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Abstract
Bones encompass a diverse network of sensory, sympathetic and even parasympathetic 

nerve fibers. While there is still insufficient understanding of the exact roles of these fibers in 
the skeleton, there is increasing evidence that they serve both afferent and efferent functions. 
Apart from pain transmission, some of their functions are regulation of bone remodeling, 
skeletal growth and fracture healing. That indicates that further research on bone innervation 
may shed more light on the main topics of bone biology, such as bone fragility in aged and 
osteoporotic individuals, alterations in fracture healing in various conditions, bone cancer 
pain, etc. This review article will present main morphological and functional characteristics 
of bone innervation.
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Kosti sadrže raznovrsnu mrežu senzornih, simpatičkih, pa čak i parasimpatičkih ner-
vnih vlakana. Iako tačne uloge ovih vlakana nisu još uvek sasvim jasne, sve je više dokaza da 
ova vlakna imaju i aferentne i eferentne uloge. Osim prenošenja bolnih nadražaja, neke od 
uloga ovih vlakana su i regulacija koštanog remodelovanja, koštanog rasta i zarastanja prelo-
ma. Ovo pokazuje da dalja istraživanja inervacije kostiju mogu doprineti rasvetljavanju glav-
nih istraživačkih pitanja u oblasti koštane biologije, kao što su fragilnost kosti kod starijih 
osoba i u osteoporozi, promene u zarastanju preloma u različitim stanjima, kancerski bol i dr. 
Ovaj pregledni članak prikazuje osnovne morfološke i funkcionalne karakteristike koštane 
inervacije. 

Ključne reči: 
kost,
nervna vlakna,
koštano remodelovanje,
transmisija bola
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Introduction:  
Bone innervation as a neglected topic

Nervous system is an important regulatory system 
in the body, controlling a number of body functions and 
ensuring responses to internal and external stimuli. Bones 
are capable of reacting both to external stimuli (mechani-
cal loading) and internal demands (hormonal and meta-
bolic), providing the body with mechanical stability du-
ring motion and stance, as well as acting as a depot for 
calcium and phosphorus. 

Standard anatomy textbooks (1,2) describe inner-
vation of bones only marginally (e.g. Hilton’s law), while 
standard physiology textbooks (3,4) provide no informati-
on on bone innervation. Considering that mechanical and 
hormonal factors are regarded as the main regulators of 
bone homeostasis (5,6), the topic of innervation of bones 
usually does not seem as an essential one. Hence, there is a 
general lack of understanding of the roles of nerve fibers 
in the skeleton. Nevertheless, as severe bone pain becomes 
more prevalent due to increasing frequency of malignant 
tumors and bone metastases (7), specific therapeutic 
approaches targeting bone pain transmission are nee-
ded (8). Therefore, the topic of bone innervation now 
attracts an increasing attention in research studies, and 
researchers realize that nerve fibers may be of extreme im-
portance for many processes in the skeleton, not just for 
pain transmission.

This review paper will present the main morpholo-
gical and functional characteristics of bone innervation, 
with the emphasis on how such a relatively neglected topic 
can give missing answers to some of the key questions of 
bone biology. 

Bone-related nerve fibers are sensory and 
sympathetic fibers

So far, the studies in bones identified fibers of vario-
us diameters and different myelination status, but with the 
exception of thick myelinated fibers (9). After early 

opinions that all fibers are solely autonomic, it was shown 
that bones have both sensory and sympathetic fi-
bers (10,11). Based on the diameter, impulse conduction 
velocity and presence or absence of a myelin sheath, these 
fibers correspond to A-delta and C type of fibers (12). The 
fibers found in bone tissue can be further classified into 
subpopulations based on the markers that they express 
and that allow their visualization by the methods of im-
munohistochemistry or immunofluorescence (10,11,13) 
(Table 1). 

Previous studies confirmed that sympathetic fibers 
express tyrosine hydroxylase (TH), which is a rate limiting 
enzyme in the process of synthesis of noradrenaline, as the 
main sympathetic neurotransmitter (10,14). Beside TH, 
sympathetic fibers often express neuropeptide Y (NPY) 
and some of them contain vasoactive intestinal peptide 
(VIP) (10,14). All these fibers are postganglionic and they 
reach the bones via the peripheral nerves that also supply 
sensory fibers to the bone (9) or via perivascular meshes. 

On the other hand, the subpopulations of sensory 
fibers express calcitonin gene related peptide (CGRP), 
substance P (SP), isolectin B4 (IB4) and neurofilament H 
(NFH or NF200, RT-97) (10,13) (Table 1). They are perip-
heral processes of pseudounipolar neurons, with the neu-
ral cell bodies located in the sensory ganglia (15,16). 

More recent study showed that TrkA receptor 
(TrkA = Tropomyosin receptor kinase A; neurotrophic 
tyrosine kinase receptor type 1) is expressed by the majo-
rity of myelinated/unmyelinated sensory and sympathetic 
nerve fibers that innervate the periosteum, bone marrow 
and mineralized bone, in contrast to few sensory fibers 
supplying the skin, which allows specific skeletal analgesia 
with NGF/TrkA inhibitors (17,18). 

Bone related nerve fibers reach all bone  
compartments

Considering strong pain that occurs after a fracture 
or traumatic injury of the periosteal surface, it is usually 
considered that periosteum is the most innervated tissue 

Functional type of fibers Morphology Marker/s Localization in bones

Sensory fibers

Mostly myelinated 
(A-delta)

Neurofilament H, 200 kDa (RT-97)
(NF200)

Periosteum, bone marrow and 
mineralized bone

Mostly unmyelinated
(mostly C fibers)

Peptidergic C fibers:
Calcitonin gene-related peptide 
(CGRP);
Substance P (SP)

Periosteum, bone marrow and 
mineralized bone

Unmyelinated
(C fibers)

Non-peptidergic C fibers:
Isolectin B4 (IB4); Purinergic P2X3 
receptor

Only at muscle attachment sites

Postganglionic 
sympathetic fibers

Unmyelinated
(C fibers)

Tyrosine hydroxilase (TH);
Neuropeptide Y (NPY);
Vasoactive intestinal peptide (VIP)

Periosteum, bone marrow and 
mineralized bone 

Table 1. Morphological, functional and immunohistochemical characteristics of subpopulations of nerve fibers 
inervating bone.
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in bone. However, previous studies in mouse femur showed 
a rich network of sensory and sympathetic fibers in the 
bone marrow, mineralized bone and periosteum (13,17). 
While indeed high numbers of fibers per area were found 
in the periosteum, the highest number of fibers was found 
in the bone marrow compartment, considering its greater 
volume (13). Mineralized bone (cortical bone) compar-
tment also showed nerve fibers spreading through many of 
the Haversian and Volkmann’s canals (10,13). There was 
also inter-site variation in the density of neural fibers wit-
hin a long bone, so that the region of the diaphysis showed 
the lowest number of fibers, whereas the metaphyseal regi-
ons had the richest nerve supply (13). Most of the fibers are 
associated with blood vessels in bone; nevertheless, those 
unassociated with blood vessels and free nerve endings 
were also found (13,19). While mouse long bones showed 
peculiar distribution of fibers among the main anatomical 
parts of the bone, calvaria and mandible did not demon-
strate outstanding regional differences (13). 

Most information about localization of nerve fibers 
in bone comes from the studies in animals, while human 
data are rather scarce. In humans, it was shown in lumbar 
and first sacral vertebra that dense network of fibers mostly 
concentrates in the central zone of the vertebra, and that 
both the endplate and the body of the vertebra are densely 
innervated, as visualized using immunohistochemistry 
staining against a ubiquitous neural marker PGP 9.5 (20). 
Additional staining for CGRP, in the lumbar vertebral 
body, showed that most of the fibers within the vertebral 
body were CGRP-positive, indicating their role in nocicep-
tion and explaining bone pain even in the cases where pe-
riosteum is not damaged (21). 

Bone related nerve fibers have both afferent 
and efferent roles in the skeleton

Although the exact functions of these fibers are still 
unclear, it is striking that there are experimental data that 
they serve both afferent and efferent roles (13). They cer-
tainly have important functions in transmission of bone 
pain, but also play a role in bone remodeling, osteogenic 
differentiation during skeletal growth, as well as in bone 
repair and fracture healing (22).

Markers expressed by most of the sensory neurons 
are consistent with a role in nociception (16). The fact that 
they are localized not only in the periosteum, but also in 
the bone marrow and mineralized bone compartments, 
may explain the origin of skeletal pain even in the lesions 
that do not affect the periosteum. In addition to nocicepti-
on, periosteal fibers respond to mechanical, chemical, and 
thermal stimuli to the periosteum (for a review see (16)). 
In particular, considering that CGRP+ and NF200+ sen-
sory fibers form a dense mesh in the periosteum of the 
mouse femur, it was suggested that they are strategically 
organized to detect mechanical distortion of the perio-
steum and underlying mineralized bone (23). The fibers 
innervating the bone marrow are also able to detect vario-
us sensory modalities, given that it was shown that whole 

nerve is stimulated by increasing intra-osseous pressure, 
chemical stimulation or temperature changes of the bone 
marrow (16). In particular, they can recognize changes in 
local pH, where local acidification due to osteoclastic and 
bone-colonizing cancer cells’ release of protons is detected 
via acid-sensing nociceptors expressed on sensory neurons 
(transient receptor potential channel-vanilloid subfamily 
member 1 - TRPV1, and the acid-sensing ion channel 3 - 
ASIC3), thus contributing to bone cancer pain (24).

Nevertheless, a number of other important functi-
ons of these fibers were acknowledged in the experimen-
tal studies. It is evident that sensory and sympathetic ne-
urotransmitters and neuropeptides have trophic effects 
that are critical for joint and bone homeostasis (25). For 
instance, using capsaicin in an experimental study to se-
lectively destroy unmyelinated sensory neurons in rats, 
led to depletion of substance P and CGRP in bone and 
caused significant loss of trabecular bone, suggesting that 
capsaicin-sensitive sensory nerves contribute to trabecu-
lar bone integrity (26,27). Obviously, CGRP and SP that 
are released from the peripheral terminals of sensory ne-
urons are important local mediators ensuring maintenan-
ce of normal bone balance. This is probably mediated via 
specific receptors on bone cells, where CGRP stimulates 
osteoblasts while inhibiting osteoclast differentiation and/
or function (22,26,28,29). Unlike CGRP that shows bone 
anabolic behavior, substance P can increase bone forma-
tion when present in high concentrations; otherwise, it 
increases bone resorption (30,31). The TrkA-expressing 
sensory nerves innervating long bones stimulate load-in-
duced bone formation through the Wnt/β-catenin pathway 
(32), and it was shown in experimental studies in mice that 
NGF-TrkA signaling in skeletal sensory nerves mediates 
bone formation in response to mechanical loading (33). 

Sympathetic fibers are mostly related to the blood 
vessels (23) and likely control blood flow in bone throu-
gh vasoconstriction. Like CGRP-positive sensory fibers, 
VIP-positive sympathetic fibers play a role in suppressing 
bone resorption through RANKL/OPG pathway, similar 
to mechanical loading, as shown in cell culture experi-
ments (34,35). Nevertheless, the role of sympathetic system 
in bone remodeling is still contradictory (25), considering 
that destruction of sympathetic neurons by guanethidi-
ne was found to reduce the differentiation and activity of 
osteoclasts (36). Furthermore, there is evidence that sym-
pathetic system increases bone resorption when subjected 
to microgravity conditions, i.e., that beta blockers may be 
used to prevent bone loss (37). However, more studies are 
needed until beta blockers could be targeted as an osteopo-
rosis prevention drug (22).

A recent study in mouse femur showed that aging 
leads to a reduced number of nerve fibers in bone, parti-
cularly decline in sympathetic fibers (19). Further research 
is needed to understand whether aging and various disease 
processes in humans affect the density of bone related ner-
ve fibers, and whether neural alterations may be related to 
the observed increase in bone fragility in various diseases, 
as well as altered fracture healing and bone pain.
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Both sensory and sympathetic fibers establish 
synapse-like contact with bone cells which 
display receptors for the substances released 
from the neural fibers

The observed effects of neurotransmitters and ne-
uropeptides on bone metabolism suggest the relation-
ship between the nerve fibers and bone cells (Figure 1). 
Considering that intercellular communication is difficult 
to analyze in hard tissue in situ, there is not much direct 
evidence of the type of the connection between the fibers 
and bone cells. It was shown on rat’s long bone by electron 
microscopy that nerve fibers running along blood vessels 
are located in vicinity of hematopoietic cells and bone cells 
(11). Some of these nerve fibers clearly showed “local dila-
tations in contact with medullary cells and bone cells that 
were immunolabeled for synaptophysin, a nerve terminal 
marker” (11). A more detailed assessment was possible in 
cell co-culture of sensory neurons and osteoblasts, showing 
that they established a close synapse-like contact (38-40). 
Moreover, cell culture experiments showed that osteoblasts 
and sensory neurons communicate bidirectionally: perip-
heral neurite terminals release glutamate and substance P 
by exocytosis (efferent signal to osteoblasts) and osteobla-
sts release adenosine triphosphate - ATP (afferent signal to 
neurites) (39,40). It is interesting that mechanical stimu-
lation of osteoblasts in cell culture was able to activate the 

neurite of the co-cultured sensory neurons, which was ba-
sed on the release of ATP from osteoblasts and its binding 
on the purinergic receptors on the neurite (40). In that way, 
sensory neurons can further transmit the information of 
mechanical loading, which may be a part of the regulatory 
loop between the central nervous system and bone that 
controls bone homeostasis.

There is also a direct communication between sym-
pathetic neurons and bone cells (osteoblasts and osteoc-
lasts), where osteoblastic and osteoclastic activation by 
sympathetic neurons in vitro is mediated, at least partly, by 
noradrenaline acting through α1-adrenergic receptors on 
bone cells (41,42). The already mentioned contradicting 
effects of sympathetic neurons on bone may partly origi-
nate from differential effects of noradrenaline on different 
types of adrenergic receptors (Figure 2). For example, 
osteoblasts are activated by stimulation of α1-adrenergic 
receptors, and inhibited by acting on β2-adrenergic recep-
tors (43-45). Osteoclastogenesis is suppressed via α2-adre-
nergic receptors, and stimulated via α1- and β2-adrenergic 
receptors (42,46-48). In the situation when different adre-
nergic receptor types are expressed by the same cell, the 
concentration of noradrenaline is likely a decisive factor 
determining the preferred receptors and corresponding 
effects (22). 

       It was suggested that various neuropeptides or 
neurotransmitters released from the skeletal nerve fibers 
have paracrine effects on the neighboring bone cells (49), 

Figure 1. Schematic example of bidirectional communication between sensory neurons and bone cells. Note that 
peripheral terminals of sensory nerve fibers (blue) release neuropeptides (yellow vesicles: e.g. CGRP, SP, etc.) that bind to the 
receptors on bone cells and affect their activity. On the other hand, osteoblasts release adenosine triphosphate (red vesicles) 
and osteoclasts release protons (small dots) that activate the corresponding receptors on the peripheral nerve terminals. The 
sensory nerve carries the electric impulse to the spinal cord. (DRG-dorsal root ganglion).
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Figure 2. Effects of the sympathetic neurons on the main processes in bone. Sympathetic neurons release noradrenaline 
that binds to adrenergic receptors on bone cells. Depending on the type of adrenergic receptor, the sympathetic effects 
vary considerably. While activating β2 receptors leads to a shift to bone resorption (increased number and activity of 
osteoclasts, and decreased osteoblastic number and activity), activation of α1 and α2 receptors favors bone formation 
(reduced osteoclasts number, increased number and activity of osteoblasts). (Oc-osteoclasts, Ob-osteoblasts).

considering that treatment of osteoblasts with SP, CGRP, 
VIP, NPY or TH in vitro increased osteoblasts viability, in-
duced alkaline phosphatase activity and osteocalcin produ-
ction (49). In addition, glutamate signaling was shown to 
promote differentiation and activation of osteoblast cell li-
neage (50). Indeed, osteoblasts and osteoclasts have recep-
tors for these soluble factors (Table 2), but more research is 
needed to understand the relevance of each neuropeptide 

and receptor type for bone remodeling activities.
All studies considered the effects of neuropeptides 

and neurotransmitters on osteoblasts (bone forming cells) 
and osteoclasts (bone resorbing cells), and we do not know 
whether osteocytes that are the most numerous bone cell 
type also express receptors for these neuropeptides and 
neurotransmitters. Considering the strategic distribution 
of osteocytes through the mineralized bone matrix, their 

Receptor Abbreviation Ligand Locations 
Neurokinin 1 receptor NK1R Substance P Osteoblasts, osteoclasts and preosteoclasts, bone 

marrow stromal cells
CL receptor/RAMP CLR CGRP Osteoblasts, osteoclasts, bone marrow stromal cells

β2 adrenergic receptor β2-AR Noradrenaline Osteoblasts, osteoclasts 

α1 adrenergic receptor α1-AR Noradrenaline Osteoblasts, osteoclasts

α2 adrenergic receptor α2-AR Noradrenaline Osteoblasts, osteoclasts and preosteoclasts

VIP receptors VIP-1, VIP-2 VIP Osteoblasts, osteoclasts
Glutamate receptors 
(various classes)

GluR Glutamate Osteoblasts, osteoclasts

ACh receptors
(various classes)

ACh receptors Acetylcholine Osteoblasts, osteoclasts

Table 2. Neuropeptide and neurotransmitter receptors on bone cells
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neuron-like shape and interconnectivity of osteocytic den-
drites, they are nowadays considered as the main sensors 
of mechanical loading, as well as orchestrators of bone re-
modeling/repair (6). The abundant data from our group 
showed that aging and osteoporosis are associated with a 
decline in number, viability and connectivity of osteocytes, 
resulting in altered mechanosensing ability of bone and de-
layed and/or deficient bone remodeling (6,51-56). It would 
be of particular interest to investigate whether osteocytes 
communicate with nerve fibers and/or whether they res-
pond to main neuropeptides.   

 Presence of acetylcholine (ACh) receptors on oste-
oblasts (57) raises the question whether bone also conta-
ins parasympathetic fibers. It has recently been shown 
that mouse’s femoral metaphysis had some nerve fibers 
expressing VAChT (vesicular ACh transporter) (58) which 
is believed to be a marker of parasympathetic cholinergic 
fibers (58,59). Moreover, retrograde propagation of immu-
noreactive pseudo rabies virus from the femoral metap-
hysis to the sacral parasympathetic center of the spinal cord 
confirmed the parasympathetic origin of these fibers (58). 
It was shown that cholinergic signaling in bone specifica-
lly stimulates osteoclasts’ apoptosis, but also can increase 
osteoblasts’ number (58), resulting overall in positive bone 
balance. However, more research is needed to demonstrate 
whether different bones have parasympathetic fibers and 
whether that also occurs in humans.

Conclusion

 Having in mind all the previous considerations, we 
can conclude that bone houses a diverse network of sen-
sory, sympathetic and even parasympathetic neural fibers 
that may have specific functions related to the bone meta-
bolism. Specific subpopulations of fibers can be visualized 
under the microscope after immunostaining for specific 
markers, such as CGRP, substance P, tyrosine hydroxylase, 
etc. Further research will identify whether aging and vario-
us disease processes in humans affect the density of these 
fibers in the bone tissue and whether that relates to increa-
sed bone fragility, altered fracture healing and bone pain. 
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