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The rapidly increasing number of patients with Alzheimer’s disease (AD) worldwide

has become a major public concern. Mild cognitive impairment (MCI), characterized

with accelerated memory decline than normal aging, is a stage between cognitively

unimpaired and dementia. Identification of MCI in the Alzheimer’s continuum from normal

aging, is important for early diagnosis and improved intervention of AD. The imaging

technique has been extensively used for diagnose and understanding the mechanisms

of MCI. Firstly, we review the recent progresses in the research framework of MCI

depending on the clinical and/or biomarker findings. Secondly, we cover studies that use

of rs-fMRI (resting state functional magnetic resonance imaging) for the brain activities

and functional connectivity between normal aging and MCI. Other methodologies and

multi-modal studies for investigating the mechanism and early diagnosis of MCI are also

discussed. Finally, we discuss how genetic and environmental factors such as education

could interact with in MCI. Overall, MCI is a heterogeneous state and employing resting

state neuroimaging with other AD biomarker approaches will be able to target in the more

precise population and AD-related pathology process.

Keywords: fMRI, resting state, mild cognitive impairment, Alzheimer’s disease, functional connectivity

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia in older adults worldwide.
There will be one new case of dementia every 3 s. By 2030, the number of people with the disease
is expected to rise to more than 70 million (1). The burden of AD patients on themselves, their
families, and society has risen considerably and attracted significant attention. Although much
attention has been paid to AD, no effective treatment for AD are available to date. Nowadays, drugs
may produce some short-term improvement in cognitive function but they cannot slow down or
stop the progression of the pathological damages if one is currently diagnosed AD dementia which
is in the late stage of the disease. Despite of this, diagnosis at the early phase of the disease, like
preclinical stage, or prodromal stage, may represent a good opportunity for interventions (2).

To better diagnose and define clinical stages of AD, two major diagnostic criteria, the National
Institute of Aging and Alzheimer’s Association (NIA-AA) criteria and the International Working
Group(IWG) criteria, for AD were proposed (3–5). The NIA-AA criteria describes an entire
clinical spectrum and the related biomarkers of AD (4, 5). Mild cognitive impairment (MCI) is
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an intermediate stage between cognitively unimpaired and
dementia. Fifteen to twenty percentage of people aged 65 or older
haveMCI and these patients have a high probability of converting
to AD, at an average of 32% in 5 years (6–8). Identifying these
individuals with MCI could be an effective strategy for early
diagnosis and treatments to delay and/or halt AD progression
toward an irreversible full brain damage (9).

Toward greater understanding of the mechanisms of AD,
not only clinical or cognitive tests, but also biological methods
have to been used. Neuroimaging studies have recently begun
to illuminate structural and functional brain abnormality in
early AD and even constitute a vital part of the research
framework about AD (5). Resting-state functional magnetic
resonance imaging (rs-fMRI), which measures the spontaneous
fluctuations of blood oxygenation level-dependent (BOLD)
signals in different brain regions without tasks, has been widely
used to investigate different diseases, such as psychosis (10, 11),
depression (12), Huntington’s disease (13), stroke (14), and
AD (15, 16). During rs-fMRI, participants rest with their eyes
closed or focus on a visual fixation while being examined. This
is more convenient and less taxing than task-based fMRI or
neuropsychological tests for patients with cognitive impairment.
Functional connectivity within and between different brain
regions can be assessed, and intrinsic brain networks such as
the default mode, executive control, visual, salience, and auditory
networks can be identified by analyzing BOLD signals (17). These
studies suggest that aberrant regional spontaneous fluctuations
of BOLD (18, 19), functional connectivity (20), and widespread
alterations in functional brain network architecture (21, 22)
could all occur early in AD pathophysiology. Rs-fMRI can also
contribute to evaluating the different treatment and detect even
subtle changes after a short period of treatment (23). Overall,
resting state neuroimaging and othermethodologies may provide
useful biomarkers for early diagnosis of AD and understanding
the underlying mechanism (24).

In this paper, we review recent progresses of MCI criteria
and nomenclature, resting state neuroimaging studies on brain
functional activity in patients with MCI, current knowledge of
the influences of genetic and educational factors on MCI and the
work on diagnosing and classifying MCI. In this review, we focus
on the fMRI-based studies and amnestic MCI, but we mention
other approaches and MCI with AD biomarkers/pathologic
change as well.

EVOLUTION OF MCI

MCI was first proposed by Petersen et al. (25) and the diagnosis
was mostly depended on clinical or cognitive appearance. After
that, many researchers have investigated and expanded the
nomenclature. A few criteria (4, 26–28) were derived from these
studies and MCI was noticed to be heterogeneous and unstable.
MCI could be one domain affected or multiple-domain affected
and it could be caused by Alzheimer’s disease, vascular dementia,
depression, or other medical conditions (29). Without general or
recommended biomarkers, in a long period, researchers applied
different diagnostic criteria to define MCI. The core definitions

of amnestic MCI in early criteria are the following: (1) not
normal for age; (2) cognitive decline; (3) essentially normal
functional activities; (4) not demented; (5) memory impaired.
In 2010s, NIA-AA (4) and IWG (3) became more aware of
the importance of biomarkers and put more emphasis on A
β, tau, and other AD related biomarkers. NIA-AA proposed a
new research framework toward AD in 2018, and MCI could
either be a syndromal cognitive stage between cognitive normal
and dementia which was consistent with the past criteria or be
detailed refined according to biomarker profile and cognitive
appearance (5). With this new research framework, researchers
should enable to target more precise AD-related MCI, and
enhance efforts to understand the pathology process of AD and
different etiology of dementia. However, the applications of core
AD-related biomarkers are expensive, not necessary to apply for
every MCI study. On the other hand, we should develop a less-
expensive and credible biomarker to investigate the MCI, as the
population of MCI is even larger than AD. The criteria of MCI
were summarized in Table 1.

COGNITIVELY UNIMPAIRED AGING

To investigate the aberrant brain activity in cognitive impaired
old people, changes of brain structure, and function associated
with aging should be firstly documented. Raichle (17), Salvador
et al. (32), and Achard et al. (33) have demonstrated a sensible,
symmetrical architecture of the human brain which could
be characterized with a few networks and organized with a
small-world network topology. The functional connectivity and
structure alteration of brain were associated with memory
and aging. Specifically, Ward et al. (34) reported that default
mode network (DMN) functional connectivity and hippocampus
volume were associated with memory among old individuals.
Inter-network functional activity also changed as people aged.
Anticorrelated activity between DMN and dorsal attention
network was found significantly decreased with age (35). The
degrees of functional alteration were different among different
brain regions and cognitively normal individuals.

Importantly, AD biomarkers, like amyloid burden, mediate
the relationship between age and brain function. Using in
vivo amyloid imaging and fMRI, both Hedden et al. (36)
and Sperling et al. (37) found aberrant DMN activity in
cognitively unimpaired aging with amyloid positive. The patterns
of disruption of functional activity were linked to amyloid
pathology. Cognitively unimpaired aging with high amyloid
burden displayed more reduced functional correlations within
posterior cingulate cortex (PCC) and other regions related to
memory encoding. Especially, these alterations were stable after
controlling for age and structural atrophy which suggested
clinically normal older people with disrupted functional activity,
particularly with biomarkers of AD, were the susceptible
population of AD. Notably, the relationship between amyloid
burden and functional connectivity is complex and may be
biphasic or multi-phasic changes across the longitudinal process
of Alzheimer’s continuum. By way of example, Lim et al. (38)
reported that greater DMN functional connectivity in cognitively
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unimpaired aging with positive amyloid burden compared with
those with negative amyloid burden. For defending the hazards
of amyloid pathology, the brain may develop a response with
compensatory higher functional connectivity in some brain
regions (39).

MILD COGNITIVE IMPAIRMENT

Recent studies have demonstrated distinct intrinsic functional
brain network architectures in patients with various
neurodegenerative diseases, and with each disease having a
distinct abnormal brain activity pattern (40, 41). The MCI
patients were characterized with disruption of functional
connectivity within DMN (19, 42, 43) which involved the ventral
medial prefrontal cortex, dorsal medial prefrontal cortex, PCC,
adjacent precuneus, and lateral parietal cortex, indicating brain
activity as a potential target of diagnose. Regional homogeneity
(ReHo) (44), amplitude of low-frequency fluctuation (ALFF)
(45), functional connectivity analysis as well as graph theory have
been used to investigate the underlying pathological process of
MCI.

ReHo and ALFF
ReHo assumes that a given voxel is temporally similar to
that of its neighbors and voxels within a functional brain
area are more temporally homogeneous when this is involved
in a specific condition. ALFF is found highly synchronous
among functional brain systems in normal subjects and less
synchronous in patients with mental diseases. Changes in the
resting state brain activity of MCI have been evaluated by ReHo
or ALFF of BOLD signals, as illustrated in Figure 1. Aberrant
ReHo was found prefrontal cortex, bilateral posterior cingulate
gyrus/precuneus and inferior parietal lobule in patients with
MCI, compared with normal aging (19, 46). Similar abnormal
functional patterns were reported in ALFF studies of MCI (18)
and these patterns exhibited different spatial patterns depending
on various frequency bands (42). Both increased and decreased
activity could coexist in MCI. The decreased activity in the
cuneus/precuneus was found to be associated with reduced
memory performance (18) and the increased activity could be
a compensation for damage by recruitment of other regions.
However, as MCI is a heterogeneous state, AD biomarker related
approaches and detailed cognitive examinations may bear more
fruit. A recent study combing rs-fMRI and CSF showed the ReHo
value was associated with A β level in superior temporal gyrus in
single domain MCI while the multiple-domain MCI exhibited a
more complex pattern of pathology and functional activity (47).

Functional Connectivity
Resting state functional connectivity describes temporal
correlations of BOLD signal between different brain
regions/voxels and is the basis of graph theory analysis.
Independent component analysis (ICA) and seed-based
analysis are the two main methods to analyze the functional
connectivity. Early rs-fMRI studies have shown impaired
functional connectivity within DMN or between different
networks in patients with MCI (22, 48). Subsequent studies

revealed decreased functional activity in the DMN regions
and increased functional activity in the frontal cortex and
other regions (Figure 2) (48–50), which indicated that the
disrupted and compensatory patterns were general in MCI
patients and could be detected by different resting state analysis.
Similarly, considering the methodological differences or clinical
heterogeneity or biphasic changes across the longitudinal
process, the degree of alteration of functional connectivity in the
hippocampus and PCC was consistent with poor performance
of neuropsychological tests in MCI, indicating the potential of
functional connectivity as a biomarker of cognitive preditor
(51–53).

In addition to the alteration of DMN in MCI, which has been
widely reported, altered functional connectivity within, and/or
between different other brain networks such as the executive
control, salience, dorsal attention, and sensory-motor networks
may also occur in MCI (54–56). For instance, Brier et al.
(56) recruited 510 participants with CDR (clinical dementia
rating) ranging from 0 to 1 to investigate five functional brain
networks through rs-fMRI. They found decreased connectivity
within all networks and decreased anti-correlations between
these networks as CDR increased. Specifically, some networks
were preferentially affected at certain CDR stages. Similarly,
Esposito et al. (35) suggested that anti-correlation between DMN
and DAN decreased with age, but such reduction was more
significant in patients with MCI. Furthermore, with regard to
whether such functional changes were generated by aging or
pathology process of AD, Brier et al. (57) examined two groups
cognitively normal people with or without AD-related CSF
biomarkers. Their results suggested that AD pathology accounted
for a large portion of the alterations of functional connectivity. It
is still not fully understood how and when elevated AD pathology
affects functional connectivity, but these studies indicate the
possibility of finding out the relationship between functional
connectivity and AD pathology, which could help to establish a
safer and/or less-expensive approach for targeting pre-dementia
population.

Graph Theory
Graph theory has been widely used to analyze the organization
of the societies, information networks, and internet, but has
rather limited use in neuroscience until now. Recent studies
have applied this approach to investigate the brain’s topological
organization (32, 33) that revealed disrupted topological
organization of the whole brain in MCI (58, 59). Based on
rs-fMRI, patients with MCI showed decreased overall global
functional connectivity of brain connectome and the hubs and
important connections between DMN and other functional
systems were impaired withinMCI patients (58). Such disruption
could be partially verified or caused by structural loss of neural
fibers, such as corpus callosum, as detected by DTI (60). In
addition, as the graph theory analysis assesses the brain activity as
a whole, it results in different and new insights of understanding
the mechanism of MCI. Zhang et al. explored the connectome
in MCI with two dimensions. They reported that both local
and remote connectivity dysfunctions were detected in MCI
with rs-fMRI while episodic memory performance in MCI was
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FIGURE 1 | Abnormal regional functional activity in MCI patients compared with normal controls. Blue = lower functional activity in MCI patients vs. normal controls,

and red = higher functional activity in MCI patients vs. normal controls. The sizes of balls represent the relative areas of abnormality in these brain regions. L, left; R,

right; B, both hemispheres; FIC, frontoinsular cortex; OTC, occipitotemporal cortex; SMG, supramarginal gyrus; LG, lingual gyrus; MOG, middle occipital gyrus; HIP,

hippocampus; ITG, inferior temporal gyrus.

FIGURE 2 | Abnormal functional connectivity between PCC and other brain regions in MCI patients compared with normal controls. Blue = lower functional

connectivity in MCI patients vs. normal controls, and red = higher functional connectivity in MCI patients vs. normal controls. L, left; R, right; MOG, middle occipital

gyrus; MTG, middle temporal gyrus; FG, fusiform gyrus; SFG, superior frontal gyrus; MFG, medial frontal gyrus; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus;

CS, central sulcus; PCG, precentral gyrus.
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only associated with remote connectivity within DMN. Liu et al.
(61) found abnormal rightward laterality in MCI compared
with normal controls, which indicated a similar compensatory
mechanism detected with above rs-fMRI analysis but displayed
in a different appearance. Further, because these changes in
functional connectome were correlated with patients’ memory
performance, graph theory analysis could also act as a method
of differentiating individuals with MCI from normal aging (58).

Multi-Modal Imaging Study
Although rs-fMRI is one of the convenient and noninvasive
imagingmodality to study pathophysiology ofMCI, combination
with other techniques can investigate both abnormal structural
and functional features as well as their relations in MCI,
improve the quality of related clinical trial and reduce
requirement of sample sizes (62, 63). Multi-modal imaging
studies have confirmed correlations between structural and
functional alterations (63, 64). Collecting gray matter volumes
and functional connectivity information simultaneously could
serve as a better indicator for predicting the cognitive deficits
in MCI (65). In a recent multi-modal study, a novel PET/fMRI
scanner was applied to normal aging, patients with MCI and AD
to evaluate the resting-state brain glucose metabolism and brain
functional activity (64). The metrics [ReHo, fractional ALFF and
group ICA with dual regression(gICA-DR)] of rs-fMRI were
showed to be correlated with glucose metabolism among all three
groups, but the degree of correlation reduced 17% in MCI/AD
groups. With the progression of the disease or higher amyloid
levels, MCI patients showed severer hippocampus atrophy,
reduced structural connectivity of the corpus callosum, and lower
functional connectivity between hippocampus and precuneus
and higher hippocampal metabolism and amplitude of delta
rhythms at rest (66, 67). Although criteria and investigators
have paid more attention on AD biomarker profile in the last
decade, the number of multi-modal studies and participants is
still small compared with that of single modal studies. To address
this, combing rs-fMRI with AD biomarker examinations and
multi-center collaborations should be more stressed.

EARLY DIAGNOSIS AND CONVERSION OF
MCI

Early Diagnosis of MCI
Early diagnosis of MCI is important for timely and potentially
successful therapeutic intervention. Although substantial
research has been dedicated in the last decades, identification
of patients with MCI who are at risk of AD is still a challenge.
Resting state neuroimaging is an efficient and powerful technique
that facilitates the discovery of abnormalities in MCI patients
for the consistency among amounts of studies. Various data
processing methods have been used to diagnose or classify
MCI based on rs-fMRI scans. Here, some main methods for
achieving high diagnostic power for MCI are summarized in
Table 2.

Most studies for classification of MCI through rs-fMRI
were based on functional connectivity or network architecture
features between normal individuals and patients. Some of

them focused on the key network of MCI, distinguishing MCI
from normal controls based on DMN brain activity of rs-
fMRI (68). Others depended on the whole-brain activity (69),
calculating functional connectivity between various regions (70),
or using the graph theory metrics (71). Since the course of
AD is continuous, the patients in AD continuum share many
common features. On one hand, it’s good for investigators to
identify patients with MCI from normal aging; on the other
hand, it becomes more difficult to differentiate between MCI
and other stages. For example, one study analyzed DMN brain
activity by using both volume of interest (VOI)-based signal
time course and independent component analyses (ICA) for
identifying patients with dementia (68). They found 82% patients
withMCI contained the characteristics of AD patients. Chen et al.
applied a large-scale network analysis to classify normal aging
and patients with MCI and AD (70). The AUC analysis yielded
95% classification power, 93% sensitivity, and 90% specificity
between patients with MCI and normal controls.

Great efforts have been made to improve the algorithms of
classification (72, 73). Instead of simply correlating pairwise
regional activities, recent studies used different approaches to
construct correlation networks to simulate the actual biological
networks of brain. By combining a graph theoretical approach
with machine learning methods, Khazaee and colleagues
achieved 88.4% classification accuracy of AD, MCI, and controls.
Such approach used the optimal features extracted from graph
measures by a support vector machine (SVM) (71). Chen
et al. (72) proposed a model of constructing a high-order rs-
fMRI functional connectivity network by grouping correlations
for every pair of brain regions into different clusters, whose
respective mean correlation time series were represented as high-
order correlations among different brain regions. Other methods
and models by analogy with biological connectivity in the human
brain have also been proposed (73, 74). Moreover, a recent fMRI
study not only investigated the temporal properties, but also
focused on the temporal variability of functional connectivity
between specific brain regions (75). As the development of 7T-
MRI and improvement of algorithms of MRI, using spatio-
temporal interaction patterns of brain activity to classify
patients and normal controls and achieving more accuracy of
classification will be easier in future.

To avoid the shortcomings of single neuroimaging modality
and/or target the MCI patients in AD continuum, recent studies
applied multi-modal combinations of sMRI, rs-fMRI, and DTI to
classify MCI from controls. Wee et al. integrated diffusion tensor
imaging (DTI) and rs-fMRI with multi-kernel SVM to improve
the classification of AD, MCI, and normal aging (76). This
approach yielded 95% AUC, 100% sensitivity, and 94% specificity
between patients with MCI and normal controls. Another similar
neuroimaging study also yielded high classification accuracy, at
more than 95% (77). Thus, multimodal connectivity networks
have yielded better results in identifying patients with MCI.
Together, methods derived from the interactions among different
functional networks or derived frommulti-modal are better than
that derived from a single network or one modal. However,
we should bear in mind that many recent resting state studies
used different criteria and approaches to diagnosis MCI, future
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TABLE 2 | Summary of studies using different models for early diagnosis of AD.

Papers MCI Control Imaging modalities Data analysis Acc. (%) Sen. (%) Spec. (%) Auc. (%)

Koch et al. (68) 17 21 fMRI ICA & VOI-based time course 81.6 64.7 95.2 –

Qian et al. (69) 37 32 fMRI CEEMD & SVM 93.3 – – 94.1

Chen et al. (70) 15 20 fMRI LSN & LDA 91.0 93.0 90.0 95.0

Khazaee et al. (71) 89 45 fMRI SVM 72.0 84.9 61.5 –

Chen et al. (72) 29 30 fMRI LASSO & SVM 88.1 86.2 90.0 93.0

Yu et al. (73) 50 49 fMRI WSGR 84.8 86.8 72.1 86.8

Challis et al. (74) 50 39 fMRI GP-LR 75.0 100% 50.0 70.0

Jie et al. (75) 99 50 fMRI SVM 78 82 74 77

Wee et al. (76) 10 17 DTI & fMRI SVM 96.3 100 94.1 95.3

Zhu et al. (77) 22 22 DTI & fMRI CFS & SVM 95.4 95.0 95.9 –

Acc., accuracy; Sen., sensitivity; Spec., specificity; ICA, independent component analysis; CEEMD, complementary ensemble empirical mode decomposition; LSN, large-scale network;

LDA, linear discriminant analysis; SVM, support vector machine; LASSO, l1-norm regularized least squares regression; WSGR, weighted sparse group representation; GP-LR, Bayesian

Gaussian process logistic regression; CFS, correlation-based feature selection.

research is required to replicate these findings and it is too soon
to make a conclusion about the best algorithm of classification.

Conversion of MCI
As a transient stage of cognitive stage, patients with MCI are
likely to convert to AD, especially those with AD biomarkers. The
rate of conversion of patients withMCI older than 65 years to AD
when followed for 2 years was about 14.9% (9). Equally important
to MCI’s etiology, knowledge of the mechanism of conversion
from MCI to AD can help to invent new treatments to slow or
halt disease progression and modify available therapies. To date,
neuroimaging studies have provided some clues of how MCI is
converted to AD. Li et al. (78) tracked MCI patients who had
neurocognitive tests and rs-fMRI before and after the conversion.
The results showed a significantly lower functional connectivity
between the left angular gyrus and middle occipital gyrus in
the converters than non-converters. Another study reported
both intra- and inter-network longitudinal disruptions in MCI,
the decline of compensatory ability may act as the potential
cause of conversion (79). Consistent with abnormal functional
connectivity, study of the DTI imagingmodality showed selective
and progressive disruptions of structural connectivity in patients
with MCI that could be used to separate converters from non-
converters (80). As compared to the above studies which had
similar small-moderate sample sizes, Buckley et al. (81) analyzed
237 clinically normal older adults’ longitudinal data with amyloid
imaging and rs-fMRI. They speculated that lower functional
connectivity predicted more rapid cognitive decline and amyloid
burden would accelerate this process. In addition, they suggested
rs-fMRI may act as a predictor of early AD-related cognitive
decline. In summary, there is no current consensus on how the
MCI converts to next stage, and the approaches used exhibit vast
heterogeneity.

INFLUENCES OF GENES AND EDUCATION

Influences of Genetics
Increasing evidence suggest that multiple factors, including
diabetes, obesity, physical and mental inactivity, depression,

smoking, low educational attainment, and genetics all may
play a role in AD. Among them, genetic association with AD
is strong (82). Previous studies have revealed that genes like
ATP-binding cassette transporter A7 (ABCA7), clusterin (CLU),
complement receptor 1 (CR1), apolipoprotein Eε4 (APOE4),
phosphatidylinositol-binding clathrin assembly protein
(PICALM), are associated with AD risk. The identification
of these genetic loci and their mechanism of pathological
function are crucial for understanding the etiology of AD and
for early diagnosis. Combined neuroimaging-genetic studies can
provide crucial evidence of genetic effects on brain functioning
of MCI.

APOE4 is one of the major genetic risk factor for AD
and is involved in lipid homeostasis in the brain that
influences multiple neurophysiological pathways and MCI
network dysfunction (83). Study of APOE4 showed a strong
overlap in decreased functional connectivity between patients
with MCI and APOE4 carriers with or without MCI (84).
Only patients with MCI had decreased functional connectivity
of prefrontal cortical areas compared with APOE4 carriers,
suggesting that the etiology of MCI has multiple factors
besides genetics. The results of another combined APOE4-
rs-fMRI study showed that APOE4 may accelerate functional
connectivity decline in related brain networks in patients
with MCI (85). Conversely, APOE2 would produce age-
dependent and divergent effect on functional connectivity
(86).

Additionally, other metabolic pathways may also play a role
in pathogenesis of MCI. CLU has been associated with brain
atrophy (87). Bai et al. (88) correlated the results of CLU
genotyping and rs-fMRI imaging in patients with MCI and
normal controls, and found significant effects of the CLU CC
genotype on cortical midline regions, especially task-positive
networks in MCI. In a later study with similar methods,
Bai et al. (89) found the promoter haplotypes of IL-10 may
be associated with abnormal functional communications in
the left hippocampal-frontoparietal cortex in MCI. Another
inflammation-related gene, Interleukin 1 beta (IL-1β), was
associated with abnormal ALFF in left parietal cortex, bilateral
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frontal cortex, and left occipital cortex in patients with MCI (90).
PICALM gene polymorphisms were found to interact with the
functional activity in the left middle temporal gyrus and left
middle frontal gyrus (91). In addition, functional connectivity
in the gene-related regions may be correlated with memory
performance for a distinct genotype subgroup of patients with
MCI (86, 91). Although it is clear for investigators that these
genes may play a role in MCI pathogenesis, it’s easy to be
ignored the genes are originally functional in normal people. For
instance, Seddighi et al. (92) suggested that low expression of
SPARCL1 were associated with accelerated memory loss, reduced
brain volumes, and decreased cerebral perfusion during aging.
Future research should attempt to specify the interaction of
different genetypes with pathology process in MCI with AD
biomarkers.

Influences of Cognitive Reserve
Recent work on the functional connectivity of the DMN
and other related resting-state networks in patients with MCI
suggested the coexistence of impairment and compensation. A
factor called cognitive reserve (CR), which is often assessed
via years of education and IQ, has attracted attention for
its relationships to cognitive performance and level of brain
damage. Studies suggested the attempts by the patients’ brains
to compensate for damage by using the existing faculties of
functional cognitive brain regions. Neuroimaging studies show
CR modulates functional connectivity in large-scale network in
patients with MCI and that is correlated with memory scores
(93–95). Serra et al. (93) reported that high CR in patients with
MCI was associated with increased functional connectivity in
a network of fronto-parietal nodes and decreased functional
connectivity in a network of fronto-temporo-cerebellar nodes. A
recent study of functional connectivity between the DMN and
the DAN, which is associated with cognitive control and working
memory, suggested that negative DMN-DAN correlation was
associated with poorer memory performance in patients with
MCI. However, after adjusting for the CR, this association could
be compensated by a higher CR (95). Not surprisingly, rs-fMRI
could conversely be used to predict the significance of CR in
patients with MCI (96). However, since the cognitive function
declines with age, whether the changes observed are due to
the normal aging or the pathological process of AD should be
considered.

FUTURE WORK AND CONCLUSION

As seen from the studies presented here, rs-fMRI has already
contributed substantially to the field ofMCI’s research. Alteration
of functional brain activity within DMN and between other
networks have been detected with multiple analysis in cognitive
impaired people, and such changes are accelerated by MCI
related pathology process and other risk factors. As an
intermediate stage of AD continuum, MCI patients reserve the
capability of compensating the detriment of the disease. The
possible compensatory mechanisms and how to differentiate the
MCI due to AD from the pre-dementia are still a mystery.
Longitudinal study design and improvement of data analysis
would help to solve these problems. In future research, it will be
important to determine which features in MCI are the signs of
progression to AD. As imaging modalities improve, multi-center
collaboration, and data exchanges expand, and as MCI criteria
are more clearly delineated, we may expect further refinement
in characterizing the association between MCI and brain and/or
cognition based biomarkers.
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