
ORIGINAL RESEARCH
published: 04 December 2018

doi: 10.3389/fgene.2018.00610

Frontiers in Genetics | www.frontiersin.org 1 December 2018 | Volume 9 | Article 610

Edited by:

Mojgan Rastegar,

University of Manitoba, Canada

Reviewed by:

Kazuhiko Nakabayashi,

National Center for Child Health and

Development (NCCHD), Japan

Jeffrey Mark Craig,

Murdoch Childrens Research Institute,

Australia

Tomas J. Ekstrom,

Karolinska Institutet (KI), Sweden

*Correspondence:

Alexandre A. Lussier

alussier@cmmt.ubc.ca

†Present Address:

Alexandre A. Lussier,

Department of Biological Statistics

and Computational Biology, Cornell

University, Ithaca, NY, United States

‡These authors have contributed

equally to this work and are senior

authors

Specialty section:

This article was submitted to

Epigenomics and Epigenetics,

a section of the journal

Frontiers in Genetics

Received: 05 September 2018

Accepted: 19 November 2018

Published: 04 December 2018

Citation:

Lussier AA, Bodnar TS, Mingay M,

Morin AM, Hirst M, Kobor MS and

Weinberg J (2018) Prenatal Alcohol

Exposure: Profiling Developmental

DNA Methylation Patterns in Central

and Peripheral Tissues.

Front. Genet. 9:610.

doi: 10.3389/fgene.2018.00610

Prenatal Alcohol Exposure: Profiling
Developmental DNA Methylation
Patterns in Central and Peripheral
Tissues
Alexandre A. Lussier 1,2*†, Tamara S. Bodnar 1, Matthew Mingay 3, Alexandre M. Morin 2,

Martin Hirst 3,4, Michael S. Kobor 2,5‡ and Joanne Weinberg 1‡

1Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia,

Vancouver, BC, Canada, 2Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British

Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada, 3Department of

Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British

Columbia, Vancouver, BC, Canada, 4Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Research

Centre, BC Cancer Agency, Vancouver, BC, Canada, 5Human Early Learning Partnership, University of British Columbia,

Vancouver, BC, Canada

Background: Prenatal alcohol exposure (PAE) can alter the development of

neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and

neurobehavioral deficits. Although the etiology of this reprogramming remains unknown,

emerging evidence suggests DNA methylation as a potential mediator and biomarker for

the effects of PAE due to its responsiveness to environmental cues and relative stability

over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles

of rat hypothalami and leukocytes at four time points during early development to assess

the genome-wide impact of PAE on the epigenome and identify potential biomarkers of

PAE. Our model of PAE resulted in blood alcohol levels of∼80–150 mg/dl throughout the

equivalent of the first two trimesters of human pregnancy. Hypothalami were analyzed on

postnatal days (P) 1, 8, 15, 22 and leukocytes at P22 to compare central and peripheral

markers. Genome-wide DNA methylation analysis was performed by methylated DNA

immunoprecipitation followed by next-generation sequencing.

Results: PAE resulted in lasting changes to DNAmethylation profiles across all four ages,

with 118 differentially methylated regions (DMRs) displaying persistent alterations across

the developmental period at a false-discovery rate (FDR) <0.05. In addition, 299 DMRs

showed the same direction of change in the hypothalamus and leukocytes of P22 pups

at an FDR<0.05, with some genes overlapping with the developmental profile findings.

The majority of these DMRs were located in intergenic regions, which contained several

computationally-predicted transcription factor binding sites. Differentially methylated

genes were generally involved in immune function, epigenetic remodeling, metabolism,

and hormonal signaling, as determined by gene ontology analyses.

Conclusions: Persistent DNA methylation changes in the hypothalamus may be

associated with the long-term physiological and neurobehavioral alterations in

observed in PAE. Furthermore, correlations between epigenetic alterations in peripheral
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tissues and those in the brain will provide a foundation for the development of biomarkers

of fetal alcohol spectrum disorder (FASD). Finally, findings from studies of PAE provide

important insight into the etiology of neurodevelopmental and mental health disorders,

as they share numerous phenotypes and comorbidities.

Keywords: prenatal alcohol exposure, fetal alcohol spectrum disorder, brain, development, epigenetics, DNA

methylation, immune

INTRODUCTION

Early-life environments influence the development of
biological/neurobiological systems, leading to long-term
consequences in offspring (Godfrey and Robinson, 1998; Hanson
and Gluckman, 2008). In particular, prenatal alcohol exposure
(PAE) can result in Fetal Alcohol Spectrum Disorders (FASD)
in humans, which are associated with a wide variety of adverse
effects. Exposure to alcohol at high levels throughout pregnancy
can result in Fetal Alcohol Syndrome (FAS), characterized by
growth retardation, a characteristic facial dysmorphology, and
multiple central nervous system alterations. Exposure to alcohol
at levels that do not produce FAS can result in either partial FAS
(pFAS), where only some of the diagnostic features are observed,
or in numerous alcohol-related neurobehavioral effects (alcohol-
related neurodevelopmental disorder, ARND; Stratton et al.,
1996). The degree to which alcohol affects development depends
on a variety of factors such as timing, pattern, and level of
alcohol exposure, overall maternal health and nutrition, and
genetic background (Pollard, 2007), which may influence the
broad range of effects of in utero alcohol exposure and the
relatively high prevalence of FASD (Riley et al., 2011; May et al.,
2018). Importantly, PAE can alter the development, function,
and regulation of numerous neurobiological and physiological
systems, giving rise to lasting deficits across the spectrum of
FASD, including, but not limited to cognitive and behavioral
deficits, impairment to self-regulation and adaptive functioning,
immune dysregulation, and increased vulnerability to mental
health problems across the lifespan (Zhang et al., 2005; Mattson
et al., 2011; Pei et al., 2011).

The hypothalamus is highly susceptible to the programming
effects of PAE (Eguchi, 1969; Matthews, 2002; Hellemans et al.,
2008; Weinberg et al., 2008). The hypothalamus plays key
roles in neuroendocrine regulation, autonomic regulation, and
homeostatic control, regulating growth, sleep/wake behavior,
circadian rhythms, metabolism, body temperature, and other
vital functions (Card and Swanson, 2012). Data from both
human clinical cohorts and animal models of FASD have
identified alterations to physiological functions associated with
the hypothalamus. For example, infants exposed to alcohol in
utero show both elevated basal and post-stress levels of cortisol,
and children with FASD who experience early life adversity
exhibit dysregulation of the cortisol circadian rhythm (Keiver
et al., 2015;McLachlan et al., 2016). Similarly, in animalmodels of
PAE, exposed offspring exhibit hyperresponsiveness to stressors
as well as altered central regulation of hypothalamic-pituitary-
adrenal (HPA) axis activity (Ramsay et al., 1996; Jacobson et al.,

1999; Haley et al., 2006; Weinberg et al., 2008). Furthermore,
PAE also alters sleep patterns and circadian rhythms, results in
deficits in thermoregulation, and is associated with inappropriate
feeding behavior (Jones and Smith, 1973; Zimmerberg et al.,
1987; Earnest et al., 2001; Sei et al., 2003; Chen et al., 2012;
Werts et al., 2014). These deficits often persist across the life
course, suggesting that alcohol exposure during prenatal life may
alter developmental trajectories to increase the risk of adverse
outcomes (Hellemans et al., 2010a). In the context of the fetal
programming hypothesis, early environmental or non-genetic
factors, including maternal undernutrition, stress, and exposure
to drugs or other toxic agents, can permanently organize or
imprint physiological and neurobiological systems and increase
adverse cognitive, adaptive, and behavioral outcomes, as well as
vulnerability to diseases or disorders later in life (Godfrey and
Robinson, 1998; Hanson and Gluckman, 2008; Swanson et al.,
2009). As the underlying mechanisms of these effects begin to
emerge, it has become apparent that epigenetic mechanisms
might be important candidates for the programming effects of
PAE, linking early life environmental factors and neurobiological
outcomes while influencing health and behavior well into
adulthood (Yuen et al., 2011; Shulha et al., 2013). The term
epigenetics broadly refers to the modifications of DNA and its
packaging that alter DNA accessibility, which modulates gene
expression and cell functions without changes to underlying
genomic sequences (Bird, 2007). These epigenetic factors include
direct modifications to DNA, post-translational modification of
histones, and non-coding RNAs.

DNA methylation currently is the most studied epigenetic
modification and involves the covalent attachment of a methyl
group to the 5′ position of cytosine, typically occurring at
cytosine-guanine dinucleotide (CpG) sites (Jones and Takai,
2001). Although closely linked to the regulation of gene
expression, the association between DNA methylation and
transcription depends on genomic context. Whereas, DNA
methylation typically represses gene expression when located in
promoter regions, its effects are more variable for CpGs residing
in gene bodies and intergenic regions. DNAmethylation can also
directly control transcription factor binding to gene regulatory
regions, such as enhancers, to modulate gene expression
patterns (Tate and Bird, 1993). In addition to this role in
transcriptional control, DNA methylation has been associated
with altered mRNA splicing when located within introns, and its
presence within certain exonsmay potentially regulate alternative
transcriptional start sites (Maunakea et al., 2010, 2013; Shukla
et al., 2011). Furthermore, DNA methylation is closely linked to
several important developmental processes, including genomic
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imprinting, tissue specification, and differentiation, suggesting a
role in the regulation of cellular functions and developmental
trajectories (Smith and Meissner, 2013; Ziller et al., 2014).
Perhaps most importantly, DNA methylation can be responsive
to environmental influences and these changes can possibly be
inherited through cell divisions to potentially persist throughout
life (Hanson et al., 2011; Langevin et al., 2011; Yuen et al.,
2011). An additional interesting aspect of DNA methylation is
its emerging role as a potential biomarker of early-life exposures,
as it is easily quantifiable, stable over time, and can be obtained
from readily available peripheral tissues, such as buccal epithelial
cells and white blood cells (Bock, 2009).

Given its role in the regulation of gene expression and cell
function, as well as its responsiveness to environmental factors,
DNA methylation provides an attractive mechanism for the
biological embedding of the persistent deficits caused by PAE.
Mounting evidence suggests a potential role in the etiology
of PAE-induced deficits, as numerous studies have identified
alterations to epigenetic programs in the central nervous system
of animals exposed to alcohol in utero across various levels
and stages of exposure (reviewed in Lussier et al., 2017). These
range from differences in bulk levels of DNA methylation to
genome-wide changes in DNA methylation patterns, supporting
the hypothesis that PAE can alter the epigenome (Bekdash et al.,
2013; Laufer et al., 2013). Although genome-wide studies have
been performed on whole brains in mice, few studies have
focused on targeted brain regions. Among those that have,
PAE was shown to be associated with altered DNA methylation
status of the POMC promoter in the rat hypothalamus (Bekdash
et al., 2013; Ngai et al., 2015). As a key regulator of the stress
response, alterations to this gene may reflect broader alterations
to the regulatory functions of the hypothalamus. Studies from
clinical cohorts of children with FASD have identified widespread
changes to DNA methylation patterns in peripheral tissues
(Laufer et al., 2015; Portales-Casamar et al., 2016; Lussier et al.,
2018). However, alterations to central tissue are difficult if not
impossible to directly assess in clinical populations, and while
peripheral tissues are more easily accessible, changes in these
cells may not fully reflect alterations in the brain (Berko et al.,
2014). Furthermore, biological embedding of PAE’s effects earlier
in development could potentially lead to more systemic effects on
the epigenome, which would be reflected by alterations present
across a variety of tissues.

Currently, the genome-wide impact of PAE on DNA
methylation within the hypothalamus remains unknown
(Bekdash et al., 2013; Ngai et al., 2015). To address this gap, we
utilized a well-established rat model of PAE to assess whether
moderate to moderately high levels of first and second trimester-
equivalent alcohol exposure alters DNA methylation profiles in
the early postnatal period, and whether altered sites of DNA
methylation could serve as biomarkers of gestational alcohol
exposure if also identified in peripheral tissues. Using methylated
DNA immunoprecipitation and next-generation sequencing
(meDIP-seq), we identified statistically significant differentially
methylated regions (DMRs) in female PAE animals that persisted
across preweaning development of the hypothalamus. In parallel,
we identified concordant DNA methylation alterations in

white blood cells and the hypothalamus of female PAE animals
compared to controls on postnatal day (P) 22. Our findings
suggest that: (1) PAE alters DNA methylation patterns in both
central and peripheral tissues, potentially reprogramming
neurobiological/physiological systems and influencing the
deficits observed in FASD; and (2) DNA methylation patterns
in peripheral tissue reflect some changes in brain, which could
serve as potential biomarkers for central alterations induced by
PAE.

MATERIALS AND METHODS

Prenatal Treatment
Details of the procedures for breeding and handling have been
published previously (Bodnar et al., 2016). Briefly, outbred male
and nulliparous female Sprague-Dawley rats were obtained from
Charles River Laboratories (St. Constant, Quebec, Canada).
Following a one-week habituation period, each female (n =

39) was pair-housed with a male and vaginal lavage samples
were collected daily for estrous cycle staging and to check
for the presence of sperm, indicating gestation day (GD) 1.
Pregnant dams were singly housed and assigned to one of three
prenatal treatment groups: Prenatal alcohol exposure (PAE)—
ad libitum access to liquid ethanol diet, 36% ethanol-derived
calories, 6.37% v/v, n = 13; Pair-fed (PF)—liquid-control diet,
maltose-dextrin isocalorically substituted for ethanol, in the
amount consumed by an PAE partner, g/kg body weight/GD,
n = 14; or Control (C)—pelleted version of the liquid control
diet, ad libitum, n = 12. All animals had ad libitum access to
water. Experimental diets (Weinberg/Keiver Liquid Ethanol Diet
#710324, Weinberg/Keiver Liquid Control Diet #710109, and
Pelleted Control Diet #102698, Dyets Inc., Bethlehem, PA) were
fed from gestation days 1–21, and then replaced with laboratory
chow. Litters were weighed and culled at birth to 6 males and 6
females, when possible. Pregnancy outcomes and body weights
can be found in Supplementary Table 1. Blood alcohol levels
were measured as previously reported and ranged from 80 to 150
mg/dl in PAE females (Hellemans et al., 2010b; Uban et al., 2010;
Bodnar et al., 2016).

Sample Collection
We focused our investigation of PAE-induced epigenetic
alterations on female animals, as sexually dimorphic effects
of PAE are widely reported (Lee and Rivier, 1996; Weinberg
et al., 2008) and females are generally underrepresented in
molecular and genome-wide studies of FASD (Lussier et al.,
2017). On postnatal day (P) 1, 8, 15, and 22 female offspring
(max 1/litter) were decapitated, trunk blood collected (at P22
only), and brains removed and weighed; the hypothalamus was
then quickly dissected and frozen on dry ice in RNAlater (n= 7–
11/age/group; Figure 1; Qiagen, Hilden, Germany). WBCs were
isolated using Ficoll-Paque (GE Healthcare, Uppsala, Sweden),
which isolates peripheral blood mononuclear cells (PBMCs). All
tissue collected was left at 4◦C for 24 h to allow for complete
permeation by RNAlater and then frozen at −80◦C until DNA
extraction, as per manufacturer instructions. WBCs were stored
in RNAlater at −80◦C until DNA extraction (Qiagen, Hilden,
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FIGURE 1 | Overview of the experimental design. We collected the hypothalamus of female offspring from one of three prenatal treatment groups on postnatal days

(P) 1, 8, 15, and 22. In parallel, white blood cells were collected on P22 from the same animals as the hypothalamus samples. Each group/age/tissue was composed

of four samples for DNA methylation analysis by methylated DNA immunoprecipitated and next-generation sequencing (meDIP-seq).

Germany). Due to the large number of animals associated with
the experimental design of this study, animals were collected
across four different cohorts (experimental breedings), spanning
January 2012–December 2013.

Blood Composition Analysis
Analysis of blood composition was done on samples from a
separate cohort of animals, which were bred at a later time but
under the same conditions as the main cohort. Briefly, on P22,
trunk blood was collected from female offspring (C: n = 6; PF: n
= 5; PAE: n = 5), and analyzed using the Advia120 hematology
system, which assesses complete blood counts and differential
WBC counts (CBC/Diff function). The reported values include
counts for neutrophils, lymphocytes, monocytes, eosinophils,
basophils, and large unclassified cells (Supplementary Table 2).

DNA Extraction
Total RNA and DNA were simultaneously extracted from the
hypothalamus and white blood cells (n = 4/group/age/tissue;
Qiagen AllPrep DNA/RNA Mini kit, Hilden, Germany). Frozen
tissue was thawed on ice, quickly weight, and placed in
lysis buffer for 5min. Homogenization was performed by 5
strokes of an 18G needle, 10 strokes of a 20G needle, and
10 strokes of a 23G needle. The resulting homogenate was
centrifuged at 21,000 g for 3min and the supernatant was
collected for DNA and RNA extraction. White blood cells were
thawed on ice and then centrifuged at 10,000 g for 10min.
RNAlater was carefully removed without disturbing the cell
pellet and cells were resuspended in lysis buffer. The cells
were then frozen at −80◦C to disrupt cell membranes and
thawed on ice. The resulting homogenate was used for DNA

and RNA extraction. DNA concentration was assessed using
Qubit Fluorometric Quantitation (Life Technologies, Carlsbad,
USA). Full developmental data on the animals can be found in
Supplementary Table 3.

Methylated DNA Immunoprecipitation and
Next-Generation Sequencing
Our methylated DNA immunoprecipitation followed by next-
generation sequencing (meDIP-seq) procedures were adapted
from a previously published protocol and are outlined in detail
below (Taiwo et al., 2012). Importantly, meDIP-seq provides
qualitative measures of methylated CpG levels genome-wide and,
unlike bisulfite dependent assays, is specific for methyl-cytosine.
As previously noted, meDIP-seq coverage is highly reproducible
with reduced coverage in regions of sparse CpG density, showing
>99% concordance with bisulfite sequencing methods (Harris
et al., 2010). However, our experimental design is based on
treatment vs. controls and thus only queries genomic regions
that are addressable by meDIP-seq reads. As such, we cannot
eliminate the possibility that additional DMRs are present within
genomic regions with sparse CpG coverage.

Sequencing Library Preparation
For each sample, 500 ng of DNA were diluted in a total volume
of 60 µL of EB buffer (Qiagen, Hilden, Germany). DNA was
then transferred to a 96-well plate and sheared for 1 h using
the Covaris Focused-ultrasonicator. DNA was purified using
Ampure XP in 20% polyethylene glycol (PEG) beads to obtain
fragments sized from 200 to 500 basepairs (Beckman-Coulter,
Brea, USA). Library preparation was performed on the Bravo
Automated Liquid Handling Platform (Agilent, Santa Clara,
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USA) using the TruSeq DNA PCR-Free Sample Preparation Kit
(Illumina, San Diego, USA). Following end-repair and A-tailing,
adapters were ligated overnight at room temperature. PCR-free
library preparation allowed for the conservation of methylated
cytosines for subsequent methylated DNA immunoprecipitation.
Finally, DNA was resuspended in 35 µL of EB buffer (Qiagen,
Hilden, Germany). DNA was quality controlled using Qubit
Fluorometric Quantitation and the DNA 1000 Bioanalyzer 2100
kit (Agilent, Santa Clara, USA) to verify DNA concentration and
fragment size (250–550 bp).

Methylated DNA Immunoprecipitation
For each sample, 400 ng of the sequencing library DNA were
diluted in a total volume of 50 µL of IP Buffer (10mM sodium
phosphate buffer, pH 7.0, 140mM NaCl, 0.05% triton). DNA
was denatured by incubation at 95◦C for 10min, followed by
the addition of 48 µL ice-cold IP buffer and incubation on ice
for 10min. Two microliters of anti-5-methylcytosine antibody
(Eurogenetec, Liège, Belgium), diluted to 1/50 in IP buffer (1 µL
of antibody per 1 µg of DNA ratio), were added to each sample.
Immunoprecipitation reactions were incubated for 16 h at 4◦C
with overhead rotation. Following two 5min washes with 150 µL
of 0.1% BSA/PBS, 50 µL of Dynabeads Protein G were incubated
with 5 µL of secondary antibody (rabbit anti-mouse IgG; Jackson
Immunoresearch, West Grove, USA) in 45 µL ice-cold IP buffer
for 15min at room temperature with overhead rotation. Beads
were washed twice with IP buffer to remove unbound secondary
antibody and resuspended in 50 µL IP buffer. The antibody-
bound beads were added to the immunoprecipitation reactions
and incubated for 2 h at 4◦C with overhead rotation. Beads were
then washed 6 times with 150 µL of ice-cold IP buffer and
resuspended in 98.97 µL of Proteinase K digestion buffer (TE
with 0.5% SDS). Following the addition of 1.25 µL Proteinase K
(20 mg/mL; Qiagen, Hilden, Germany), samples were incubated
in a thermomixer for 2 h at 55◦C with a rotation speed of 1,250
rpm. The reaction was then allowed to cool at room temperature
for 15min. Supernatant was collected and bead cleanup was
performed using equal volume SeraMag beads with 30% PEG.
DNA was resuspended in 35 µL of EB buffer (Qiagen, Hilden,
Germany).

Sample Amplification and Indexing
To reduce PCR amplification bias, two separate reactions of the
same meDIP sample were run in parallel using the following
PCR amplification cycle conditions. The reaction mixes were
as follows: 15 µL DNA, 27 µL H2O, 12 µL 5X HF buffer,
1.5 µL DMSO, 1.0 µL paired-end primer (Illumina), 0.5 µL
Phusion High-Fidelity DNA polymerase (New England Biolabs),
2 µL indexing primer (Illumina—specific to each sample). The
amplification cycle was as follows: 98◦C for 1min, 12X (98◦C for
15 s, 65◦C for 30 s, 72◦C for 30 s), 72◦C for 5min. Reactions from
the same sample were pooled and bead cleanup was performed
using SeraMag beads in 20% PEG (102 µL of beads per 120 µL of
reaction). DNAwas resuspended in a final volume of 35µL of EB
buffer.

Next-Generation Sequencing and Quality Control
Indexed meDIP libraries were combined in 3 pools of 20 samples
each, distributing samples evenly by tissue, age, and prenatal
treatment across all three sets. Next-generation sequencing was
performed on the pools by the Genome Sciences Centre in
Vancouver, BC, Canada. Each sample pool was run on two HiSeq
lanes, which produced approximately 600,000,000 paired-end
reads of 125 bases per lane. Fastq files were aligned to the most
current rat genome (Rn6, July 2014) using the Burrows-Wheeler
Transform (BWA) tool to obtain.bam files (Li and Durbin, 2009).
Bam files were filtered using samtools to remove duplicate reads,
unpaired reads, and reads with a minimum quality score below
10. Following alignment and filtering, each the two runs for each
sample were merged using samtools to obtain a single bam file
for each sample (Li et al., 2009). Supplementary Table 11 shows
sequencing related information: sample pool, sample index,
number of raw reads, number of filtered reads, and total number
of reads/sample.

Bioinformatic Analyses
Peakset Generation
Model-based analysis of ChIP-seq (MACS2; version
2.1.0.20140616) was used to identify enriched regions of
DNA methylation across the genome (Zhang et al., 2008).
The peak calling to identify peak regions (DNA methylation
windows) was performed using the “callpeaks” function on
paired end bam files with no control input and the following
options: –f BAMPE–m 5 50–bw 300–g 2.9e9–q 0.05. Each sample
was modeled individually, generating 60 total peaksets. These
were imported into R using the DiffBind package (Stark and
Brown, 2011). As all samples had slightly different predicted
peaks, peaksets were combined into common regions using the
dba.count function in DiffBind, which removed peaks found
in <3 samples across the entire dataset and provided the total
number of reads within each peak/sample. This created a final
dataset of 469,162 peaks and 48 samples from the developmental
profile of the hypothalamus, and a final dataset of 350,960
peaks and 24 samples in the P22 hypothalamus and WBC
(tissue-concordant) peakset.

Data Preprocessing and Normalization of the

Developmental Dataset
First, the total reads within each peak were adjusted to
reads/kilobase by dividing the number of reads within each
region by their length. In turn, these were converted to reads
per kilobase per million (RPKM) by dividing the reads/kilobase
by the total number of reads found in the predicted peaks to
account for differences in sequencing depth between samples.
The samples in the developmental dataset were highly correlated
(r > 0.95 for all samples), with samples clustering most closely
with animals of the same age (Supplementary Figure 1). No
outliers were detected in this first pass analysis.

Principal component analysis of the normalized RPKM data
revealed significant levels of variation associated with batch
effects. Notably, meDIP and DNA extraction rounds were
associated with a large proportion of variation within the
dataset. However, both these factors were highly confounded
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with age, as samples for each age were extracted as a batch
and all P22 samples were immunoprecipitated in a separate
batch (Supplementary Figure 2). To account for these effects,
ComBat correction, from the SVA package, was performed on
the RPKM data from the hypothalamic samples to correct the
effects of meDIP round and DNA extraction round in the dataset
(Leek et al., 2012). Age was also slightly confounded with the
breeding from which animals were collected, as not all ages
were sampled from each of the different cohorts. Interestingly,
some partial effects of breeding remained in the dataset following
ComBat correction, suggesting that this covariate was not
fully confounded with age. Furthermore, prenatal treatment
accounted for a larger proportion of variance within the dataset
following ComBat correction, suggesting that the removal of
batch effects might allow for the identification of more subtle
effects of PAE. The corrected and normalized RPKM values
obtained from ComBat were used for plotting purposes, but
were converted back to reads/kilobase for downstream statistical
analyses.

Data Preprocessing and Normalization of the

Tissue-Concordant Dataset
The tissue-concordant dataset was preprocessed and normalized
as described above. Samples were highly correlated within tissue
(r > 0.96), the main driver of DNA methylation patterns, and
well correlated within the same animals (r > 0.92). However,
one PF WBC sample clustered with the hypothalamus samples,
suggesting that it may have been mislabeled during processing.
As such, this sample was removed from the dataset, resulting
in a dataset of 23 samples (Supplementary Figure 3). Principal
component analysis of the normalized tissue-concordant RPKM
data revealed significant levels of variation associated with
DNA extraction round batch effects (Supplementary Figure 4).
Tissue type was the covariate most strongly associated with
variance in the dataset, although it was slightly confounded
with extraction round. While ComBat correction was used to
account for the effects of DNA extraction round in the tissue-
concordant dataset, this approach limited our ability to identify
tissue-specific differences, as it removed the majority of tissue-
associated variance from the dataset. Again, prenatal treatment
was associated with a larger proportion of variance within the
dataset following ComBat correction. Interestingly, breeding
once again remained a major contributor to variability within the
dataset, suggesting that differences between cohorts may have an
important influence on epigenetic patterns.

Removing Cell-Type Specific DMRs
Using previously characterized transcriptomic profiles from
mouse neurons, oligodendrocytes, and astrocytes, we identified
DNA methylation peaks within genes that are specifically
expressed in each different cellular subtype (1.5-fold expression
difference compared to other cell types; Cahoy et al., 2008). Given
the relationship between gene expression and epigenetic patterns,
it is possible that alterations to the DNA methylation levels of
these genes could reflect changes in the cell-type proportions
within this dataset. However, the majority of the peaks in the
dataset were located within intergenic regions, with no annotated

associations with these genes, reducing our ability to capture cell-
type related differences. As such, only regions directly located
within neuron-, oligodendrocyte-, or astrocyte-specific genes
were removed from further analyses to reduce the potential
confounding factor of cell type, resulting in a dataset of 451,112
peaks for downstream analyses of the hypothalamus.

DMR Identification
Linear modeling was performed using edgeR, which is typically
used to analyze RNA-seq count data and includes a factor to
account for the number of reads in each sample (Robinson et al.,
2010a; Nikolayeva and Robinson, 2014). This method was used
to identify differentially methylated regions (DMRs) that were
consistently different between PAE animals and both control
groups across the different ages and tissues. For both analyses,
the model accounted for the effects of collection during different
breedings, and p-values were corrected for multiple-testing using
the Benjamini-Hochberg method. Statistically significant DMRS
at a false discovery rate (FDR) <0.05 were obtained for the
following contrasts: PAE vs. C, PAE vs. PF, and C vs. PF. The final
PAE-specific DMRs were statistically significant in both PAEvC
and PAEvPF, and were not found in the PFvC contrasts.

Genomic Enrichment
Custom annotations were built for each peakset using the
UCSC genome browser gene annotations. Briefly, genomic
coordinates of all CpG islands, exons, introns, promoters (TSS-
200 bp and TSS-1500 bp), 3′ untranslated regions (UTR), 5′

UTRs for the rn6 genome were obtained as bed files from
the table browser. In parallel, MeDIP-seq peaks were converted
to the bed file format and the overlap of genomic features
with MeDIP-seq peaks was computed iteratively using the
intersectBed function from bedtools, retaining only the peaks
that contained the assessed genomic feature (Quinlan and Hall,
2010). The overlaps were concatenated into a single annotation
set in R, where individual peaks contained information for
each potential genomic feature. Of note, regions spanning both
introns and exons were deemed intron/exons boundaries. P-
values for genomic feature enrichment analyses were calculated
by computing background levels of genomic features on 1,000
random subsets of DMRs, using the same number of PAE-specific
DMRs.

Transcription Factor Binding Site Analysis
Enrichment of different transcription factors binding sites
(TFBS) in PAE-specific DMRs was assessed using the
motifEnrichment function of the PWMEnrich package (Stojnic
and Diez, 2013). DMR DNA sequences were obtained from
the UCSC genome browser (Rn6 genome). As no binding
motifs were available for the Rattus norvegicus genome, motifs
from the Mus musculus genome were obtained from the
PWMEnrich.Mmusculus.background. Motifs were summarized
using the groupReport function. P-values were calculated by
performing enrichment analysis on 1,000 random subsets of
DMRs, using the same number of PAE-specific DMRs for each
analysis to assess background levels of each TFBS in the different
peaksets.
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Gene Ontology Analysis
The gene-score resampling (GSR) tool of ErmineJ (version
3.0.2) was used to identify gene function enrichment in the
differentially methylated genes including the Gene Ontology
(GO) annotations molecular function, biological process, and
cellular component (Lee et al., 2005; Gillis et al., 2010). The
ermineJ GSR tool was set with the following parameters: max
gene set size = 2,000; min gene set size = 2; iterations = 10,000.
Once again, statistically significant associations (p < 0.05 and
multifunctionality score <0.05) were obtained for the following
contrasts: PAE vs. C, PAE vs. PF, and C vs. PF. The final PAE-
specific GO terms were statistically significant in both PAEvC and
PAEvPF, and were not found in the PFvC contrasts. Importantly,
ermineJ accounts for the multiple functions assigned to many
genes, generating a multifunctionality p-value to reduce the
bias of gene ontology analyses toward pathways with numerous
common genes (Gillis and Pavlidis, 2011; Ballouz et al., 2017).

Bisulfite Pyrosequencing
DNA from the same samples as above were subjected to
bisulfite conversion using the Zymo EZ DNA Methylation
Kit (Zymo Research, Irvine, California), which converts DNA
methylation information into sequence base differences by
deaminating unmethylated cytosines to uracil while leaving
methylated cytosines unchanged. Bisulfite pyrosequencing assays
were designed with PyroMark Assay Design 2.0 (Qiagen, Hilden,
Germany; Supplementary Table 4). The regions of interest were
amplified by PCR using the HotstarTaq DNA polymerase kit
(Qiagen, Hilden, Germany) as follows: 15min at 95◦C, 45
cycles of 95◦C for 30 s, 58◦C for 30 s, and 72◦C for 30 s,
and a 5min 72◦C final extension step. For pyrosequencing,
single-stranded DNA was prepared from the PCR product with
the PyromarkTM Vacuum Prep Workstation (Qiagen, Hilden,
Germany) and the sequencing was performed using sequencing
primers on a PyromarkTM Q96 MD pyrosequencer (Qiagen,
Hilden, Germany). The quantitative levels of methylation for
each CpG dinucleotide were calculated with Pyro Q-CpG
software (Qiagen, Hilden, Germany). Of note, only PAE and C
animals were assessed by bisulfite pyrosequencing. We selected
several DMRs for verification by bisulfite pyrosequencing based
on their potential role in PAE-induced deficits, mainly focusing
on their associated gene.

RESULTS

The Developmental Profile of the Rat
Hypothalamus
Our initial analysis of this dataset aimed to identify persistent
alterations to DNA methylation patterns in the female rat
hypothalamus across early development (P1, 8, 15, and 22) using
methylated DNA immunoprecipitation (meDIP-seq). These ages
were selected as they represent key developmental time points,
including birth (P1), the brain growth spurt (P8), eye opening
(P15), and weaning (P22; Dobbing and Sands, 1979; McCormick
and Mathews, 2010).

PAE Resulted in Persistent Alterations to DNA

Methylation Patterns in the Hypothalamus
As cell type proportions are a major driver of DNA methylation
patterns, we first removed peaks that were located within genes
specifically expressed in neurons, astrocytes, or oligodendrocytes,
resulting in a dataset of 48 samples and 451,112 peaks. We
assessed the cell-type associated peaks independently by
linear modeling (18,050 peaks), identifying few differences
among prenatal groups (Supplementary Figure 5). Although
this filter was limited by the use of genic and promoter
regions, as well as gene expression patterns from isolated
neurons, glia, and oligodendrocytes, this partial analysis
suggested that few differences in the proportions of the
three major brain cell types were present in the dataset. In
addition to cell type differences, highly-methylated regions
associated with age could have also introduced additional
variation into our data. As such, we included age as a
covariate in our statistical models, which may partially
account for these age-induced effects through statistical
means.

To assess persistent alterations to DNA methylation patterns
caused by PAE, we performed linear modeling on the
hypothalamic samples across all ages with a model that
also accounted for differences across breeding cohorts. Using
contrast analyses, we successfully identified 118 PAE-specific
DMRs at an FDR <0.05 that persisted across all four
developmental ages and showed consistently different DNA
methylation levels between PAE animals and controls (Figure 2;
Supplementary Table 5). Of these, 47 were up-methylated and
75 were down-methylated in PAE animals vs. control groups,
and their sizes ranged from 316 to 1027 bp (median = 494.5
bp).

Overall, 34 DMRs were located in genes, particularly within
those involved in dopamine signaling (Drd4), the immune
response (Ifih1, Ccrl2, Il20ra), and blood-brain barrier function
(Plvap). Of note, two overlapping genes, Golga4 and Ctdspl,
contained two separate DMRs, and were the only genes with
multiple DMRs. Although the entire DMR set did not show
any significant differences in genomic location enrichment
compared to the background of the dataset, the up-methylated
DMRs displayed significantly more enrichment in CGI and
exons compared to random chance (p < 0.05; Figure 3).
Furthermore, the majority of DMRs were located in intergenic
regions, and while these were not significantly enriched
compared to the entire dataset, these results suggested that
intergenic regions may be more responsive to the influence
of PAE on the epigenome, and may contain important
regulatory regions that are not yet annotated in the rat
genome.

Of note, meDIP-seq provides relative levels of DNA
methylation based on enrichment scores, and thus, the
magnitude of change (i.e., % methylation) was not assessed
using this method. Nevertheless, 38 of the DMRs showed
at least 1.5-fold change in DNA methylation levels in PAE
animals vs. controls, including those in Drd4, Plvap, and
Cntnap5c (Supplementary Table 6), suggesting that PAE could
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FIGURE 2 | PAE-specific DMRs across pre-weaning development of the hypothalamus. (A) Contrast analysis revealed 118 PAE-specific differentially methylated

regions (DMR), which were significantly different in PAE vs. C animals and PAE vs. PF animals, but not significantly different between PF vs. C. (B) The DMRs showed

consistent difference between PAE animals and controls across ages. Each row represents a different DMR, while each column shows the mean for all animals within

that group/age (n = 4). Reads per kilobase per million (RPKM) data were scaled and centered to produce a Z-score for each DMR, where those in blue showed less

DNA methylation enrichment and those in red showed more enrichment.

FIGURE 3 | Enrichment patterns of the developmental DMRs. (A) Genomic feature enrichment profile of all, up-methylated, and down-methylated DMRs. The probe

counts for each feature (blue) were compared to the results from permutation analyses of 118 random regions (orange), which were used to compute the p-value. The

majority of DMRs were located in intergenic regions or introns. Up-methylated regions in PAE animals contained more CpG islands (CGI) and exons than expected by

chance (p < 0.05). (B) Overrepresentation analysis of transcription factor binding sites in the DMRs. Only BHLHE40 showed higher enrichment in the PAE-specific

DMRs (blue) than by random chance (orange; p < 0.05), although SREBF1 and MLX trended toward significance (p < 0.1). *p < 0.05, #p < 0.1.

induce robust alterations to DNA methylation patterns in the
hypothalamus.

PAE-Specific DMRs Contained a Greater Proportion

of Computationally-Predicted Bhlhe40 and Srebf1

Transcription Factor Binding Sites
To follow up on the large proportion of intergenic regions
in the PAE-specific DMRs, we assessed the enrichment of
transcription factor binding sites (TFBS) within these regions
using binding motifs from the mouse genomes. Although
the overlap between the rat and mouse genomes is not
perfect (∼70%), the rodent family shares many genomic

characteristics and this analysis provided an important first pass
analysis of potential regulatory factors within these regions.
Following multiple-test correction (FDR<0.05), few TFBS were
enriched within these regions compared to background levels.
However, the BHLHE40 binding motif was significantly enriched
within the PAE-specific DMRs (p < 0.05), while the SREBF1
and MLX motifs trended toward significance (p < 0.10;
Figure 3B). These results suggest that certain transcription
factors may play a role in the long-term reprogramming
of hypothalamic functions by PAE and may act in concert
with other factors to sculpt the epigenome and downstream
phenotypes.
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Genes in PAE-Specific DMRs Were Enriched for

Biological Processes Associated With Hypothalamic

Functions
We performed GO analysis to ascertain the broad functional
impact of PAE-induced changes in DNA methylation patterns
of the hypothalamus across early development. This analysis
revealed 20 PAE-specific biological processes (both p-values
and multifunctionality p-value < 0.05 in PAEvC and PAEvPF,
>0.05 in PFvC; Table 1). Although these findings failed to reach
significance after multiple-test correction, they were potentially
reflective of the broader effects of PAE on the epigenome. Of note,
the top GO terms were associated with steroid receptor signaling
(GO:0042921, GO:0030518, GO:0031958, GO:0030520), a key
function of the hypothalamus. Several processes associated with
epigenetic regulation (GO:0016577, GO:0006482, GO:0070932)
were also enriched in the PAE-specific DMRs, as were processes
involved in immune function (GO:0030885, GO:0030886,
GO:0002314), and cellular metabolism (GO:0050812).

The Ddr4 DMR Was Verified by Bisulfite

Pyrosequencing
Given that meDIP-seq provides a relative signal of DNA
methylation levels, we verified the PAE-specific DMRs using
bisulfite pyrosequencing, a highly quantitative measure of DNA
methylation, to test whether meDIP-seq could accurately detect
alterations in DNA methylation patterns. Importantly, this
technique also detects DNA hydroxymethylation, but cannot
differentiate between the different cytosine modifications, while
meDIP-seq is specific to DNA methylation due to the nature of
the antibody used. We assessed four different DMRs, based on
their potential role in the etiology of PAE-induced deficits. Of
note, only a portion of CpGs within each DMR were assessed by
bisulfite pyrosequencing due to limitations in read length, and
as such, additional CpGs within the DMR may partially drive
some of the differential DNA methylation enrichment identified
by meDIP-seq.

We first assayed 16 CpGs within the 3′ UTR of the Drd4
DMR (chr1:214,281,174-214,281,640) in the same samples as the
meDIP-seq analysis (Figure 4; Supplementary Table 7). DNA
methylation at all CpGs assayed was significantly associated
with PAE when correcting for age (p < 0.05). Moreover, this
analysis detected a >5% change in DNA methylation across the
entire DMR on P1 and P22 in PAE compared to C animals (p
< 0.05). A 5% DNA methylation change is often used as an
arbitrary quantitative cutoff for potential biological significance
in epigenome-wide association studies, although we note that
many studies report lower effect sizes (Mill and Heijmans, 2013;
Breton et al., 2017). At older ages, several of the CpGs remained
significantly different between PAE and controls, with several
remaining present on P22. Overall, bisulfite pyrosequencing
showed the same direction of change as the meDIP-seq analysis
in this DMR and generally displayed good concordance between
the two technologies (Table 2).

We also used this method to verify three additional
DMRs, located within Ifih1 (chr3: 48,561,559-48,561,925),Mycbp
(chr5:141,565,784-141,566,172), and Plvap (chr16: 19,912,813-
19,913,185) (Supplementary Figure 6; Supplementary Table 7).

These showed less consistent changes in DNA methylation
between the two methods, as some ages appeared to drive
DNA methylation patterns more than others and some CpGs
showed opposite direction of change between meDIP-seq and
pyrosequencing. For instance, the Ifih1 locus only showed
significant differential DNA methylation at P15 only (p = 0.044;
change = 1.21%), while the Mycbp and Plvap loci displayed a
subset of significant CpGs at various ages. Although the small
differences identified among groups suggest that meDIP may be
sensitive enough to detect small changes in DNA methylation
levels, the direction of change was not always consistent with the
meDIP-seq results. These findings also raised the possibility that
DNA hydromethylation differences may also be in play within
these loci, since this DNA modification shows high prevalence
in the brain and that could potentially explain the discrepancies
between meDIP-seq and pyrosequencing (Lister et al., 2013).

Tissue-Concordant Alterations to DNA
Methylation Patterns
In parallel to the analysis of DNA methylation in the
hypothalamus during early development, we used meDIP-seq
to assay DNA methylation in the hypothalamus and WBC of
the same P22 females. This analysis aimed to identify tissue-
concordant alterations present in both the central nervous system
(CNS) and peripheral tissue in response to PAE.

White Blood Cell Proportions Were Not Different

Across Groups
As noted, cell type proportions are a major driver of epigenetic
variability. However, the volume of blood collected from
P22 animals was too small to perform both epigenetic and
blood composition analyses on the same animals. For this
reason, we collected samples from P22 animals from an
independent cohort (i.e., bred at a later time, but under the
same conditions as those in the present study) to determine
whether PAE altered the proportions of WBCs that would be
collected using the Ficoll-Paque method. Composition analysis
of whole blood indicated the proportions of lymphocytes,
neutrophils, monocytes, basophils, eosinophils, and large
unclassified cells. Linear modeling revealed no significant
differences among prenatal treatment groups, suggesting
that PAE does not alter the proportion of the major WBC
subtypes (Supplementary Figure 7). These findings suggest that
WBC proportions likely did not influence differences in DNA
methylation patterns between groups in the present dataset.

PAE Caused Tissue-Concordant Alterations to DNA

Methylation Patterns
To identify tissue-concordant alterations to DNA methylation
patterns associated with PAE, we performed linear modeling on
the tissue-concordant dataset with a model that also accounted
for differences across breeding cohorts. This method identified
299 PAE-specific DMRs at an FDR <0.05 that were present
in both tissues and showed the same direction of change in
PAE vs. control animals (Figure 5; Supplementary Table 8).
In contrast to the developmental profile, these DMRs showed
smaller fold changes, with only 7/299 displaying a 2-fold
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TABLE 1 | Biological processes enriched in the developmental profile DMRs.

Name ID Number

of genes

Multi-

functionality

P-value Multifunctionality p-value

PAEvC PAEvPF PFvC PAEvC PAEvPF PFvC

Glucocorticoid receptor

signaling pathway

0042921 4 0.475 0.00117 0.00432 0.06853 0.0011 0.00456 0.07096

Intracellular steroid

hormone receptor

signaling pathway

0030518 27 0.681 0.00146 0.00865 0.09115 0.00148 0.00765 0.09009

Corticosteroid receptor

signaling pathway

0031958 5 0.442 0.0025 0.01919 0.10193 0.00269 0.01955 0.1019

Regulation of myeloid

dendritic cell activation

0030885 2 0.129 0.00816 0.0198 0.14194 0.00843 0.01869 0.14077

Negative regulation of

myeloid dendritic cell

activation

0030886 2 0.129 0.00816 0.02063 0.1637 0.00843 0.01978 0.163

Histone demethylation 0016577 13 0.397 0.01224 0.02727 0.18051 0.01204 0.02756 0.17928

Protein demethylation 0006482 15 0.365 0.01636 0.0284 0.18496 0.01597 0.02785 0.18571

Protein dealkylation 0008214 15 0.365 0.01636 0.02926 0.2578 0.01597 0.02805 0.26243

Calcium ion export 1901660 3 0.345 0.0166 0.02927 0.32371 0.01739 0.02926 0.32667

Protein sumoylation 0016925 11 0.328 0.01845 0.03449 0.33119 0.01688 0.03389 0.33539

Regulation of protein

targeting to membrane

0090313 11 0.631 0.01845 0.03449 0.42205 0.01688 0.03389 0.42409

Intracellular estrogen

receptor signaling

pathway

0030520 6 0.523 0.01891 0.0354 0.42205 0.01913 0.0354 0.42409

Histone H3 deacetylation 0070932 8 0.419 0.02819 0.04091 0.56227 0.03028 0.04161 0.56796

Relaxation of smooth

muscle

0044557 6 0.679 0.03185 0.04117 0.56279 0.03219 0.04121 0.56348

Midbrain-hindbrain

boundary development

0030917 3 0.267 0.03285 0.04178 0.72697 0.03382 0.04319 0.72413

GDP-mannose metabolic

process

0019673 5 0.252 0.03451 0.04275 0.7401 0.03368 0.04445 0.73884

Protein deacetylation 0006476 20 0.664 0.04114 0.04456 0.76723 0.04009 0.04284 0.76878

Regulation of acyl-CoA

biosynthetic process

0050812 4 0.358 0.04459 0.04469 0.89405 0.04633 0.04556 0.89682

Germinal center B cell

differentiation

0002314 2 0.073 0.0467 0.04469 0.89405 0.04618 0.04556 0.89682

Negative regulation of

nuclear division

0051784 24 0.774 0.04736 0.04683 0.97779 0.04927 0.04737 0.97771

change in PAE animals vs. controls, suggesting that subtle,
but potentially important alterations are observed across tissues
(Supplementary Table 9).

Of the significant DMRs, 105 were up-methylated and 194
were down-methylated in PAE animals, and their size ranged
from 355 to 2,038 bp (median = 574 bp). The majority of
DMRs also displayed small tissue-specific effects in the relative
enrichment of DNA methylation, although the magnitude of
change was similar between PAE and controls across both tissues
(Figure 5).

Again, a majority of DMRs were located in intergenic
regions, and were not associated with any gene (Figure 6A).
However, the DMRs showed increased enrichment in intergenic
regions compared to backgorund levels and less enrichment in
intron/exon boundaries, which was driven mainly by the down-
methylated regions. These results may reflect the role of DNA

methylation in the regulation of splice variants, which could
potentially be affected by PAE. Overall, 75 DMRs were located in
genes, although the majority of these were once again located in
intronic regions. Several DMRs were located in genes involved in
immune function (Fgf9, Il18r1) and alcohol metabolism (Adh4).
Of note, one DMR spanned 9 different isoforms of the Utg1a
family of genes, which could be related to alternative splicing,
while Caln1 and Cntnap5c each contained three separate DMRs.

Several Computationally-Predicted TFBS Were

Enriched in Cross-Tissue PAE-Specific DMRs
We assessed the enrichment of TFBS within these cross-tissue
PAE-specific DMRs to examine potential regulatory regions.
Following multiple-test correction (FDR < 0.05), we identified
16 TFBS enriched within these regions compared to background
levels (Figure 6B). The most frequent motif belonged to GMEB1,
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FIGURE 4 | Bisulfite pyrosequencing verification of the Drd4 DMR. 16 CpGs (#7–22) spanning 380 base pairs (bp) of the DMR located in the 3′ UTR of Drd4 were

verified by pyrosequencing in the same animals as the meDIP-seq analysis. All CpGs on P1 displayed >5% change in DNA methylation levels between PAE (red) and

controls (blue). Of these, several were consistently different across all ages and a number persisted until P22. The total levels of DNA methylation in the DMR also

increased with age across all groups.

TABLE 2 | Summary of the pyrosequencing results for the Drd4 DMR.

Age DMR DNAm DMR DNAm change DMR

p-value

Individual CpGs (from #7–22 of the DMR)

PAE C Mean 95% CI

(lower)

95% CI

(upper)

SD p < 0.05 change >0.05 p < 0.05 and

change >0.05

All ages 44.310 40.211 3.925 1.549 6.301 1.212 2.59E-03 CpG 7–22 CpG 7, 9, 10, 17,

18

CpG 7, 9, 10, 17,

18

P1 32.868 27.748 5.120 2.371 7.869 1.402 6.49E-03 CpG 7–21 CpG 7, 9, 10,

15–17

CpG 7, 9, 10,

15–17

P8 41.393 41.666 −0.273 −5.214 4.667 2.521 9.16E-01 CpG 7 CpG 7 CpG 7

P15 49.393 44.790 4.603 2.120 7.085 1.267 8.36E-03 CpG 7–10, 12, 13,

15–17

CpG 7, 10, 13, 16 CpG 7, 10, 13, 16

P22 53.587 47.555 6.032 1.452 10.613 2.337 3.25E-02 CpG 8, 13, 16–20 CpG 8–11, 13, 15,

17–22

CpG 8, 13, 17–20

which was found in 16% of all DMRs. Several binding sites for
the forkhead box (FOX) family of transcription factors were also
enriched in these regions. Of note, the enrichment of MLX and
SREBF1 motifs in the cross-tissue DMRs overlapped with the
results from the developmental profile.

Genes in Cross-Tissue PAE-Specific DMRs Were

Enriched for Various Biological Processes
We performed GO analysis to ascertain the broad functional
impact of PAE-induced changes in DNA methylation patterns
across the hypothalamus and WBC. Through this analysis, we
identified 35 PAE-specific biological processes (both p-values
and multifunctionality p-value < 0.05 in PAEvC and PAEvPF,
>0.05 in PFvC; Table 3). However, with multiple-test correction,

these findings failed to reach significance, suggesting that these
may represent more subtle effects on the global epigenome. Of
note, the top GO terms were associated with metabolic processes,
including aldehyde metabolism (GO:0006081). Several processes
were also associated with immune function (GO:0045063,
GO:0071351, GO:0032733, GO:0070673, GO:2674), chromatin
remodeling (GO:6338, GO:90239), and the stress response
(GO:42320).

Verification of DMRs by Bisulfite Pyrosequencing
We used bisulfite pyrosequencing to compare quantitative
levels of DNA methylation between PAE and Control animals
in three cross-tissue DMRs. More specifically, we analyzed
DNA methylation in the final exon and 3′ UTR of Adh4
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FIGURE 5 | PAE-specific DMRs concordant across the hypothalamus and white blood cells. (A) Contrast analysis revealed 299 PAE-specific differentially methylated

regions (DMR) between both tissues, which were significantly different in PAE vs. C animals and PAE vs. PF animals, but not significantly different between PF vs. C. (B)

Heatmap of the DMRs. Each row represents a different DMR, while each column shows the meDIP-seq data for each animal (n = 4, except PF WBC: n = 3). Reads

per kilobase per million (RPKM) data were scaled and centered to produce a Z-score for each DMR, where those in blue showed less DNA methylation enrichment

and those in red showed more enrichment. PAE-specific DMRs showed the same direction of change in both tissues, with some graded effects of tissue type.

FIGURE 6 | Enrichment patterns of the tissue-concordant DMRs. (A) Genomic feature enrichment profile of all, up-methylated, and down-methylated DMRs. The

probe counts for each feature (blue) were compared to the results from permutation analyses of 299 random regions (orange), which were used to compute the

p-value. While the majority of DMRs were located in intergenic regions, they showed a higher proportion than expected by random change (p < 0.01). By contrast,

exon/intron boundaries were underrepresented in the DMRs, particularly within the regions that were down-methylated in PAE animals. (B) Overrepresentation

analysis of transcription factor binding sites in the DMRs. Several TFBS showed higher enrichment in the tissue-concordant DMRs (blue) than expected by random

chance (orange), with GMEB1 showing the highest enrichment at 16% of all DMRs. *p < 0.05, **p < 0.01.

(chr2:243,719,416-243,720,233), the first exon and 5′ UTR of
Ctnnbip1 (chr5:166,485,057-166,485,637), and the first intron
of Ffg9 (chr15:38,377,629-38,378,027; Supplementary Figure 8;
Supplementary Table 10). The main differences in DNA
methylation levels were identified between tissues, which
sometimes showed different directions of change between
PAE and controls. In particular, a single CpG within the Adh4
DMR showed ∼5% methylation difference in the hypothalamus
of PAE animals (p = 0.011; change = 5.94%), but this effect
was not present in WBC or both tissues combined and was
in the opposite direction of the meDIP-seq results. Another
CpG within the Adh4 locus showed small, but not statistically
significant, changes that were consistent between tissues. This

pattern was also observed in the Fgf9 locus, which suggests
subtle but potential systemic effects of PAE. Furthermore, DNA
methylation in the Fgf9 DMR was significantly associated with
PAE in the hypothalamus (p = 0.031; change = 0.94%), but
not both tissues combined or WBC alone. By contrast, the
Ctnnbip1 locus showed opposite, but non-significant, effects
between tissues (decreased in the hypothalamus; increased
in WBC), with only CpG showing significant differential
methylation in WBC alone (p = 0.036; change = 5.50%)
suggesting that other factors may come into play, such as DNA
hydroxymethylation or genetic influences. Moreover, as we
did not assess quantitative DNA methylation level across the
entire DMR due to pyrosequencing limitations, other CpGs
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TABLE 3 | Biological processes enriched in the tissue-concordant DMRs.

Name ID Number

of genes

Multi-

functionality

P-value Multifunctionality p-value

PAEvC PAEvPF PFvC PAEvC PAEvPF PFvC

Cellular aldehyde metabolic

process

6081 29 0.785 0.00089 0.00081 0.0531 0.00094 0.00093 0.05423

T-helper 1 cell differentiation 45063 5 0.483 0.0026 0.00284 0.0531 0.00261 0.00319 0.05423

Amino-acid betaine metabolic

process

6577 10 0.484 0.00275 0.00383 0.05739 0.0028 0.0034 0.058

Carnitine metabolic process 9437 7 0.36 0.00284 0.00414 0.06279 0.00321 0.00391 0.06181

Osteoblast fate commitment 2051 2 0.224 0.0044 0.00465 0.09845 0.00413 0.00434 0.09938

Plasma membrane repair 1778 7 0.109 0.00599 0.0051 0.1162 0.00631 0.00474 0.11789

Negative regulation of circadian

sleep/wake cycle, REM sleep

42322 2 0.324 0.00788 0.0051 0.14968 0.00829 0.00474 0.15006

Chromatin remodeling 6338 43 0.753 0.01171 0.00597 0.17051 0.01135 0.00569 0.17029

Negative regulation of axon

regeneration

48681 3 0.41 0.01139 0.0092 0.17521 0.01204 0.00896 0.17422

Regulation of natural killer cell

cytokine production

2727 2 0.293 0.01217 0.01155 0.17521 0.01348 0.01048 0.17422

Positive regulation of natural killer

cell cytokine production

2729 2 0.293 0.01217 0.01082 0.22896 0.01348 0.01057 0.2317

Amino-acid betaine biosynthetic

process

6578 5 0.219 0.01428 0.01082 0.25627 0.01367 0.01057 0.25577

Glucose 1-phosphate metabolic

process

19255 2 0.0827 0.01405 0.0106 0.29844 0.01546 0.01064 0.30042

Cellular response to

interleukin-18

71351 2 0.23 0.01587 0.0114 0.31438 0.01748 0.01094 0.317

Protein K63-linked

deubiquitination

70536 12 0.126 0.02072 0.01396 0.33657 0.02115 0.01351 0.33588

Carnitine biosynthetic process 45329 3 0.085 0.02242 0.01864 0.34572 0.02301 0.02005 0.34264

Positive regulation of

interleukin-10 production

32733 15 0.81 0.02457 0.02429 0.34572 0.02509 0.02327 0.34264

Response to jasmonic acid 9753 3 0.405 0.02597 0.02429 0.37241 0.02675 0.02327 0.36841

Cellular response to jasmonic

acid stimulus

71395 3 0.405 0.02597 0.02776 0.38417 0.02675 0.02755 0.38807

Response to interleukin-18 70673 3 0.404 0.02741 0.03021 0.44431 0.02814 0.02905 0.44259

Cofactor catabolic process 51187 13 0.638 0.0291 0.03294 0.44477 0.02836 0.03162 0.44499

Extracellular polysaccharide

biosynthetic process

45226 2 0.12 0.02809 0.03374 0.50515 0.02987 0.03253 0.50571

Extracellular polysaccharide

metabolic process

46379 2 0.12 0.02809 0.03382 0.53397 0.02987 0.03259 0.53274

Acetaldehyde metabolic process 6117 2 0.216 0.03048 0.03547 0.53397 0.03224 0.03553 0.53274

Protein K48-linked

deubiquitination

71108 12 0.0357 0.0314 0.03784 0.58202 0.03277 0.03703 0.57955

Cellular response to light

stimulus

71482 38 0.821 0.03665 0.03755 0.58809 0.03621 0.03751 0.58519

Podosome assembly 71800 3 0.0518 0.03607 0.03755 0.61294 0.03643 0.03751 0.61412

Micturition 60073 5 0.536 0.04093 0.03865 0.65836 0.03964 0.0376 0.65844

Regulation of histone H4

acetylation

90239 5 0.465 0.04093 0.03969 0.66132 0.03964 0.03965 0.66174

Adenylate cyclase-activating

G-protein coupled receptor

signaling pathway

7189 26 0.73 0.038 0.04176 0.7519 0.03969 0.04102 0.75163

ER to Golgi ceramide transport 35621 2 0.11 0.03821 0.04171 0.76157 0.03982 0.04149 0.75818

Ceramide transport 35627 2 0.109 0.03821 0.04174 0.81677 0.03982 0.04231 0.81613

Glycolipid transport 46836 2 0.0288 0.03821 0.04318 0.84505 0.03982 0.0426 0.84661

Regulation of circadian

sleep/wake cycle, REM sleep

42320 4 0.439 0.04575 0.04318 0.86337 0.04542 0.0426 0.86292

Negative regulation of acute

inflammatory response

2674 6 0.674 0.04567 0.04881 0.94037 0.04575 0.04964 0.93962
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may drive the enrichment patterns previously identified by
meDIP-seq.

DISCUSSION

Alcohol exposure in utero has been shown to reprogram
physiological and neurobiological systems, increasing the risk
of adverse developmental outcomes across the lifespan (Zhang
et al., 2005; Mattson et al., 2011; Pei et al., 2011). Given
the potential role of epigenetic mechanisms in mediating the
long-term effects of PAE, the present study aimed to extend
previous work on the influence of in utero alcohol exposure
on the epigenome, using an animal model of PAE to assess
genome-wide DNA methylation patterns in the hypothalamus
and WBCs during early postnatal development in females, a
group largely underrepresented in neurobiological, molecular
and genetic studies. We identified 118 differentially methylated
regions (DMRs) that were altered in the hypothalamus of
PAE vs. control animals across the pre-weaning period. In
parallel, we found 299 DMRs displaying concordant DNA
methylation alterations between the hypothalamus and WBCs of
PAE animals at weaning. Several differentially methylated genes
were functionally related to PAE-induced deficits, having roles
in the immune response, neurobiological function, and mental
health. Additionally, functional enrichment revealed several
PAE-specific biological processes, including those related to
immune function, the stress response, and epigenetic regulation.
In addition, we identified several transcription factor binding
sites (TFBS) that were enriched in the DMRs, which may
potentially reflect broader programming effects of PAE on the
epigenome. Overall, this study is among the first to compare
central and peripheral effects of PAE on DNA methylation
patterns in addition to characterizing genome-wide changes in
females prenatally exposed to alcohol. Our findings suggest that
PAE results in widespread alterations to epigenomic programs
in both the CNS and peripheral tissues, with a potential impact
on both neurobiological and physiological systems. In addition,
we demonstrated that peripheral changes in DNA methylation
profiles could serve as a potential biomarker of PAE’s effects
on the CNS. These findings can also provide insight into other
neurodevelopmental andmental health disorders, such as autism,
ADHD, depression, and many more, as they share numerous
outcomes and comorbidities.

Our initial analysis of the DMRs revealed several differentially
methylated genes that could be relevant to PAE-induced
deficits. In particular, the dopamine receptor D4 (Drd4) gene
contained a DMR that persisted across the early developmental
period. Given its crucial role in dopaminergic function, as
well as interactions among dopaminergic, neuroendocrine, and
immune systems, alterations to this gene could reflect broader
alterations to signaling in the brain. Interestingly, differential
DNA methylation patterns of Drd4 are also present in the
buccal epithelial cells of individuals with FASD, suggesting
that this may constitute an association of PAE with the
epigenome that replicates across organisms (Fransquet et al.,
2016; Portales-Casamar et al., 2016; Lussier et al., 2018).

Although these were not identified in central tissues, buccal
epithelial cells may act as a passable surrogate tissue for brain
in human DNA methylation studies, as they originate from the
same germ layer (Lowe et al., 2013; Portales-Casamar et al.,
2016). Importantly, in addition to this association with FASD,
genetic and epigenetic variation in Drd4 has been linked to
attention deficit hyperactivity disorder (ADHD), schizophrenia,
bipolar disorder, substance-use disorders, and several other
neurobiological disorders (Bau et al., 2001; Chen et al., 2011;
Ptácek et al., 2011; Docherty et al., 2012; Kordi-Tamandani et al.,
2013; Zhang et al., 2013; Cheng et al., 2014; Faraone et al.,
2014; Dadds et al., 2016; Ji et al., 2016). Golga4 also contained
two PAE-specific DMRs across hypothalamic development, and
is overexpressed in the prefrontal cortex of individuals with
bipolar disorder (Iwamoto et al., 2004). As a member of the
Golgi secretory pathway, it could also potentially influence
the secretion of neuropeptides by cells of the hypothalamus,
possibly playing a role in altered function or responsiveness
following PAE (Wong and Munro, 2014). Similarly, increased
Plvap expression increases the breakdown and permeability of
the blood-brain barrier (BBB; Shue et al., 2008). Given that
ethanol increases the permeability of the BBB in adult mice,
slight alterations in DNA methylation of Plvap could reflect
broader effects on the BBB, which could, in turn, could affect
downstream neurobiological functions (Alfonso-Loeches et al.,
2016).

The tissue-concordant DMRs also contained several genes
previously associated with mental health disorders. Although the
same temporal stability could not be assessed here, as both tissues
originated from the same age, these findings may point to more
systemic effects of PAE on the developing organism. In particular,
Adh4 was differentially methylated across the hypothalamus and
WBCs of PAE animals, and has been previously associated with
alcohol dependence and substance abuse (Luo et al., 2005).
Importantly, it is a key component of alcohol metabolism
pathways, and could reflect increased susceptibility to the effects
of alcohol during development. Furthermore, Caln1 contained 3
separate DMRs; as it contains a risk allele for schizophrenia in
some human populations, it could also play a role in some of the
neuropsychiatric deficits observed in individuals with FASD (Li
et al., 2015).

Of note, two genes displayed differential DNA methylation
patterns in both the developmental profile and tissue-
concordance analysis, Cntnap5c and Ush2a, which may
reflect persistent alterations to DNA methylation patterns
across both age and tissue types. In humans, genetic variation
in Cntnap5 is associated with risk for Alzheimer’s disease and
bipolar disorder, while its deletion is associated with autism
and dyslexia, suggesting the possibility that common pathways
may come into play among different neurobiological disorders
(Pagnamenta et al., 2010; Xu et al., 2014; Schott et al., 2016).
By contrast, mutations in Ush2a cause Usher syndrome II,
which is associated with hearing deficiencies, deficits also
commonly found in individuals with FASD (Church and
Gerkin, 1988). Importantly, our animal model is based on an
outbred population of Sprague-Dawley rats, which display fairly
broad genetic diversity. Although genetic background can also
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influence DNAmethylation patterns throughout the genome, the
greater variability both within and between our treatment groups
may reduce the likelihood of genetic variation having a major
impact on our results and suggests that our results may represent
more robust associations between PAE and DNA methylation
patterns (Fraser et al., 2012; Heyn et al., 2013; Moen et al., 2013).

Finally, several DMRs in both datasets were located in genes
associated with immune function and response. In particular,
Ifih1 was identified across all ages in the hypothalamus;
as a receptor for double stranded RNA that responds to
viral infections, it could be associated with vulnerability to
immunological deficits (Rice et al., 2014). In addition, Fgf9, a key
factor in embryonic and glial cell development, was differentially
methylated in both the hypothalamus and WBCs (Thisse and
Thisse, 2005). This growth factor promotes pro-inflammatory
environments through Ccl2 and Ccl7 chemokine secretion,
consistent with several DMRs that were located in genes
associated with pro-inflammatory cytokine and chemokine
signaling (Lindner et al., 2015). These included Il20ra and
Ccrl2 in the developmental profile, and Il18r1 in the tissue-
concordance analysis, suggesting that PAE could influence
inflammatory pathways through epigenetic mechanisms,
and ultimately, potentially alter brain development and the
neuroimmune response.

We also assessed the functional enrichment of genes located
within PAE-specific DMRs, identifying a number of biological
processes associated with differential DNA methylation patterns
in PAE animals compared to controls. In the DMRs identified
across hypothalamic development, a large number of GO
processes were associated with functions related to steroid
receptor signaling. The hypothalamus is central to numerous
physiological systems that function through steroid hormones,
many of which are dysregulated by PAE (Weinberg et al., 2008).
As such, this enrichment pattern suggests that DNA methylation
may play a role in the reprogramming of hormonal systems
during early development, potentially priming physiological
systems to new set-points. In addition, several processes in
both the developmental and tissue-concordant DMRs were
associated with histone modifications, which may reflect the
complex interplay between different layers of the epigenetic
machinery. Several studies have identified alterations to histone
modifications in the brain following developmental alcohol
exposure, further highlighting their potential role in FASD
(Guo et al., 2011; Govorko et al., 2012; Bekdash et al., 2013;
Subbanna et al., 2013, 2014; Goldowitz et al., 2014; Veazey
et al., 2015; Zhang et al., 2015; Chater-Diehl et al., 2016;
Lussier et al., 2017). A large number of immune-related
biological processes were also identified through this analysis,
which is particularly relevant to individuals with FASD, who
may be more susceptible to infections and immune deficits,
a phenotype recapitulated across multiple animal models of
PAE, and with some preliminary evidence in humans (Bodnar
and Weinberg, 2013; Bodnar et al., 2016). Given the role
of the hypothalamus in modulating the immune response,
altered epigenetic programs could potentially contribute to
altering baseline function and/or responsiveness to immune
challenge of the hypothalamus, limiting the organism’s ability

to defend against disease or infection. In addition, the top
GO term associated with PAE in the tissue-concordant DMRs
was “cellular aldehyde metabolic process,” which may reflect
lasting effects of PAE on the organism’s ability to metabolize
and tolerate alcohol’s metabolic byproducts and possibly
modulate susceptibility to substance abuse later in life. While
no overlaps were identified between the specific biological
processes identified in the developmental profile and tissue-
concordance analyses, both contained a high proportion of
processes associated with immune, endocrine, or epigenetic
functions. These findings suggest that PAE may cause systemic
effects on the epigenome across multiple tissue types, which may,
in turn, influence downstream neurobiological and physiological
processes.

Previous studies have identified subtle effects of PAE on
gene expression programs and epigenomic patterns, which is
consistent with the effects of other prenatal exposures (Rakyan
et al., 2011; Zhou et al., 2011; Ladd-Acosta et al., 2013; Laufer
et al., 2013; Berko et al., 2014; Lussier et al., 2015; Chater-
Diehl et al., 2016). Regions containing lower CpG density
appear to be more responsive to environmental exposures,
highlighting the importance of selecting a method that covers a
large portion of the epigenome when analyzing environmental
exposures (Irizarry et al., 2009). We analyzed genome-wide DNA
methylation using meDIP-seq, which reduces the complexity of
the dataset by omitting unmethylated regions while interrogating
a majority of genome (Harris et al., 2010). However, one
limitation of meDIP-seq is that it is highly dependent on
DNA methylation levels, local CpG density, and CpG position,
which can introduce biases in the data (Pelizzola et al., 2008;
Robinson et al., 2010b; Lentini et al., 2018). However, by
performing pairwise comparisons between treatment and control
groups, such biases are significantly reduced or eliminated
(Harris et al., 2010). The enrichment patterns observed across
our datasets are consistent with the fact that the majority
of the mammalian genome is CpG-depleted and, with the
exception of active regulatory regions, the remaining CpGs
are methylated. By contrast, the vast majority of CpG-rich
regions (i.e., promoters, CpG islands) are unmethylated and are
less likely to bind to the 5-methylcytosine antibody, leading
to depletion in meDIP-seq data, as observed in our own
datasets. Consistent with the fact that promoter associated CpG
islands are largely insensitive to environmental stimuli, few
DMRs across our analyses were identified in promoters and
CpG islands. Indeed, the majority of DMRs were located in
intergenic regions and introns. Although these findings will
require additional validation, these intergenic regions are critical
to further explore, as they are potentially more responsive
to the effects of PAE and may contain important regulatory
regions not yet annotated in the rat genome. In addition,
several DMRs were located in intron/exon boundaries. Given
that DNAmethylation plays a role in regulating alternative splice
variants, these findings may reflect alterations to the balance
of different isoforms within the cell, which could influence
downstream cellular profiles and phenotypes (Maunakea et al.,
2010, 2013; Shukla et al., 2011). Although isoform balance has
not been investigated in the context of PAE, alcohol consumption
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can influence the proportions of different splice variants in
the brain, supporting a potential role in early-life exposures
as well (MacKay et al., 2011; Lee et al., 2014; Farris et al.,
2015; Mathew et al., 2016). Interestingly, a larger proportion
of down-methylated DMRs were identified in both analyses,
which is consistent with several studies showing that PAE
decreases bulk DNA methylation levels (Otero et al., 2012;
Chen et al., 2013; Mukhopadhyay et al., 2013; Perkins et al.,
2013; Liyanage et al., 2015; Nagre et al., 2015). These findings
provide important insight into the various outcomes from
different paradigms of alcohol exposure and suggest that similar
upstream mechanisms may impact DNA methylation across
models. In particular, alcohol is known to impact one-carbon
metabolism through multiple pathways, including inhibition of
folate-dependent methylation pathways and AdoMet synthesis
(Medici and Halsted, 2013; Ngai et al., 2015). Furthermore,
PAE can influence both the expression and activity of DNA
methyltransferases, which are essential for the establishment
and maintenance of DNA methylation profiles (reviewed in
Lussier et al., 2017). These well-known mechanisms of alcohol-
induced DNA methylation alterations likely contribute to the
differential DNA methylation patterns observed across models
and organisms, with specific effects potentially dictated by the
timing and dosage of alcohol exposure, or other environmental
factors (Pollard, 2007; Rogic et al., 2016; Lussier et al., 2017).
For example, our animal model uses a constant level of alcohol
exposure, resulting in blood alcohol levels of 80–150 mg/dl
across the equivalent of the first two trimesters of human
pregnancy. With this moderate to moderately high level of
exposure, equivalent to 1–2 times the legal driving limit in most
jurisdictions, we do not observe dysmorphologies or other severe
growth and functional deficits. However, this paradigm does
cause a broad range of behavioral and functional abnormalities,
which are typically present across the entire spectrum of FASD.
As such, the differential DNA methylation profiles observed in
the present study potentially reflect a broader portion of the
FASD spectrum in humans, and likely point to some of the
common pathways affected by PAE across different exposure
patterns.

The large proportion of DMRs located in intergenic regions
suggests that these could contain regulatory regions susceptible
to the influence of PAE. Given that the rat genome is poorly
annotated for regulatory features, we assessed the enrichment
profiles of different transcription factor binding sites in the
DMRs, which could be influenced by DNA methylation levels
within specific loci. While only the binding site for the BHLHE40
transcription factor was significantly enriched in PAE-specific
DMRs across early development, we previously identified this
gene as differentially expressed in the brain of PAE adult
animals (Lussier et al., 2015). This gene negatively regulates
the circadian rhythm, a key function of the hypothalamus that
is dysregulated in individuals with FASD (Nakashima et al.,
2008). The BHLHE40 transcription factor could potentially play
a role in early programming effects of PAE on neurobiological
systems, with persistent expression and downstream effect into
later life. By contrast, the tissue-concordant DMRs contained
a high proportion of significantly enriched TFBS, including

SREBF1, which trended toward significance in the developmental
profile DMRs. SREBF1 is associated with key metabolic processes
for hormonal signaling, as it plays a role in the regulation of
cholesterol production (Osborne, 2001). It is also associated with
Smith–Magenis syndrome, which is characterized by intellectual
disability, disordered sleep, and behavioral problems (Smith et al.,
2002). Furthermore, additional TFBS enriched in the tissue-
concordant dataset included two members of the forkhead box
family of genes, including FOXK1 and FOXO3. In particular,
FOXO3 was identified as a hub gene in the brain PAE animals
following an immune challenge, suggesting that it may prime
biological systems from early in life (Lussier et al., 2015). Finally,
the highest represented TFBS in the tissue-concordant dataset
was GMEB1, which is involved in signal transduction of the
glucocorticoid response (Zeng et al., 2000). Importantly, recent
evidence suggests that DNA methylation patterns can influence
transcription factor occupancy, modulating the use of enhancer
elements and gene expression levels (Maurano et al., 2015;
Yin et al., 2017). Taken together, these findings suggest that
the DMRs identified in both the developmental and tissue-
concordant analysis may contain key regulatory regions, and
that various transcription factors likely act in concert with DNA
methylation to mediate the effects of PAE on physiological
functions.

Although meDIP-seq allows for the investigation of more
variable regions of the epigenome, it presents a particular caveat
when assessing DNA methylation levels, as it provides relative
levels of DNA methylation across broad regions of the genome,
rather than quantitative and granular data. While a relative
method was reasonable for the purpose of our study, which
was to identify differences between animals exposed to alcohol
and controls, we also attempted to verify our findings from the
meDIP-seq analysis through bisulfite pyrosequencing, the gold
standard for targeted DNA methylation analyses. However, the
concordance between the two methods was not as strong as
expected, with only the Drd4 locus showing significant changes
across the entire DMR. By contrast, other verified regions each
showed a subset of CpGs that could be driving the associations.
This discordance may potentially be due to a number of factors,
including DNA hydroxymethylation, a bias of meDIP toward
regions of high DNA methylation and CpG density, or sample
size. A major limitation of the standard bisulfite pyrosequencing
methods used here as a verification method for meDIP-seq is
that it detects both methylated and hydroxymethylated cytosines,
and there is no way to distinguish the two modifications
using solely bisulfite conversion, resulting in a mixed signal.
Although oxidative bisulfite conversion can distinguish DNA
methylation and hydroxymethylation when used in parallel with
bisulfite conversion, we could not perform this analysis on our
samples due to DNA input limitations (Booth et al., 2012).
By contrast, meDIP-seq specifically enriches DNA methylation,
as the antibody is highly specific to 5-methylcytosine (Taiwo
et al., 2012). Given that neuronal cells contain a high proportion
of DNA hydroxymethylation compared to other cell types, it
is possible that the observed differences in outcomes from
the two methodologies are due to the confound of additional
epigenetic patterns not assessed in themeDIP-seq analysis (Wang
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et al., 2012; Lister et al., 2013). Indeed, a number of studies
have shown that developmental alcohol exposure can alter
DNA hydroxymethylation programs in neuronal cells, suggesting
that it may also play a role in the etiology of FASD and
may have biased our verification analyses (Chen et al., 2013;
Öztürk et al., 2017). In addition, the lack of verification could
potentially be due to the relatively low number of animals
used in the present study, as well as increased variability in
the enrichment profiles obtained from meDIP-seq, given the
broader regions assessed. Nevertheless, the Drd4 locus identified
in the developmental profile of the hypothalamus displayed
consistent DNA methylation alterations in both methods,
suggesting that meDIP-seq can indeed capture differences in
DNA methylation patterns, regardless of the influence of DNA
hydroxymethylation, and also highlighting the importance of
the dopaminergic system in PAE-induced alterations. Additional
studies are required to fully validate these findings and
assess their relationship to the deficits observed following
PAE. Given the high prevalence of DNA hydromethylation
in the brain, future studies should endeavor to tease out the
role of DNA methylation and DNA hydroxymethylation in
the context of PAE, using methods that can quantitatively
parse the two modifications (Wang et al., 2012; Lister et al.,
2013).

A critical strength of animal models derives from their
ability to directly compare central and peripheral tissues to
ascertain potential correlations between the two, which may
identify potential biomarkers reflective of brain function in
a tissue that is available for study in human populations.
Although several studies have assessed the concordance of DNA
methylation patterns between different tissues in humans, the
correlation between tissues tends to be rather low, highlighting
the importance of analyzing both tissues in parallel (Farré
et al., 2015; Edgar et al., 2017). Other than tissue identity,
cell type heterogeneity within a tissue is a major driver of
DNA methylation patterns. Therefore, we attempted to correct,
at least partially, for cellular heterogeneity among groups by
removing regions that were associated with the gene expression
patterns of major cell types in the brain—neurons, astrocytes,
and oligodendrocytes (Cahoy et al., 2008). However, we were
limited by the use of regions located within genes, as well as the
indirect usage of transcriptomes, and thus could not correct for
important regulatory regions that may be associated with cell
type or be poised for activation, such as intergenic enhancers
or insulators. Furthermore, additional cellular subtypes, such
as glia, are also present in the hypothalamus and could have
influenced the results obtained through differences in cell-
type proportions. Although we did not detect any significant
PAE-specific differences in the DNA methylation levels of
cell-type associated peaks, it is possible that the regions not
captured by this peak-based filter could drive the differences
in neuronal and glial function previously observed following
PAE (Wilhelm and Guizzetti, 2015; Noor and Milligan, 2018).
As several protocols now exist to isolate cell type-specific
nuclei from both frozen and fresh tissue samples, future
studies should attempt to replicate these findings in specific
cellular subtypes to tease apart the role of DNA methylation

in PAE-induced deficits (Habib et al., 2016; Milani et al.,
2016).

By contrast, we measured the proportion of different WBC
subtypes in an independent cohort of animals. The fact
that we did not identify any significant differences in WBC
composition of whole blood among groups suggests that blood
composition does not drive the DMRs identified in the tissue-
concordant analysis. There is also a small possibility that,
as Ficoll-Paque is a highly technical procedure, differences
betweenWBC extractions could have influenced the proportions
of cells analyzed in the present study. Additionally, it is
possible that group differences might be uncovered if cell
subtypes are further subdivided through more sophisticated
methods such as fluorescence-activated cell sorting. In contrast
to human studies of DNA methylation, no bioinformatic
tools exist to predict the proportion of different cell types
using epigenomic profiles in rats, and future studies should
take this into consideration. Nevertheless, we successfully
identified several PAE-specific DMRs that showed the same
direction of change between the two tissues, suggesting
that these regions may be responsive to ethanol across
multiple tissues and may represent more stable biomarkers
of PAE.

Finally, female animals were the main focus of this
epigenome-wide study, partially due to the broad sexual
dimorphisms observed across studies of PAE and FASD (Lee and
Rivier, 1996; Weinberg et al., 2008), as well as the widespread
underrepresentation of females in neurobiological, molecular,
and genome-wide studies of FASD (Lussier et al., 2017). However,
as in the majority of studies utilizing only male subjects, this
approach presents an important caveat in the interpretation
of our results, as males and females often show sexually
dimorphic responses to stress, disease, and other environmental
factors, displaying differences in behavioral patterns, HPA axis
function/activation, immune system activity, neurogenesis, and
other physiological and cellular functions (Oldehinkel and
Bouma, 2011; Bale and Epperson, 2015; Panzica and Melcangi,
2016; Yagi and Galea, 2018). In particular, the effects of
PAE on the developing organism show marked sex-specific
differences spanning cognitive and behavioral phenotypes,
as well as in the differential susceptibilities to stressors
and mental health disorders across the lifespan (Hellemans
et al., 2008; Weinberg et al., 2008). Given that genetic and
epigenetic patterns are highly associated with sex, research
on females is vital to our understanding of the biological
mechanisms underlying PAE (Zhang et al., 2011). Nevertheless,
our findings should also be validated in male animals to fully
assess the effects of PAE on the transcriptome and DNA
methylome and elucidate the sexually dimorphic effects that
may exist.

SUMMARY AND CONCLUSIONS

Our results support and significantly extend previous studies
indicating a role for DNA methylation in the early-life
reprogramming of hypothalamic functions by PAE, and suggest
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that DNA methylation patterns in WBC could potentially be
used as a surrogate for alterations in the central nervous
system. We identified persistent PAE-induced alterations to
the DNA methylome of the hypothalamus, including several
DMRs that could, at least in part, underlie some of the deficits
observed in FASD. Although PAE-induced alterations to DNA
methylation profiles at any of these development ages may not
persist into adulthood, changes early in development could alter
developmental trajectories and induce lasting alterations in brain
structure, connectivity, and function, and/or prime physiological
systems to different set-points. Of note, we demonstrate for
the first time that PAE-specific DMRs can occur concordantly
across central and peripheral tissues, which potentially represent
systemic effects of PAE on the epigenome and could serve as an
epigenetic biomarker or signature of FASD. Taken together, these
findings provide insight into the important role of epigenetic
alterations in the short and long-term deficits observed in
FASD and provide a foundation for the development of robust
biomarkers of PAE.
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