast, requires tracer measure-
ments only from streamflow and any end-members
whose contributions to streamflow are to be estimated.
There is no need to assume that all end-members have
been identified and measured, just that tracer fluctua-
tions in any unmeasured end-members are not strongly
correlated with those in measured end-members and in
streamflow.

4. Conventional hydrograph separation requires that the
end-members’ tracer concentrations are distinct from
one another; otherwise the solution to Eq. (3) becomes
unstable because the denominator is nearly zero. By
contrast, ensemble hydrograph separation estimates the
new water fraction by regression, and points where the
new water and old water concentrations overlap will
have almost no leverage on the regression slope (they
correspond to points near zero on the x axes of Figs. 6a,
b, 7a, b, 9a, or A1d, for example).

5. Conventional hydrograph separation is vulnerable to bi-
ases in tracer measurements, such as could arise from
isotopic evaporative fractionation. By contrast, these
same biases should have relatively little effect on en-

semble hydrograph separation (e.g., Sect. 3.6), because
it is based on regressions between tracer fluctuations,
and regression slopes are unaffected by constant offsets
on either the x or y axes.

It is also useful to contrast ensemble hydrograph separation
with other methods for estimating transit time distributions
from conservative tracers. As reviewed by McGuire and Mc-
Donnell (2006), these approaches typically convolve the pre-
cipitation tracer time series with an assumed transit time
distribution, and then adjust the parameters of that distri-
bution to achieve a best fit with the streamflow tracer time
series. This convolution approach differs from ensemble hy-
drograph separation in several important respects:

1. In the convolution approach, the functional form of
the transit time distribution must be assumed (although
shape parameters often allow the shape of the TTD to
be fitted, within a given family of distributions). By
contrast, the ensemble hydrograph separation approach
makes no assumption about the shape of the distribu-
tion; instead, the TTD values at each lag k are estimated
directly from data.

2. Ensemble hydrograph separation quantifies the tran-
sit time distribution out to a maximum lag m, beyond
which it makes no assumptions (and draws no infer-
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ences) about the behavior of the TTD. By contrast, be-
cause convolution approaches assume a shape for the
entire TTD, their results include the long tails that are
missing from TTDs estimated from ensemble hydro-
graph separation. However, these long tails will typi-
cally be poorly constrained by data in any case, be-
cause the long-timescale signal of conservative tracers
is typically so weak that it cannot be reliably sepa-
rated from the noise (DeWalle et al., 1997; Stewart et
al., 2010; Seeger and Weiler, 2014; Kirchner, 2016b).
This is not an algorithmic problem and it does not have
an algorithmic solution; instead it arises from the lim-
ited information content of conservative tracer time se-
ries on these long timescales. Although convolution ap-
proaches seek to get around this problem by assuming a
(potentially parameterized) shape for the TTD, the long
tails will largely reflect the underlying assumptions that
are made, rather than any substantial influence of the
tracer data themselves.

3. Convolution approaches are based on convolution in-
tegrals, and thus errors in the input terms accumulate
over time. By contrast, the ensemble hydrograph separa-
tion approach is based on local derivatives of the stream
tracer concentrations and their covariances with fluctu-
ations in the input tracer concentrations at various lags;
as a result, errors in the input terms do not accumulate.

4. Missing input data pose a fundamental problem for
convolution integrals, whereas they can be readily ac-
commodated in the ensemble hydrograph separation ap-
proach (Sect. 4.2).

These considerations also generally apply to approaches that
use tracer concentrations in rainfall and streamflow to cal-
ibrate storage selection (SAS) functions, instead of time-
invariant transit time distributions (e.g., van der Velde et al.,
2012; Harman, 2015). SAS function estimation also faces the
additional difficulty that the SAS functions for streamflow
and evapotranspiration are interrelated, because they both de-
pend on, and jointly determine, the age distribution of catch-
ment storage (e.g., Eqs. 2–8 of Botter, 2012; Rigon et al.,
2016). Because we currently have no practical way to deter-
mine the age distributions of catchment storage or evapotran-
spiration, estimating SAS functions for streamflow requires
making unverifiable assumptions concerning evapotranspira-
tion ages, and the effects of these assumptions have not been
quantified. By contrast, ensemble hydrograph separation di-
rectly quantifies the forward and backward transit time dis-
tributions of precipitation that subsequently leaves the catch-
ment as streamflow, without needing to estimate, or to make
any assumption about, the ages of waters that leave the catch-
ment by other pathways.

Another approach that is coming into more frequent use
is to calibrate a conceptual or physically based model to
reproduce, as closely as possible, the observed hydrograph

and streamflow tracer time series, and then infer the catch-
ment transit time distribution or SAS function from particle
tracking within the model (e.g., Benettin et al., 2013, 2015;
Remondi et al., 2018). For these inferences to be valid, the
model must not only be a good predictor of the calibration
data, but its underlying processes must also be the correct
ones. In other words, the model must get the right answers
for the right reasons, and it will generally be difficult to ver-
ify whether this is the case. Thus it will be difficult to know
how much the inferred transit times are determined by the
tracer data or by the structural assumptions of the underlying
model. Nor does a good fit to the observational data verify
the correctness of the model and the inferences drawn from
it, because a good fit can imply either that the model is doing
everything correctly or that it is doing multiple things wrong,
in offsetting ways.

One can argue that every data analysis approach also im-
plies some underlying model, and one might argue that en-
semble hydrograph separation is based on the (implausi-
ble) assumption that the transit time distribution is time-
invariant. Such an argument would be mistaken. As I have
shown, ensemble hydrograph separation neither assumes nor
requires that the transit time distribution is stationary (see
Appendices A and B). Instead, ensemble hydrograph separa-
tion quantifies the ensemble average of a catchment’s time-
varying transit time distribution, even when that distribution
is highly dynamic.

5.2 Benchmark testing

Considerable effort has been devoted to benchmark tests of
the methods proposed in Sects. 2 and 4. One may naturally
ask: why bother? Why not just describe how ensemble hy-
drograph separation works, and apply it to several field data
sets, and see whether it gives reasonable results? One an-
swer is that whether the results seem reasonable only reflects
whether they agree with our preconceptions, not whether
they (or our preconceptions) are correct. A second answer
is that only through properly designed benchmark tests can
we assess how accurate the method is, and what factors might
affect its accuracy. Yet another answer is that the benchmark
model gives the analysis method a precise target to hit, thus
better revealing its strengths and weaknesses.

Benchmark tests also have a role to play in the day-to-
day application of data analysis methods like those proposed
here. Users may wonder: will this approach work with data
from my catchment? Given the data I have, how accurately
can I estimate the ensemble average transit time distribution?
What kinds of tracer data will be needed to distinguish be-
tween two different conceptualizations of catchment-scale
storage and transport? Carefully designed benchmark tests
with synthetic data can be helpful in addressing questions
such as these.

It should be emphasized that, in the tests presented here,
the benchmark model knows nothing about how the analysis
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method works; in fact, its nonlinearity and nonstationarity
rather badly violate the assumptions underlying the analysis.
Conversely, the analysis method knows nothing about the in-
ner workings of the benchmark model. It knows the model
inputs and outputs (the water fluxes and tracer concentrations
in rainfall and streamflow), but it does not know – and, im-
portantly, it does not need to know – how those outputs were
generated. This is important because, for ensemble hydro-
graph separation to be useful in real-world catchments, its
validity must not depend on the particular mechanisms that
regulate flow and transport at the catchment scale.

Likewise, its validity must not depend on having unrealis-
tically accurate or complete data. For this reason, the bench-
mark tests include substantial measurement errors and sub-
stantial numbers of missing values (Sect. 3.1).

Thus these benchmark tests are much stricter than many
in the literature. For example, some benchmark tests gen-
erate the benchmark data set using the same assumptions
that underlie the analysis method itself (e.g., Klaus et al.,
2015). Such tests usually generate very nice-looking results,
but they are guaranteed to succeed because they are perform-
ing the same calculations twice (first forwards, then back-
wards). At the same time, such tests are not realistic, because
they would only be relevant to real-world cases where all of
the assumptions underlying the analysis method were exactly
true. Such cases are unlikely to exist.

One could argue that the benchmark model presented here
would be more realistic if it were (for example) a spatially
distributed three-dimensional model based on Richards’
equation, calibrated to a particular research watershed. How-
ever, the benchmark model’s purpose is to generate a wide
variety of targets for the analysis method to hit, with each
target precisely defined, rather than to realistically mimic any
particular catchment. All that is essential is that it must gen-
erate realistically complex patterns of behavior and exactly
compute the true new water fractions and transit time distri-
butions by age tracking. The relatively simple two-box con-
ceptual model that has been used here was chosen because
it fulfills both criteria, not because it embodies a particular
mechanistic view of flow and transport. Likewise, consis-
tency with the assumptions underlying ensemble hydrograph
separation was not one of the criteria, nor should it be.

For the same reason, it should be clear that real-world
catchments may not necessarily exhibit similar patterns of
behavior to those of the benchmark model, as shown in
Figs. 6–9 and 15–18. Thus the analyses presented here do
not necessarily mean, for example, that we should expect
new water fractions in real-world catchments to be roughly
linear functions of discharge (Fig. 6), precipitation (Fig. 7),
or antecedent moisture (Fig. 18). These patterns of behavior
reflect the properties of the benchmark model and its precip-
itation forcing. Whether real-world catchments behave simi-
larly or differently is an open question. The benchmark tests
demonstrate that these analyses are reliable (which cannot be
demonstrated with real-world data because we cannot know

independently what the right answer is), but they should not
be taken as examples of what the real-world results would
necessarily look like.

5.3 Errors, biases, and uncertainties

The analysis methods outlined in Sects. 2 and 4 include ex-
plicit procedures for estimating the uncertainties (as quanti-
fied by standard errors) in both new water fractions (Eqs. 11,
15, and 20) and transit time distributions (Eqs. 54, 55, 60,
69, and 66). These uncertainties are generally realistic pre-
dictors of how much the ensemble hydrograph separation es-
timates deviate from the true benchmark values determined
from age tracking: the scatter in Figs. 2 and 5, for exam-
ple, is consistent with the estimated standard errors, and the
error bars in Figs. 6, 7, 9, and 11–18 (1 standard error in
all cases) are usually reasonable estimates of the deviations
from the benchmark values (exceptions include the humped
transit time distributions in Fig. 12, where the uncertainties
are overestimated).

Unsurprisingly, the standard errors scale with the scatter
(error variance) in the data and inversely with the square root
of the effective number of degrees of freedom. Thus the un-
certainties will be larger when the data set is sparse and noisy,
and when the new water fraction and/or transit time distribu-
tion explains only a small fraction of its variance. It should
also be noted that the relative standard error can be large, for
example when the TTD is small at long lags.

Because ensemble hydrograph separation does not require
continuous input data, it can facilitate comparisons among
various subsets of a catchment time series, as demonstrated
in Sects. 3.5 and 4.7. However, it should be kept in mind that,
as one cuts the data set into more (and thus smaller) pieces,
the statistical sampling variability among the data points re-
maining in each piece will become more and more influen-
tial, and the inferences drawn on each piece will become
correspondingly more uncertain. Thus there will be practi-
cal limits to the granularity of the subsampling that can be
applied in real-world cases.

One should also keep these considerations in mind when
choosing m, the largest TTD lag to be estimated. Although
m can be any value that the user chooses, as m increases, the
uncertainties in TTDk at each lag also increase, in essence
because the user is choosing to distribute the (limited) in-
formation contained in the tracer time series among a larger
number of TTDk values. Conversely, if one setsm to zero and
thus estimates only the amount of same-day or same-week
water in streamflow (whereupon the approaches outlined in
Sects. 2 and 4 become equivalent), one brings all the avail-
able information to bear on estimating that one quantity. The
tradeoff between TTD length and precision will depend on
the length of the time series and the gaps that it contains,
as well as the characteristic storage times of the catchment
and the noise characteristics of the data (which will often be
unknown). Thus it is difficult to give general guidance on
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appropriate values of m, but benchmark tests with synthetic
data could be used to illustrate the tradeoffs involved.

In some TTDs, the last few lags exhibit unusually large
deviations from the true TTD curves derived from age track-
ing (e.g., Figs. 12b, 13a, c, 14c, 16b, d, and 17b, d; in sev-
eral of these cases the last point is below zero and thus does
not appear on the plot). As noted in Sect. 4.5, I suspect (but
cannot prove) that this is an aliasing effect that arises when
the effects of fluxes beyond the longest measured lag are
not adequately accounted for by the reference concentration
Colderj = CQj−m−1 . In practice this means that TTD values for
the last few lags should not be taken too literally, particularly
if they deviate from the trend in the previous lags.

Because ensemble hydrograph separation is based on cor-
relations among tracer fluctuations, it is relatively insensi-
tive to systematic biases that produce persistent offsets in the
underlying data. For example, isotope ratios in precipitation
often vary with altitude, leading to potential biases in precip-
itation tracer samples (depending on the sampling location).
To the extent that these biases are constant, however, they
should not alter regression slopes between tracer fluctuations
in precipitation and streamflow (e.g., Figs. A1d, 6a, b, and
7a, b), or their multidimensional counterparts that determine
the TTD. The same applies to randomly fluctuating precipita-
tion tracer biases, unless they are large compared to the stan-
dard deviation of the tracer concentrations themselves – i.e.,
unless the fluctuating biases account for most of the variabil-
ity in the precipitation tracer measurements. Likewise, con-
founding by any unmeasured end-members should be small,
unless the unmeasured end-members are correlated with the
measured ones, and have a strong influence on stream tracer
concentrations.

The uncertainties calculated here, like all error propaga-
tion results, depend on the assumptions underlying the anal-
ysis (in this case, ensemble hydrograph separation). Under
different assumptions, the errors in estimating the average
Fnew by regression could be larger. For example, if the means
of Coldj and Cnewj differed by much more than their pooled
standard deviations, then variations in CQj would mostly be
driven by variations in Fnew rather than variations in Cnewj .
This highlights the important contrast between conventional
and ensemble methods of hydrograph separation. Conven-
tional hydrograph separation is based on comparing stream
tracer values to constant end-members and therefore works
best when the end-members have widely separated means
and small variability. By contrast, ensemble hydrograph sep-
aration works best when the variations in the end-members
are large compared to the differences among their means, be-
cause it relies on correlating tracer fluctuations in streamflow
with fluctuations in measured end-members.

5.4 Potential applications and extensions

The techniques proposed here quantify the timescales over
which catchments store and transport water, and quantify

how those timescales change with precipitation, discharge,
and antecedent moisture. Such descriptive methods are often
grouped under the heading of “catchment characterization”.
One should keep in mind, however, that a catchment’s stor-
age and transport behavior also depends on its external forc-
ing. If its precipitation climatology were wetter (or drier), for
example, its timescales of storage and transport would de-
crease (or increase) accordingly. Thus transport and storage
timescales are not characteristics of the catchment alone, but
rather of the catchment and its particular precipitation clima-
tology. By mapping out how a catchment’s storage and trans-
port behavior changes with hydrologic forcing (e.g., Figs. 6,
7, 15, 17, and 18), however, ensemble hydrograph separa-
tion can contribute to a more complete picture of catchment
response. Alternatively, these patterns of response to hydro-
logic forcing can be considered as catchment characteristics
in their own right.

Because new water fractions and transit time distributions
from ensemble hydrograph separation closely match bench-
mark model age tracking, one might consider using them as
a model for catchment transport processes. This will usually
be a bad idea. One must remember that ensemble hydrograph
separation quantifies ensemble averages, which will not be
good models of catchment processes unless the real-world
transit time distribution is approximately time-invariant. That
is unlikely to be the case.

This observation raises an important point. Ensemble hy-
drograph separation yields inferences that are phenomeno-
logical, not mechanistic. It quantifies how catchments be-
have, but does not, by itself, explain how they work. It can
nonetheless contribute to mechanistic understanding by pre-
cisely quantifying catchment transport behavior, and thus fa-
cilitating more incisive comparisons with models. Examples
of possible comparisons include

– Do the model and the real-world catchment have simi-
lar new water fractions and forward new water fractions
(Figs. 2 and 5)?

– Do these new water fractions change similarly as func-
tions of precipitation and discharge (Figs. 6 and 7)?

– Do they exhibit similar seasonal patterns (Fig. 9)?

– Do the model and the real-world catchment have similar
transit time distributions, including forward transit time
distributions (Figs. 11–14)?

– Do these transit time distributions change similarly as
functions of precipitation, discharge, antecedent mois-
ture, and seasonality (Figs. 15–18)?

In this approach to hypothesis testing, key signatures of be-
havior are extracted from both the model and the data before
they are compared (Kirchner et al., 1996; Kirchner, 2006).
This approach stands in contrast to the conventional model-
testing paradigm in which model predictions are compared
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with observational time series through standard goodness-
of-fit statistics. The conventional approach ignores the im-
portant question of in what ways the model predictions devi-
ate from the data. Exploring this question requires diagnostic
signatures of catchment behavior like those presented here
and is essential to improving models of catchment processes.

The analysis methods developed here can potentially be
extended in several ways. For example, these methods could
potentially be applied to infer transit times in other catch-
ment fluxes, such as groundwater seepage or evapotranspira-
tion. They could also be applied to other systems where tran-
sit times could be inferred from the propagation of fluctuat-
ing tracer inputs; potential examples include not only lakes,
oceans, and aquifers, but also the atmosphere and perhaps
even organisms.

The multiple regression analysis presented in Sect. 4
demonstrates that one can quantify the contributions of mul-
tiple end-members using a single conservative tracer. This
is not possible in conventional end-member mixing analysis,
which assumes that the end-members are constant and con-
sequently requires that the number of end-members cannot
exceed the number of tracers plus one. But because ensem-
ble hydrograph separation is based on correlations of tracer
fluctuations, one tracer can potentially identify many end-
members as long as their fluctuations are not too tightly cor-
related. This is potentially useful, because hydrologists typ-
ically have very few truly conservative tracers to work with
(arguably only one, in the case of stable isotopes, because
18O and 2H are strongly correlated with one another). In the
analysis in Sect. 4, the TTDs can be considered to represent
25 different end-members (which are all precipitation, at dif-
ferent lags). However the same approach could be used to
analyze (for example) precipitation and snowmelt as sources
of streamflow, if tracer time series are available in both can-
didate end-members and they are not too strongly correlated
with one another. Similarly, in large river basins one could
potentially quantify the contributions (and transit time dis-
tributions) of waters sourced from precipitation in different
parts of the catchment – if, again, tracer time series are avail-
able for these multiple precipitation sources and are not too
strongly correlated with one another.

Last but not least, the approach presented here can also,
with some modifications, be applied to rainfall and stream-
flow rates in order to quantify the time lags in catchments’
hydraulic response to precipitation (reflecting the celerity of
hydraulic potentials, as distinct from the velocity of water
transport). A follow-up paper describing this “ensemble unit
hydrograph” analysis is currently in preparation.

Data availability. The analysis codes and benchmark model used
here will be published separately in more user-friendly form. The
Plynlimon rain gauge data were provided by the Centre for Ecol-
ogy and Hydrology (UK), and the Smith River and Broad River
precipitation data are reanalysis products from the MOPEX (Model

Parameter Estimation Experiment) project (Duan et al., 2006; ftp:
//hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/, last access:
1 December 2018).
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Appendix A: Estimating non-constant “constants” via
regression

A conventional linear regression equation has the form

yj = β xj +α+ εj , (A1)

where yj and xj are response and explanatory variables, re-
spectively, measured for individual cases j , where α and β
are (unknown) constants, and where εj is a random (and un-
known) additive error term with mean of zero (alternatively,
one can consider α+ εj to represent all of the unmeasured
factors that influence yj ). Under the assumption that these
unmeasured factors are uncorrelated with xj , linear regres-
sion obtains unbiased estimates of β from any of several
functionally equivalent formulas, including

β̂ =
cov(y, x)

var(x)
=

1
n−1

n∑
j=1

(
yj − y

)(
xj − x

)
1
n−1

n∑
j=1

(
xj − x

)2
=

〈
yjxj

〉
−
〈
yj
〉 〈
xj
〉〈

x2
j

〉
−
〈
xj
〉2 =

〈
y′jx
′

j

〉
〈
x′j 2

〉 , (A2)

where β̂ denotes the conventional least-squares estimator of
β, primes denote deviations from means, and means over all
j may be denoted by either angled brackets or overbars, de-
pending on context.

In many practical situations, the unknown constant β may
not in fact be constant, but instead may differ among the
cases j . In such situations, the true relationship among the
variables is not Eq. (A1), but instead

yj = βj xj +α+ εj , (A3)

where the small but important difference between Eqs. (A1)
and (A3) is the subscript j on β. It may be unclear a pri-
ori whether β is a constant or not, and therefore whether
Eqs. (A1) or (A3) applies. In other words, Eq. (A1) repre-
sents a special case of the more general relationship repre-
sented by Eq. (A3), and it may be unclear whether we are
dealing with the special case or the general one.

Thus, in environmental work, regression equations are of-
ten used to estimate “constants” that are not known to be
constant, or, even more pointedly, “constants” that we know
are not constant. Regression equations are nonetheless used,
under the assumption that the result will provide a useful es-
timate of some central tendency of the non-constant “con-
stant”. The basis for this assumption and its range of validity
are unclear.

The problem at hand can be stated like this: if the unknown
coefficient βj differs among the cases j , as in Eq. (A3), but
one nonetheless calculates a conventional least-squares es-
timator β̂ using Eq. (A2), how will the calculated value of

β̂ depend on the properties of the (unknown) βj , including
their possible relationships with the values xj of the explana-
tory variable? The answer can be obtained straightforwardly
by substituting yj from Eq. (A3) into (A2) and solving for
β̂. The math is streamlined somewhat if one separates x, y,
β, and ε into their (sample) means and deviations (replacing
xj with x+ x′j , and similarly for y, β, and ε), where primed
quantities indicate deviations from means. One can begin by
expressing Eq. (A3) in terms of deviations from means,

y′j = yj − y = βj xj −
〈
βjxj

〉
+
(
εj − ε

)
=

(
β +β ′j

)(
x+ x′j

)
−

〈(
β +β ′j

)(
x+ x′j

)〉
+ ε′j , (A4)

and then by multiplying the terms in parentheses, yielding

y′j = β x+β x
′

j + x β
′

j +β
′

j x
′

j −
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−
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+ ε′j . (A5)

The single-underlined terms in Eq. (A5) cancel each other,
and the double-underlined terms are zero because primed
quantities will always average to zero (although products of
two or more primed quantities usually will not). Removing
all underlined terms, multiplying by x′j = xj − x, averaging
over all j , and dividing by the variance of x yields directly

β̂ =
cov(y, x)

var(x)
=
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′
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The double-underlined term in the numerator of Eq. (A6)
is zero, because the inner average is a constant and therefore
just rescales x′j , which in turn averages to zero. Simplifying
the remaining terms, one obtains

β̂ = β + x
cov(β, x)

var(x)
+

〈
β ′jx
′2
j

〉
var(x)

+
cov(ε, x)

var(x)
. (A7)

Equation (A7) cannot be evaluated in practice, because
the true coefficients βj and the errors εj will not be known.
Nonetheless it can be useful to understand how their prop-
erties influence β̂, so that regression results can be properly
interpreted. In this regard, each of the four terms of Eq. (A7)
has a story to tell. The first term of Eq. (A7) says that the lin-
ear regression coefficient β̂ will be a good approximation to
the (sample) mean of the βj , if the other terms are negligible.

The second term says that the linear regression coefficient
β̂ can also be affected by correlations between βj and xj .
The magnitude of this effect will be the average value of x,
multiplied by the regression slope of the relationship between
x and β. This second term will vanish if x is zero or if there
is no correlation between xj and βj .
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The third term can be viewed as a weighted average of the
deviations of the βj from their mean, where the weighting
factors are the squared deviations of the xj from their mean
(in statistical terms, these weighting factors are called lever-
ages). Thus the third term of Eq. (A7) expresses the effect of
a cup-shaped relationship between βj and xj ; for example, if
xj values with greater leverage on β̂ (because they lie farther
from x) are also associated with higher values of βj (and thus
a steeper relationship between xj and yj ), the estimate of β̂
will be biased upward. Note in particular that the third term
could be nonzero even if the correlation between βj and xj
is zero (that is, the relationship between βj and xj could be
cup-shaped even if it has a slope of zero overall). Conversely,
the third term is insensitive to linear correlations (even strong
ones) between βj and xj .

The fourth term says that β̂ could also be biased by correla-
tions between the error term and the explanatory variable; the
magnitude of this possible bias equals the regression slope
of εj as a function of xj . This is the well-known problem of
artifactual correlation (also called the “third variable prob-
lem” or “hidden variable problem”): if hidden (unmeasured)
variables are correlated with the measured explanatory (x)
variable, their effects on the response (y) variable will be
falsely attributed to the x variable instead, distorting its re-
gression coefficient.

It should be noted that the means, variances, and covari-
ances in Eqs. (A2)–(A7) are sample statistics calculated over
the sample cases j , which may differ from the true means,
variances, and covariances of the underlying distributions.
Thus there will be additional uncertainty resulting from sam-
pling variability (in addition to the biases quantified by the
second, third, and fourth terms in Eq. A7), if one interprets
the regression slope as an estimate of the true mean of β
rather than the sample mean of the βj for the particular cases
j that have been sampled.

To illustrate the analysis outlined above, I conducted a
simple numerical experiment based on ensemble hydrograph
separation. I created a synthetic data set based on the mixing
equation

CQj = FnewjCnewj +
(
1−Fnewj

)
−CQj−1 , (A8)

where CQj , the concentration in the stream, is a volume-
weighted average of the (measured) new water concentration
Cnewj and the old water concentration CQj−1 from the previ-
ous time step, weighted by the new water fraction Fnewj and
its complement 1−Fnewj . Values of Fnewj for each time step
j are randomly chosen from a beta distribution,

Beta(α, β)=
xα−1 (1− x)β−1

B(α, β)
, (A9)

where x is a random variable that, appropriately for a
fraction, ranges from 0 to 1, the beta function B(α, β)=
0(α)0(β)/0(α+β) is a normalization constant that ensures

that the cumulative probability is 1, and α and β are shape pa-
rameters that are related to the mean (µ) byµ= 1/(1+β/α),
or equivalently β = α[(1−µ)/µ]. In the simulations shown
here (Fig. A1a–e), the α parameter is fixed at 1.

Values of Cnewj for each point in time j are randomly cho-
sen from a normal distribution with a standard deviation of
10 (Fig. A1b). Values of CQj are calculated for the whole
time series using Eq. (A8), and measurement errors (nor-
mally distributed, with a standard deviation of 1) are added to
both Cnew and CQ. Then an ensemble estimate of the average
Fnew is obtained by linear regression of yj = CQj −CQj−1

on xj = Cnewj −CQj−1 , following Eq. (9) in the main text. A
plot of such a regression is shown in Fig. A1d. In this par-
ticular ensemble, the individual Fnewj values for each time
step varied between 0.0001 and 0.71, with a mean of 0.20
and a standard deviation of 0.16. The ensemble hydrograph
separation estimate of the average Fnew was 0.205± 0.009
(mean± standard error), deviating from the true mean value
by roughly its standard error, as one would expect. This anal-
ysis was repeated 1000 times for mean Fnew values randomly
chosen between 0.025 and 0.975. The results are summa-
rized in Fig. A1e, which compares the regression estimates
of the average Fnew against the true means of the Fnew values
in each sample. Although the individual Fnewj values that
make up each mean vary widely (as indicated by the hori-
zontal width of the shading in Fig. A1e), the regression esti-
mates of the average Fnew cluster tightly around the 1 : 1 line,
with a root-mean-square deviation of less than 0.02 across
the full range of average Fnew (this root-mean-square devi-
ation scales, as one would expect, inversely with the square
root of the number of data points in the simulated time se-
ries).

In the simulations shown in Fig. A1, Fnewj is indepen-
dent of Cnewj , CQj−1 , and the measurement errors; therefore
the biases quantified in Eq. (A7) are expected to be small.
Nonetheless, one should be aware that in the specific case
of Eq. (A8) there could be two additional sources of bias
that Eq. (A7) does not account for. Large measurement er-
rors in Cnew (meaning measurement errors that are not small
compared to the standard deviation of Cnew itself) could po-
tentially create negative biases in estimates of the average
Fnew, because they would add spurious variation to the x axis
of regressions like Fig. A1d. Conversely, large measurement
errors in CQ – which again means errors that are not small
compared to the standard deviation of Cnew (not CQ) – could
potentially create positive biases in estimates of the average
Fnew, because CQj−1 appears on both axes of the regression
in Fig. A1d, so large errors in CQj−1 would spuriously in-
crease the correlation between the x and y axes of regres-
sions like Fig. A1d. Both of these biases should be negligible
in real-world cases, however, because the measurement un-
certainties in Cnew and CQ are typically much smaller than
the variability in Cnew.
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Figure A1. Benchmark test of regression estimates of mean new
water fractions, using data from a simple two-component mixing
model. In that mixing model (Eq. A8), a randomly varying new wa-
ter fraction Fnew (a) determines the relative proportions of new and
old water (Cnewj and CQj−1 , respectively) which are combined to
yield a mixture with concentration CQj (c). Among the 500-point
time series shown in (a–c), the new water fraction Fnew varies be-
tween 0.0001 and 0.71, with a mean of 0.20 and a standard devia-
tion of 0.15. Plotting the concentration of the mixture in the stream
as a function of the concentration in the new water end-member
(e) yields a regression slope of 0.205± 0.009, which agrees within
error with the true average of Fnew ofµ= 0.20. Repeating this anal-
ysis 1000 times, with mean values of Fnew ranging from nearly zero
to nearly one, yields regression slopes that agree with the means of
the Fnew for each Monte Carlo trial with an RMSE of only 0.02 (e).
In (e), the circles show the regression slopes and mean Fnew, and the
horizontal light blue lines show the range of Fnew, for each Monte
Carlo trial. The dark circle and dark line show the results for the
individual Monte Carlo trial shown in (a–d).

Appendix B: Accounting for rain-free periods, and
estimating non-constant “constants” by multiple
regression

Assume a multiple linear regression equation with non-
constant unknown coefficients,

yj =

m∑
k=0

βj, k xj, k +α+ εj , (B1)

which can be more explicitly represented for a series of sam-
pling times j = 1. . .n as

y1 = β1, 0 x1, 0+ β1, 1 x1, 1+β1, 2 x1, 2+β1, 3 x1, 3 . . .

+β1,m x1,m+α+ ε1

y2 = β2, 0 x2, 0+ β2, 1 x2, 1+β2, 2 x2, 2+β2, 3 x2, 3 . . .

+β2,m x2,m+α+ ε2

y3 = β3, 0 x3, 0+ β3, 1 x3, 1+β3, 2 x3, 2+β3, 3 x3, 3 . . .

+β3,m x3,m+α+ ε3

y4 = β4, 0 x4, 0+ β4, 1 x4, 1+β4, 2 x4, 2+β4, 3 x4, 3 . . .

+β4,m x4,m+α+ ε4

...

yn = βn, 0 xn, 0+ βn, 1 xn, 1+βn, 2 xn, 2+βn, 3 xn, 3 . . .

+βn,m xn,m+α+ εn. (B2)

For simplicity, and without loss of generality, assume that
the yj ’s and xj, k’s have means of zero. Assume further that,
for each k, the coefficients βj, k either have a constant value
of βk (when precipitation is present at time step i = j − k),
or have a value of 0 (when precipitation in missing at time
step i = j−k). In the latter case the value of xj, k will be un-
defined, but it will also be irrelevant because it is multiplied
by zero. The resulting system of equations will then have the
following form, with missing values along diagonal stripes
(this illustration shows just one possible set of missing val-
ues):

y1 = β0x1, 0 + +β2 x1, 2 +β3 x1, 3. . .+βm x1,m+α+ ε1

y2 = +β1 x2, 1 + +β3x2, 3 . . . +βm x2,m+α+ ε2

y3 = β0 x3, 0+ +β2 x3, 2 + . . . +βm x3,m+α+ ε3

y4 = β0 x4, 0+β1 x4, 1+ +β3 x4, 3. . . + +α+ ε4

. . .

yn = β0 xn, 0+ β1 xn, 1+β2 xn, 2+ . . .+βm xn,m+α+ εn. (B3)

Multiplying the left and right sides of Eq. (B3) by the
transpose of X0 (to take one example) yields

n∑
j=1

(
yj xj, 0

)
Pj−k>0 = β0

n∑
j=1

(
xj, 0 xj, 0

)
Pj−0>0

+ β1

n∑
j=1

(
xj,1 xj, 0

)
Pj−1>0, Pj−0>0
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+ β2

n∑
j=1

(
xj, 2 xj,0

)
Pj−2>0, Pj−0>0

+ . . . + βm

n∑
j=1

(
xj,m xj, 0

)
Pj−m>0, Pj−0>0 , (B4)

where the constant α and the error term εj drop out because
their sums of cross products with the xj, 0 are zero. One can
see that each of the summations of cross products equals the
covariance of the respective vectors, multiplied by the num-
ber of points in the summation. In contrast to a typical mul-
tiple regression, these numbers of points are not the same.
For the left-hand side of Eq. (B4), the summation is taken
over the non-missing members of X0; if we use nx0 to ex-
press the number of such members, this summation equals
nx0cov(X0, Y ). The first term on the right-hand side can also
be evaluated for all nx0 non-missing members of X0; there
are nx0 of these, so this term becomes β0 nx0cov(X0,X0)=

β0 nx0var(X0). The second term on the left-hand side, on the
other hand, can only be evaluated when both X0 and X1
are non-missing. If we denote the number of such cases as
nx0x1 , the second term equals β1 nx0x1cov(X0,X1), the third
term equals β2 nx0x2cov(X0,X2), and so forth. Thus when
re-expressed as covariances, Eq. (B3) becomes

nx0cov(X0, Y )= β0 nx0 cov(X0,X0)+β1 nx0x1cov(X0,X1)

+β2 nx0x2cov(X0,X2)+ . . .βm nx0xmcov(X0,Xm)

nx1cov(X1, Y )= β0 nx1x0cov(X1,X0)+β1 nx1 cov(X1,X1)

+β2 nx1x2cov(X1,X2)+ . . .βm nx1xmcov(X1,Xm)

nx2 cov(X2, Y )= β0 nx2x0 cov(X2,X0)+β1 nx2x1 cov(X2,X1)

+ β2 nx2 cov(X2,X2)+ . . .βm nx2xmcov(X2,Xm)

...

nxmcov(Xm, Y )= β0 nxmx0 cov(Xm,X0)+β1 nxmx1 cov(Xm,X1)

+β2 nxmx2cov(Xm,X2)+ . . .βm nxmcov(Xm,Xm) .
(B5)

Dividing through by the nxk terms on the left-hand side,
one directly obtains the following system of m equations in
m unknowns:

cov(X0, Y )= β0cov(X0,X0)+β1
nx0x1

nx0

cov(X0,X1)

+β2
nx0x2

nx0

cov(X0,X2)+ . . .βm
nx0xm

nx0

cov(X0,Xm)

cov(X1, Y )= β0
nx1x0

nx1

cov(X1,X0)+β1cov(X1,X1)

+β2
nx1x2

nx1

cov(X1,X2)+ . . .βm
nx1xm

nx1

cov(X1,Xm)

cov(X2, Y )= β0
nx2x0

nx2

cov(X2,X0)+β1
nx2x1

nx2

cov(X2,X1)

+β2cov(X2,X2)+ . . .βm
nx2xm

nx2

cov(X2,Xm)

...

cov(Xm, Y )= β0
nxmx0

nxm
cov(Xm,X0)+β1

nxmx1

nxm
cov(Xm,X1)

+β2
nxmx2

nxm
cov(Xm,X2)+ . . .βmcov(Xm,Xm) , (B6)

which can be solved by the usual matrix inversion approach,
yielding



β̂0

β̂1

β̂2
...

β̂m


=



cov(X0,X0)
nx0x1

nx0

cov(X0,X1)
nx0x2

nx0

cov(X0,X2)

· · ·
nx0xm

nx0

cov(X0,Xm)

nx1x0

nx1

cov(X1,X0) cov(X1,X1)
nx1x2

nx1

cov(X1,X2)

· · ·
nx1xm

nx1

cov(X1,Xm)

nx2x0

nx2

cov(X2,X0)
nx2x1

nx2

cov(X2,X1) cov(X2,X2)

· · ·
nx2xm

nx2

cov(X2,Xm)

.

.

.
.
.
.

.

.

.

nxmx0

nxm
cov(Xm,X0)

nxmx1

nxm
cov(Xm,X1)

nxmx2

nxm
cov(Xm,X2)

· · · cov(Xm,Xm)



−1



cov(X0, Y )

cov(X1, Y )

cov(X2, Y )

...

cov(Xm, Y )


. (B7)

One can see that Eq. (B7) is identical in form to Eq. (40),
with the addition of weighting factors on the off-diagonal el-
ements of the covariance matrix. One consequence of these
leading terms is that the weighted covariance matrix will usu-
ally not be completely symmetrical, because (for example)
nx2x0/nx2 will often differ from nx2x0/nx0 .

It bears emphasis that Eq. (B7) accounts for gaps in pre-
cipitation, but not for precipitation or streamflow samples
that are missing due to sampling and measurement failures.
A gap in precipitation means that the corresponding tracer
values never existed at all and had no effect on stream-
flow, whereas tracer values that are missing due to sampling
and measurement failures actually did affect streamflow, but
are unknown. Equation (B7) accounts for the fact that the
tracer covariances will necessarily be less strongly coupled to
one another, the less frequently precipitation falls. Glasser’s
method, by contrast, estimates the covariances themselves
from all available pairs of observations, but says nothing
about how they are related to one another. Therefore we
can account for both kinds of missing data using Eq. (B7),
with the covariances between pairs of variables estimated us-
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ing Glasser’s method (Eqs. 42–43). That approach results in
Eq. (44).

Astute readers may notice that Eq. (B3) is equivalent to the
normal equations of conventional multiple regression, with
the cases of missing precipitation replaced by xj, k = 0 (in-
stead of βj, k = 0). This provides a simple procedure for es-
timating the βk if tracer values are only missing due to lack
of precipitation, with no sampling or measurement failures.
This method proceeds as follows:

1. Normalize Y and each of the Xk to zero by subtract-
ing the mean from each vector (excluding any missing
values from these means).

2. Replace any values that are missing due to lack of pre-
cipitation with zeroes.

3. Solve for the βk using conventional multiple regression.

4. Multiply the standard errors of the βk (not the βk them-
selves) by

√
n/n(k) to account for the fact that the zeroes

that have been used to infill the missing values are not
measured values and thus do not contribute information
to constrain the βk .

This method is unlikely to be useful in most practical cases,
in which occasional sampling and measurement failures are
virtually guaranteed. However, it can provide a useful con-
sistency check for implementations of the more complex ap-
proach developed here (Eqs. B7 and 44).

There remains one last important detail. In transitioning
from Eq. (B2) to (B3), I made the simplifying assumption
that all of the coefficients βj, k for a given k were either equal
to zero or had a constant value of βk instead. The same as-
sumption is made in the derivation presented in Sect. 4. One
could naturally ask what happens if the βj, k vary individu-
ally across the time steps j . Is there is a (nearly) equivalent
constant βk and, if so, how does it relate to the values of the
βj, k?

If we have a variable βj, k rather than a constant βk , each
of the terms of Eq. (B4) will be of the form

∑
βj, k xj, k xj, `

instead of βk
∑
xj, k xj, `, and each of the terms of Eq. (B5)

will be of the form nxkx` cov
(
βj, kxj, k, xj, `

)
instead of

βk nxkx` cov
(
xj, k, xj, `

)
. Thus the effect of a variable vs. con-

stant β depends on how cov
(
βj, kxj, k, xj, `

)
differs from

βk cov
(
xj, k , xj, `

)
. Following the approach in Appendix A,

I begin by expanding the three variables into their means and
deviations, replacing βj, k with βk+β

′

j, k , xj, k with xk+x′j, k ,
and xj, ` with xk + x′j, `. Each covariance on the right-hand
side of Eq. (B5) would thus become instead

cov
(
βj, kxj, k , xj, `

)
=

〈((
βk +β

′

j, k

)(
xk + x

′

j, k

)
−

(
βk +β

′

j, k

)(
xk + x

′

j, k

))((
xk + x

′

j, `

)
−

(
xk + x

′

j, `

))〉
=

〈((
βk +β

′

j, k

)(
xk + x

′

j, k

)
− βk xk − β

′

j, k x
′

j, k

)((
xk + x

′

j, `

)
− xk

)〉

=

〈(
βkx
′

j, k + xkβ
′

j, k +β
′

j, kx
′

j, k −β
′

j, kx
′

j, k

)(
x′j, `

)〉
=

〈
βk x

′

j, k x
′

j, `+ xk β
′

j, k x
′

j, `+β
′

j, k x
′

j, k x
′

j, `− β
′

j, k x
′

j, k x
′

j, `

〉
= βk

〈
x′j, kx

′

j, `

〉
+

〈
β ′j, k x

′

j, k

〉
+

〈
β ′j, k x

′

j, k x
′

j, `

〉
, (B8)

where angled brackets and overbars indicate averages over j .
The final result can thus be written as

cov
(
βj, kxj, k , xj, `

)
= βk cov

(
xj, k , xj, `

)
+ xk cov

(
βj, k , xj, `

)
+

〈
β ′j, kx

′

j, kx
′

j, `

〉
, (B9)

where the first term on the right-hand side expresses the ap-
proximation on which the covariance matrices in Eqs. (B7)
and (44) are based; if the second and third terms vanish, then
this approximation is exact. The second term on the right-
hand side should be small, unless there is a strong correla-
tion between βj, k and xj, ` (which is unlikely unless storm
size is correlated with tracer concentrations, as explained
in Sect. 2.1), and xk is large (which is unlikely because
xk = 〈CPj−k 〉−〈CQj−m−1〉, see Eq. (37), and mass conserva-
tion implies that the averages of CP and CQ should be simi-
lar). The third term on the right-hand side is a three-way cross
product, technically termed a co-skewness, that bears the
same relation to skewness that covariance does to variance.
It has the interesting property that its expected value is zero
if the three variables have symmetrical distributions, even if
they are strongly correlated (either positively or negatively,
in any combination) with one another. This behavior arises
because the odd number of terms means that, for symmet-
rical distributions, the product β ′j, kx

′

j, kx
′

j, ` is equally likely
to be positive or negative for any j , and thus the positive and
negative values of β ′j, kx

′

j, kx
′

j, ` will tend to average out when
one averages over all j . If the last two terms of Eq. (B9) are
small compared to the first one, Eq. (B9) says that the co-
variance matrices in Eqs. (B5)–(B6) will be nearly the same
whether β is constant or variable, whenever the constant βk
is the average of the variable βj, k . This in turn implies that
the analysis presented in Sect. 4 should result in estimated
coefficients β̂k that closely approximate the average of the
time-varying βj, k , as is confirmed by the benchmark tests of
Sect. 4.6–4.8.
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Appendix C

Table C1. Definition of symbols (with defining equation, or equation of first use, in parentheses)

Symbol Definition

Indices/subscripts

i index for precipitation time steps
j index for discharge time steps
k = j − i index for lags between precipitation and discharge
` second index for lags between precipitation and discharge
(xy) parentheses indicate that analysis applies to cases j where neither xj nor yj is missing
(ky) parentheses indicate that analysis applies to cases j where neither xjk nor yj is missing
(k`) parentheses indicate that analysis applies to cases j where neither xjk nor xj` is missing

Benchmark model variables and parameters

bu, bl upper- and lower-box drainage exponents in benchmark model (Fig. 1)
η partitioning coefficient for upper-box drainage in benchmark model (Fig. 1)
L drainage rate from upper box in benchmark model (Fig. 1)
Ql drainage rate from lower box in benchmark model (Fig. 1)
Su, Sl upper- and lower-box storage in benchmark model (Fig. 1)
Su,ref, Sl, ref reference storage levels in upper and lower boxes of benchmark model (Fig. 1)

Other symbols

α regression intercept (Eq. 9)
β, β̂ true regression slope (Eq. 9), and its regression estimate (Eq. 10)
β∗, β̂∗ true discharge-weighted regression slope (Eq. 16), and its regression estimate (Eq. 18)
βk , β̂k true multiple regression slope as function of lag time k (Eq. 36), and its regression estimate (Eq. 40)
β̂ vector of regression estimates β̂k (Eq. 41)
1t sampling interval (Eq. 55)
εj regression error term (Eq. 9)
ε vector of regression errors εj (Eq. 39)
λ regularization parameter (Eq. 46)
ν dimensionless regularization parameter (Eq. 50)
CQj tracer concentration in stream discharge at time step j (Eq. 1)
Cnew, Cold tracer concentration in new and old water (Eq. 2)
Cnewj , Coldj time-varying tracer concentration in new and old water (Eq. 5)
CPj−k tracer concentration in precipitation at time step i = j − k (Eq. 33)
Colderj concentration effects of older tracer inputs, beyond maximum lag m (Eq. 33)
C covariance matrix (Eq. 46)
Fnewj fraction of new water in streamflow at time step j (Eq. 3)
Fnew ensemble average of Fnewj (Eq. 10)
QpFnew = β̂ ensemble average of new water fraction of discharge during time steps with rain (Sect. 2.3)
QFnew ensemble average of new water fraction of discharge, including rainless time steps (Eq. 14)
QpF ∗new = β̂

∗ volume-weighted new water fraction of discharge during time steps with rain (Eq. 18)
QF ∗new volume-weighted new water fraction of discharge, including rainless time steps (Eq. 18)
PFnew new water fraction of precipitation (Eqs. 21, 27)
PF ∗new volume-weighted new water fraction of precipitation (Eq. 28)

www.hydrol-earth-syst-sci.net/23/303/2019/ Hydrol. Earth Syst. Sci., 23, 303–349, 2019



346 J. W. Kirchner: Ensemble hydrograph separation

Table C1. Continued.

Symbol Definition

Other symbols

H Tikhonov–Phillips regularization matrix (Eq. 46)
m maximum lag in transit time distribution
n number of discharge time steps
neff effective sample size, adjusted for serial correlation and/or uneven weighting (Eqs. 12, 19, 20)
np number of time steps with precipitation (Eq. 14)
nxy number of pairs of xj and yj (Eq. 12)
nxk number time steps j with above-threshold precipitation at time step i = j − k (Eq. 45)
nxkx` number time steps j with above-threshold precipitation at both i = j − k and i = j − ` (Eq. 45)
Pj precipitation rate during time step j (Eq. 22)
P p average precipitation rate excluding rainless periods (Eq. 22)
Pthreshold threshold precipitation rate below which tracer inputs are ignored (Sect. 3.1; Eq. 45)
P xk average precipitation rate during time steps i = j − k with above-threshold precipitation (Eq. 64)
Qj stream discharge at time step j (Eq. 1)
Qnewj , Qoldj new water and old water components of stream discharge (Eq. 1)
Q average stream discharge (Eq. 18)
Qp average stream discharge during time steps with precipitation (Eq. 18)
Qxk average stream discharge during time steps j with above-threshold precipitation at step i = j − k (Eq. 65)
Qj (xy) stream discharge during time steps j for which neither xj nor yj is missing (Eq. 13)
Qolderj unmeasured fluxes from older precipitation inputs, beyond maximum lag m (Eq. 32)
qjk volume of water entering as precipitation in time step i = j − k and exiting in time step j (Eq. 31)
rxy correlation between xj and yj (Eq. 11)
rsc lag-1 serial correlation in regression residuals (Eq. 12)
SE( ) standard error (Eq. 11)
s2
ε variance of regression prediction errors (Eqs. 51, 52)

QTTDk backward transit time distribution of discharge, conditioned on exit time (Eq. 55)
QTTD∗

k
discharge-weighted backward transit time distribution (Eq. 60)

PTTDk forward transit time distribution of precipitation, conditioned on entry time (Eq. 63)
PTTD∗

k
volume-weighted forward transit time distribution (Eq. 66)

xj explanatory variable in linear regression (Eq. 9)
xjk explanatory variable in multiple linear regression (Eq. 36)
X matrix of reference-corrected input tracer concentrations xjk (Eq. 39)
yj response variable in linear regression (Eqs. 9, 36)
Y vector of reference-corrected streamflow tracer concentrations yj (Eq. 39)
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Supplement. More readable versions of Eqs. (40), (44), and (B7)
are available in the supplement. The supplement related to this
article is available online at: https://doi.org/10.5194/hess-23-303-
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