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What motivates an action in the absence of a definite reward? Taking the case of

visuomotor control, we consider a minimal control problem that is how select the

next saccade, in a sequence of discrete eye movements, when the final objective is

to better interpret the current visual scene. The visual scene is modeled here as a

partially-observed environment, with a generative model explaining how the visual data

is shaped by action. This allows to interpret different action selection metrics proposed in

the literature, including the Salience, the Infomax and the Variational Free Energy, under a

single information theoretic construct, namely the view-based Information Gain. Pursuing

this analytic track, two original action selection metrics named the Information Gain

Lower Bound (IGLB) and the Information Gain Upper Bound (IGUB) are then proposed.

Showing either a conservative or an optimistic bias regarding the Information Gain, they

strongly simplify its calculation. An original fovea-based visual scene decoding setup

is then proposed, with numerical experiments highlighting different facets of artificial

fovea-based vision. A first and principal result is that state-of-the-art recognition rates

are obtained with fovea-based saccadic exploration, using less than 10% of the original

image’s data. Those satisfactory results illustrate the advantage of mixing predictive

control with accurate state-of-the-art predictors, namely a deep neural network. A

second result is the sub-optimality of some classical action-selection metrics widely

used in the literature, that is not manifest with finely-tuned inference models, but

becomes patent when coarse or faulty models are used. Last, a computationally-effective

predictive model is developed using the IGLB objective, with pre-processed visual

scan-path read-out from memory, bypassing computationally-demanding predictive

calculations. This last simplified setting is shown effective in our case, showing both

a competing accuracy and a good robustness to model flaws.

Keywords: intrinsic motivation, foveated vision, saccadic eye movements, active inference, information gain,

convolutional neural networks (CNN), active vision

1. INTRODUCTION

In complement with goal-oriented activity, animal motor control also relates to the search for
sensory cues in order to better interpret its sensory environment and improve action efficacy. This
resorts to choosing relevant viewpoints, i.e., selecting body placement and/or sensors orientation
in order to capture a sensory signal that should help disambiguate the current scene. The center of
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sight, in particular, is constantly and actively moving during all
waking time. This permanent visual scanning is principally done
with high-speed targeted eye movements called saccades (Yarbus,
1967), that sequentially capture local chunks of the visual scene.
This makes the oculo-motor activity an essential element of man
and animal behavior, underlying most of daily displacements,
movements, instrumental and social interactions.

Scene decoding through action (or “active perception”) has
attracted strong interest in robotics and artificial vision, for the
important redundancy present in the sensory data allows to
envisage energy-efficient sensors, scanning little portions only of
the total sensory scene. The opportunity to neglect large parts of
the sensory scene shouldmainly be considered when the energy is
scarce, as it is the case for drones and robots. It is also relevant in
computer vision, where mega-pixel images appeals for selective
convolutions, in order to avoid unnecessary matrix products. The
example of animal vision thus encourages a more parsimonious
approach to robotic and computer vision, including the control
of the sensory flow. Optimizing the sensor displacements across
time may then be a part of robotic control, in combination with
goal-oriented operations.

Changing the viewpoint can be seen as a way to leverage
ambiguities present in the current visual field. In Aloimonos et al.
(1988), the authors show that some ill-posed object recognition
problems becomewell-posed as soon as several views on the same
object are considered. A more general perspective is developed in
Bajcsy (1988), with a first attempt to interpret active vision in the
terms of sequential Bayesian estimation:

The problem of Active Sensing can be stated as a problem of

controlling strategies applied to the data acquisition process which

will depend on the current state of the data interpretation and the

goal or the task of the process.

thus providing a roadmap for the development of active sensory
systems.

Work on active vision control is quite scarce until the late
2000’s. On the machine learning side, an example of fovea-based
visuo-motor control was addressed in Schmidhuber and Huber
(1991), with a direct policy learning from gradient descent by
using BPTT through a pre-processed forward model. On the
biological side, early models from the late nineties consider
the case of fovea-based image encoding, ending up in the
simplified “pyramidal” focal image encoding model (Kortum
and Geisler, 1996). Active vision models were however largely
dominated by the salience models (Itti and Koch, 2000, 2001;
Itti and Baldi, 2005), that were shown consistent with the
preferred fixation zones observed in humans. Motor control
were however generally bypassed in that case, putting the focus
on characterizing the attractiveness of fixation zones rather
that explaining the scene decoding process when changing gaze
orientation.

In contrast, global scene understanding implies to consider
the visual scan-path as a sequential sampling of an underlying
(covert) sensory scene, given a generative model. Two parallel
research tracks adopted and refined this last idea over the last
20 years. On the one side, a predictive approach to active vision

was originally developed in (Najemnik and Geisler, 2005). It
globally complies with the predictive coding framework (Rao
and Ballard, 1999) with the current posterior estimate used to
anticipate future sensations. Here, appropriate samples should
be selected that maximize the expected decoding accuracy, that
resorts to reduce the number of possible interpretations of the
underlying scene, i.e., reduce the expected posterior entropy (see
Najemnik and Geisler, 2005, 2009; Butko and Movellan, 2010;
Friston et al., 2012). It also generalizes to the case of multi-view
selection in object search and scene recognition (Potthast et al.,
2016). A second research track insists on the formal contribution
of action in the encoding of the (future) sensory field. This resorts
to consider action as a code that is later on revealed (decoded)
by sensing the effect of action at the visual field (Klyubin et al.,
2005; Tishby and Polani, 2011). As such it may be optimized so as
to maximize the action read-out capability, allowing to improve
both the policy and the data model in the course of learning
(Schmidhuber, 2007; Mohamed and Rezende, 2015; Houthooft
et al., 2016).

Those different approaches interestingly conduct to develop
different action selection policies that do not appear mutually
compatible in the first place. The decoding accuracy objective
encourages actions that provide a consistent belief update,
measured at the log likelihood of the data after sampling. This
implies to avoid surprising data and prefer actions that bring out
a sensory input that is consistent with the initial guess (Friston,
2010). This approach may be referred as the “conservative”
approach to action selection. Conversely,the “maximum effect”
principle encourages actions that are well discriminated, i.e., that
have a visible effect on the sensors. This is formally quantified by
the “empowerment” information gain objective (Klyubin et al.,
2005; Tishby and Polani, 2011), or by themore informalmeasures
of surprise, like the “Salience” metric (Itti and Baldi, 2005),
or the different “curiosity” metrics, like the ones proposed in
Schmidhuber (1991), Oudeyer and Kaplan (2008), and Pathak
et al. (2017). This second approach may be referred as the
“progressive” approach to action selection.

Active vision is thus in need for clarification, in order to
develop more effective and principle-grounded action-selection
controllers in open environments. This article is an attempt to set
the ground for such a unifying framework, making easier both a
formal and quantitative comparisons between the different action
selection metrics at stake. A fovea-based visuo-motor control
setup is used for illustration, that consists in choosing the next
saccade in a sequential visual scene decoding task.

A general active scene decoding framework is first developed
in section 2.1, under predictive control assumptions, with a
generative model explaining how the observed data is shaped
by action. Stemming from a partially observed probabilistic
framework, the current observation is interpreted as the
realization of a mixed emission density made of a controlled
emitter (i.e., the actuator state) and an uncontrolled one (i.e.,
the latent state of the environment). Then, when combined
with a chain rule-based sequential update, it is shown how
the (unobserved) latent state shall be inferred from both the
current observation and past inferences memory. Given that
“mixed” generative model, a generic active inference framework
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is developed in section 2.2, with classical action selection metrics
recast, showing a clear formal separation between the “Accuracy-
based,” “Innovation-based,” and “Conservation-based” action-
selection metric families.

Section 3 gathers both formal and simulation results,
providing a comprehensive and consistent interpretation of
most existing metrics as maximizing the view-based Information
Gain, either in an “optimistic” or in a “pessimistic” fashion.
The connection between action-selection metrics and the
Information Gain is first formally unfolded in section 3.1. It
is shown that a rather straightforward approximation of the
Information Gain, known as the Compression Improvement,
provides both a general setup to interpret most classic objective
functions, and a baseline to provide new effective and principle-
grounded objective functions, namely the Information Gain
Lower Bound (IGLB) and the Information Gain Upper Bound
(IGUB). Then an actual implementation of a sequential fovea-
based scene decoding setup is developed in section 3.2,
allowing to quantitatively compare those different metrics, and
propose new avenues toward parsimonious active vision through
computationally-effective model-based prediction.

2. PRINCIPLES AND METHODS

We consider here a scene decoding task where an agent has to
estimate its environment state, here called the “sensory scene,”
from sensory samples. The visual scene is organized in objects
(or objects parts), whose presence and position is continuously
checked by visual inspection. Then, decoding a visual scene
through saccades consists in identifying the ensemble through
the sequential foveation of parts of the scene only.

2.1. A Mixed Generative Model
The active inference approach relies on a longstanding history of
probabilistic modeling in signal processing and control (Kalman,
1960; Baum and Petrie, 1966). The physical world takes the form
of a random process that is the cause of the sensory stream.
This process is not visible in itself but only sensed through
(non reliable) sensors, providing a sequence of observations over
time. The inference problem consists in identifying the cause of
the observations (i.e., the state of the environment), given the
generative model. The result of the inference is itself a probability
density over the hidden states (the posterior probability), that
is obtained through inverting the model (from the observations
toward the hidden states).

2.1.1. One Scene, Many Views
A feedback control framework is composed of an actor and an
environment. The actor and the environment interact according
to a feedback loop. The actor can act on the environment through
its effectors, and sense the state of the environment through its
sensors. The state of the environment as well as the state of the
agent can change over time. The state of the environment is
described by a state vector s ∈ S . The signal x that is measured on
the sensors is called the sensory field. It is interpreted as a measure
made by the sensors, that is causally related to the current state s.

We consider here an organization of the environment
in objects (or object parts), whose presence and position
is continuously checked by sensori-motor inspection. In a
(discrete) Markovian framework, the state s in which the physical
system is found at present depend both on its previous state
(say s0) and on a preceding motor command a. The transition
from s0 to s is reflected in a transition probability that embodies
the deterministic and non-deterministic effects of the command
a in the form of a conditional probability:

s ∼ Pr(S|a, s0) (1)

The signal x measured on the sensors is interpreted as an effect
of the current state s. Once again the deterministic and non-
deterministic effects are reflected in a conditional probability:

x ∼ Pr(X|s) (2)

that is said the sensory emission process. The combination of
(1) and (2) is the generative process that is the cause of the
sensory field. Consider now the cause s of the current visual
field x is both the object identity o, its position in the peripheral
space y, and the current body orientation u, i.e., s = (y, o, u),
with x ∼ Pr(X|y, o, u) the sensory emission. Here each variable
accounts for a distinct degree of freedom responsible for the
sensory emission.

Then we propose to split the generative process in two parts,
namely the controlled generative process and the uncontrolled
generative process. This separation is consistent with the “hidden
state”/“hidden control” distinction stated in Friston et al. (2012).
The controlled emitter is u while the uncontrolled emitter is
(y, o). Moreover, for greater simplicity, (y, o) is here reduced to a
single variable z = (y, o), so that the generic uncontrolled state
z may report for every possible composition of object identity
in space (or more generally every composition of a pose and an
identity). The controlled emitter u refers to the state of a motor
apparatus, e.g., to the spatial distribution of the different mobile
segments of an articulated body. The uncontrolled latent emitter
z refers to the remaining part of the physical world, i.e., the
“environment.”

This restricted setup, that separates a body and an
environment in the form of two independent processes, provides
a substantial simplification to the estimation problem at stake
(see Appendix A in Supplementary Material). The controlled
transition is assumed to be relatively “fast” in comparison with
the uncontrolled one (for e.g., saccades can be realized in a
100–200 ms interval). Consistently with the “end-effector”
ballistic control setup (Mussa-Ivaldi and Solla, 2004), the motor
command a is thus assimilated with a setpoint (or posture) u in
the actuator space. Under that perspective, the motor command
acts on the sensors position and orientation so as to achieve a
certain perspective (or view) over the external scene, here called
a viewpoint.

Finally, both x (the view) and z (the latent state) are
the realization of a generative model parametrized by u (the
viewpoint), i.e.,

x, z|u ∼ Pr(X|Z, u), Pr(Z) (3)
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with Pr(Z) the prior, and each different motor command
u providing a different sample over the same underlying
distribution. With that respect, the action u is also interpreted
as a sampling operation.

2.1.2. Sequential Bayesian Inference
With a generative model comes the possibility to infer the latent
state of the physical system from the observation using Bayes
rule:

Pr(Z|x, u) =
Pr(x|Z, u)Pr(Z)

Pr(x|u)
(4)

with Pr(Z|x, u) the posterior probability (over the latent states),
whose order 2 moment informs on the estimation accuracy :
the narrower the distribution, the more accurate the latent state
prediction.

In a visual scene decoding task, a single latent state z is
observed through a series of viewpoints u, u′, u′′, ... This sequence
of observations should ultimately provide a final estimate q̂(Z),
with a single cause ẑ dominating the other ones, allowing to reach
a final decision. The chaining of the posterior to the role of the
prior in the next inference step is a classical property of sequential
Bayesian inference. When generalized to many observations:

(x|u), (x′|u′), ..., (x(n)|u(n)), the final posterior q(n)(Z) writes:

q(n)(Z) ∝ Pr(x|Z, u)× Pr(x′|Z, u′)× ...× Pr(x(n)|Z, u(n))× Pr(Z)

(5)

which allows to approach the latent state z frommany samples of
(3), each sample providing more evidence. When the sampling is
done incrementally (Wald, 1945), the u’s and x’s do not need to be
stored in the process. At step n, only q(n−1) (the current “belief”)
needs to be memorized to estimate q(n), i.e.,

q(n)(Z) ∝ Pr(x(n)|Z, u(n))× q(n−1)(Z) (6)

2.2. Active Vision and Predictive Control
Consider an agent having to estimate its environment state z

from sampling it from different viewpoints.We here suppose that
a generative model p is given to the agent. Depending on the
current viewpoint u, a different view x is observed at the sensors.
So, each different command u provokes a different observation,
and thus a different estimation of the latent state. It is thus worth
to question what is the optimal choice for u in order to maximize
the accuracy of the posterior estimate? That turns to minimize
the number of samples so as to provide an accurate estimate.
This approach to inference is called active sampling in Friston
et al. (2012), for the choice of u determines the sensory sample x
that is observed, conditioning the final posterior estimate. It was
originally developed by Najemnik and Geisler (2005) to the case
of human visual search modeling (finding a target feature in an
image, i.e., the “find Waldo” task).

A baseline sampling strategy is to choose u at random and
condition the posterior estimate on this random action. More
elaborate strategies consider the past observations to choose the
most promising action û. The knowledge about past observations
being here absorbed in single posterior distribution q(n−1), the

problem turns out to design a controller C which, given a context
q(n−1), sets up an action û = C(q(n−1)). Here the role of the
controller is not to achieve a goal-oriented task, but to render the
estimation of the latent state more accurate. The controller is said
perception-driven.

The design of such a controller is not straightforward. On
contrary to classical control, there is not definite setpoint z∗ to
which the controller is supposed to drive the external process
(through model inversion for instance). By design, the actual
latent state z is not visible as such and can not be compared to
the inferred posterior. In order to estimate how good a motor
command is, one needs to provide an estimate of the value-
of-action (regarding scene understanding). There is currently
no consensus about what a good value is regarding the scene
decoding task.

A general strategy is thus to establish an action selectionmetric,
taking either the form of an objective function f or a loss ℓ, that
conveys a quantitative estimation of the action’s contribution to
the inference accuracy (resp. imprecision). Once the objective
function established, a simple control strategy is to choose the
action that maximizes the objective (resp. minimizes the loss),
i.e.,:

û = argmin
u∈U

ℓ(u)

/

argmax
u∈U

f (u) (7)

Many such objective functions are proposed in the literature.
They are generally referred as an intrinsic motivation (Oudeyer
and Kaplan, 2008) by contrast with the extrinsic motivation that
relates to the classical rewards in reinforcement learning (Sutton
and Barto, 1998). Several such intrinsic reward candidates have
been developed in recent years in the scene decoding context.
Some of them are presented in the next paragraphs. The original
formulas have been recast to show their formal correspondences,
but also highlight some manifest differences between them.

2.2.1. Accuracy-Based Action Selection
Given a generative model p(X,U,Z), like the one described in
section 2.1, the predictive approach to perception-driven control
(Najemnik and Geisler, 2005) relies on predicting an accuracy
measure A(x, u; q(n−1)) to choose action. The accuracy tells how
good the model is at predicting z (here the target position) when
viewing x at position u, knowing q(n−1) (the estimated posterior
at step n− 1).

If the agent has to choose an action u ∈ U , knowing only
q(n−1), the predicted accuracy attached to u is:

Ā(u; q(n−1)) = Ez∼q(n−1)(Z),x∼p(X|z,u)

[

A(x, u; q(n−1))
]

=
∑

z∈Z

q(n−1)(z)

∫

X

A(x, u; q(n−1))p(x|z, u)dx

and the optimal action to choose is:

û = argmax
u∈U

Ā(u; q(n−1)) (8)

In order to render the computation tractable, a sample is
generally used to estimate the predicted accuracy, i.e., Ep[f (x)] ≃
f (x̃), with x̃ ∼ p(x).
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The accuracy metric used in the original paper was an ad-hoc
one (Najemnik and Geisler, 2005), but turned out to be consistent
with minimizing the posterior entropy (Najemnik and Geisler,
2009), i.e.,:

A(x, u; q(n−1)) = −H(q(n)) =
∑

z∈Z

q(n)(z) log q(n)(z)

with: q(n)(z) ∝ p(x|z, u)× q(n−1)(z), so that:

û = argmin
u∈U

Ez∼q(n−1)(Z),x∼p(X|z,u)

[

H(q(n))
]

which makes sense for a low entropy of the posterior is expected
when the estimated posterior accuracy is high.

This approach to optimal visual sampling was further on
linked to an “Infomax” principle(posterior Mutual Information
maximization) in Butko and Movellan (2010), taking:

AINFOMAX(x, u; q
(n−1)) ≡ I(Z; x|u; q(n−1)) = H(q(n−1))− H(q(n))

(9)

with H(q(n−1)) ≡ H(Z|q(n−1)) and H(q(n)) ≡ H(Z|x, u; q(n−1)),
which also turns out to minimize H(q(n)) solely for H(q(n−1))
is independent of u. The Infomax (or posterior entropy
minimization) approach generally makes sense for it implicitly
relies on the chaining from q(n−1) to q(n), that considers that if
p(x|Z, u) is consistent with q(n−1)(Z), then the issued posterior
entropy should be lower than if p(x|Z, u) is at odd with q(n−1)(Z).
The model is expected to choose the action that may confirm
the initial assumption, though there is no formal comparison
between q(n−1) and q(n). It is thus potentially vulnerable to
model outliers with q(n) having both a low entropy and being
inconsistent with q(n−1).

2.2.2. Innovation-Based Action Selection
Another quantity of interest is the so-called Bayesian surprise
or Salience (Itti and Baldi, 2005) defined as the Kullback-Leibler
divergence between an actual view x and amodel z. In the original
“bottom-up” setup, only local statistics are formed over small
image patches of a given image, with u the index of a patch and
p(z|x, u) the features inferred from the data actually observed at
u. For each patch u, the Salience of the actual view x given the
model is:

S(x, u) = KL(p(Z|x, u)||p(Z))

with KL(p1||p2) =
∑

z p1(z) log
p1(z)
p2(z)

the Kullback-Leibler

divergence between p1 and p2, interpreted here as a measure of
the inconsistency between a (viewpoint independent) model p
and the data. A high salience reflects a strong inconsistency with
the model, while a low salience reflects a strong consistency with
the model. According to Itti and Baldi, the regions that have a
high Bayesian surprise are the ones that attract the sight the most.
The calculation of S(x, u) at each location u forms a saliency map
that is then considered as a prediction of where the sight will most
likely be attracted (high values most probably attract the sight,
low values less probably do). The saliency model has a strong

explanatory power and provides among the best fit with the
actual preferred fixation zones observed in humans. Its scalability
moreover provides straightforward applications in image and
video compression (Wang et al., 2003; Guo and Zhang, 2010).

Generalized to the sequential setup, the saliency metric
becomes:

S(x, u; q(n−1)) = KL(q(n)||q(n−1)) (10)

with q(n−1) considered as the data model and q(n) the posterior
estimated at (x, u), knowing q(n−1). Through maximizing the
KL divergence between the previous and the current scene
interpretation, the Saliency objective is found here to promote
the most conflicting observation regarding previous assumptions,
entailing finding innovative interpretations of the current scene.

Put in a predictive form, it gives:

û = argmax
u∈U

Ez∼q(n−1) ,x∼p(X|z,u)

[

KL(q(n)||q(n−1))
]

with the predictive Saliency promoting alternate future
interpretations regarding the current interpretation. This entails
searching for model inconsistencies or model contradicting
predictions, making the Saliency a model consistency check
metric.

2.2.3. Conservation-Based Action Selection
At last, the Variational Free Energy based (VFE) active inference
setup (Friston, 2010; Friston et al., 2012) considers the general
tendency of the brain to counteract surprising and unpredictable
sensory events through minimizing the VFE with action (see
Appendix B in SupplementaryMaterial). In our sequential setup,
it writes:

F(x|u) = − log p(x|u)+ KL(q(Z)||p(Z|x, u)) (11)

From the predictive perspective, stemming from q(n−1) as the
current scene interpretation, Friston et al. (2017) propose a
predictive VFE that writes in our sequential setup like :

F̄(u; q(n−1)) = Ez∼q(n−1)(Z),x∼p(X|z,u)
[

− log p(x|u; q(n−1))+ KL(q(n−1)||q(n))
]

(12)

with q(n) the predicted posterior and KL(q(n−1)||q(n)) quantifying
the scene interpretation update made by interpreting the scene
with q(n) instead of q(n−1). It is said the “epistemic cost”1. In that
setup, minimizing the Free-Energy is consistent with minimizing
KL(q(n−1)||q(n)) estimated as:

KL(q(n−1)||q(n)) = Ez∼q(n−1)(Z)

[

log q(n−1)(z)− log q(n)(z)
]

Put in a predictive form, the selection of action finally relies on
reducing the predicted log ratio, i.e., :

û = argmin
u∈U

Ez∼q(n−1)(Z),x∼p(X|z,u)

[

log q(n−1)(z)− log q(n)(z)
]

(13)

1or negative epistemic value.
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which may minimize the epistemic cost2.
On contrary to the Infomax objective (section 2.2.1),

minimizing the epistemic cost selects the predicted posterior
having the highest consistency with the current posterior, which
may prevent from model inconsistencies that may incidently
“hack” the posterior entropy (see section 2.2.1). Minimizing
KL(q(n−1)||q(n)) thus corresponds to a conservative approach to
the scene interpretation that is minimally vulnerable to outliers,
i.e., that minimizes the risk of a conflicting interpretation.

The epistemic cost is moreover at odd with the Saliency
objective (section 2.2.2) seeking the maximal inconsistency
between the cumulated posterior and the current posterior.
It is obvious here that the Free Energy minimization and
the Saliency maximization are antithetic objectives, and no
consensus is currently observed in the literature about which
objective should prevail (though Infomax generally preferred
in scene decoding and saliency/surprise preferred in sparse
reinforcement learning).

3. RESULTS

3.1. View-Based Information Gain Metrics
The structure of the problem (many views on the same scene)
implies that different observations should share a common
information corresponding to the actual (covered) sensory scene.
We take here benefit of the viewpoint-based variational encoding
setup (seen in section 2.2.3 and Appendix B in Supplementary
Material) to propose a new quantification themutual information
shared across different sensory fields, locally estimated with
a view-based Information Gain metric. It is shown here that
a rather straightforward approximation of the information
gain, known as the Compression Improvement, provide both
a general setup to interpret most classic objective functions,
and a baseline to provide new effective and principle-grounded
objective functions.

3.1.1. Definitions

3.1.1.1. View-based mutual information and information

gain
The sharing of information between two sensory fields x|u and
x′|u′ should be quantified by their Mutual Information. The
general idea is that two samples may provide more insight about
the hidden sensory scene than a single one (three samples should
provide even more, etc.). Consider x|u as the initial sensory
sample and x′|u′ as an additional sample providing new evidence
about how interpret the initial view x. The view-based mutual
information writes:

I((X|u); (X′|u′)) = H(X|u)−H(X|u,X′, u′) (14)

≃ EX,X′
[

− log p(X|u)+ log p(X|u,X′, u′)
]

(15)

with :

(i) p(x|u′, x′, u) ,
∑

z p(x|z, u)p(z|x
′, u′) the post-sample

likelihood, i.e., the retrospective likelihood of having

2It is to be noticed that the Kullback-Leibler divergence is here absorbed in the

general expectation over the x’s and the z’s.

seen x at u knowing now that x′ is observed at u′,
and

(ii) − log p(x|u) + log p(x|u′, x′, u) the post-sample Information
Gain (see also Tishby and Polani (2011)), that is a local
estimator of the views mutual information at X = x and
X′ = x′, given the model p:

IG(x, u, x′, u′) = − log p(x|u)+ log p(x|u′, x′, u) (16)

3.1.1.2. Conditional reconstruction cost
Stemming from the sequential Bayes posterior update formula:

p(z|x, u, x′, u′) =
p(x|z, u)p(z|x′, u′)

p(x|u, x′, u′)
(17)

It can be shown that the negative log likelihood of x after seeing
both x and x′ is bounded from above by:

− log p(x|u, x′, u′) ≤ −
∑

z

q′(z) log p(x|z, u)
p(z|x′, u′)

q′(z)

= Ez∼q′
[

− log p(x|z, u)
]

+ KL(q′(Z)||p(Z|x′, u′))

(18)

= − log p(x|u, x′, u′)+ KL(q′(Z)||p(Z|x, u, x′, u′))

(19)

, F(x|u, x′, u′)

which establishes F(x|u, x′, u′) as the post-sample conditional
reconstruction cost (or conditional Free Energy – the two are
synonyms), with q′(z) expectedly approaching p(z|x, u, x′, u′)
after optimization. From a variational perspective, the passing
from q(Z) ≃ p(Z|x, u) to q′(Z) ≃ p(Z|x, u, x′, u′) is the
variational posterior update, and the passing from F(x|u) toward
F(x|u′, x′, u) is the reconstruction cost update.

3.1.1.3. Compression improvement
An approximation of the Information Gain (IG), known as the
Compression Improvement (CI) was proposed in Schmidhuber
(2007) and Houthooft et al. (2016). In our view-based setup, it
writes :

CI(x, u, x′, u′) = F(x|u)− F(x|u, x′, u′) (20)

There comes the possibility to optimize the next sampling u′

through maximizing the CI as a proxy for the IG. It happens
to be equivalent with minimizing the post-sample Free Energy,
consistently with Friston et al. (2012)’s intuition.

3.1.2. The Sequential Information Gain and Its

Approximations
Extending now to the sequential setup, the contribution of u(n)

in understanding the scene is measured by a change in the
reconstruction cost F before and after reading x(n)|u(n).

• Before reading x(n), the reconstruction cost at x(n−1) writes:

F(x(n−1)|u(n−1); q(n−2)) = Ez∼q

[

− log p(x(n−1)|z, u(n−1))
]

+ KL(q||q(n−2)) (21)

= − log p(x(n−1)|u(n−1); q(n−2))

+ KL(q||q(n−1)) (22)
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• After reading x(n), it writes:

F(x(n−1)|u(n−1), x(n), u(n); q(n−2)) = Ez∼q′

[

− log p(x(n−1)|z, u(n−1))
]

+ KL(q′||q(n;n−2)) (23)

= − log p(x(n−1)|u(n−1); q(n;n−2))

+ KL(q′||q(n)) (24)

with :

q(n;n−2)(Z) ∝ p(Z|x(n), u(n))q(n−2)(Z) (25)

Before reading x(n), the optimal reconstruction cost is attained at
q = q(n−1). After reading x(n), the optimal reconstruction cost
is attained at q′ = q(n). From subtracting (23) from (21), the CI
writes :

CI(n) =Ez∼q

[

− log p(x(n−1)|z, u(n−1))
]

+ KL(q||q(n−2))

+ Ez∼q′

[

log p(x(n−1)|z, u(n−1))
]

− KL(q′||q(n;n−2))

(26)

Knowing that q and q′ are free parameters, taking q = q′ provides
a strong simplification of the above formula, further on referred
as the approximate CI:

C̃I
(n)
= KL(q||q(n−2))− KL(q||q(n;n−2)) (27)

= Ez∼q

[

log p(z|x(n), u(n))
]

+ c (28)

with c a constant. The information gain is here
approached with the opposite of the cross-entropy cost

C̃I
(n)
= −H(q(Z), p(Z|x(n), u(n)))+ c.

3.1.2.1. Information gain lower bound (IGLB)
Maximizing the CI however provides no formal guarantee the
IG will be maximized. The reconstruction cost is indeed an
upper bound of the negative log evidence, but the difference
of two reconstruction costs is neither an upper bound or a
lower bound of the IG (so that it may either underestimate or
overestimate the IG). It happens that, contrarily to the original
CI formula (Equation 26), the approximate CI (Equation 28)
provides ways to establish firm bounds regarding the Information
Gain estimate. Taking for instance q = q(n−1) (the pre-sample
posterior), and subtracting (24) from (22), the approximate CI
writes:

C̃I
(n)

q=q(n−1) = − log p(x(n−1)|u(n−1); q(n−2))

+ log p(x(n−1)|u(n−1); q(n;n−2))

− KL(q(n−1)||q(n)) (29)

making the approximate CI objective a lower bound of the
IG (Equation 16), for it underestimates the IG by an amount
equal to KL(q(n−1)||q(n)), thus providing a principled objective to

optimize action, with a simple objective function defined here as
the Information Gain Lower Bound (IGLB):

C̃I
(n)

q=q(n−1) , IGLB(x(n), u(n), q(n−1))

= Ez∼q(n−1)

[

log p(z|x(n), u(n))
]

+ c (30)

It is maximal when p(Z|x(n), u(n)) ≃ q(n−1)(Z), i.e., when the
current posterior p(Z|x(n), u(n)) and the past cumulated posterior
q(n−1) are highly consistent.

If now u is at choice before sampling x, it is sensible to
maximize the predicted IGLB to maximize the code consistency,
i.e.,:

û = argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[

log p(z|x, u)
]

(31)

The amount of the underestimation, i.e., KL(q(n−1)||q(n)) defines
the epistemic cost (see section 2.2.3) as the IGLB bias, that should
be minimized through action (see Equation 12). Minimizing this
termmeans reducing the underestimation made about the future
information gain before posterior update. This means searching
for “accurate” Information Gains approximations, rather than
maximizing the Information Gain itself, that links the IGLB with
“safe” or “conservative” action selection policies.

At last, the IGLB objective containing both the IG objective
and the (negative) epistemic cost, maximizing the IGLB is
expected to both promote high information gains and prevent for
conflicting predictions, making it a “conservative” information-
seeking objective.

3.1.2.2. Information gain upper bound (IGUB)
For completeness, instantiating q with q(n) gives a different
objective that writes:

C̃I
(n)

q=q(n) = − log p(x(n−1)|u(n−1); q(n−2))

+ log p(x(n−1)|u(n−1); q(n;n−2))+ KL(q(n)||q(n−1))
(32)

making it an upper bound of the IG that overestimates the
information gain by an amount equal to KL(q(n)||q(n−1)).

If now u is at choice before sampling x, maximizing the
approximate CI gives:

û = argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[

Ez′∼q(n) log p(z
′|x, u)

]

= argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[

−H(q(n)(Z), p(Z|x, u))
]

(33)

= argmax
u∈U

Ez∼q(n−1);x∼p(X|z,u))

[

−H(q(n))− KL(q(n)(Z)||p(Z|x, u))
]

(34)

that interestingly combines the Infomax objective (Equation 9)
with a consistency objective. This mixed objective is further on
referred as the Information Gain Upper Bound (IGUB):

IGUB(x, u, q(n−1)) , −H(q(n))− KL(q(n)(Z)||p(Z|x, u))+ c
(35)
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The IGUB bias, i.e., KL(q(n)||q(n−1)), interestingly fits the Saliency
objective (Equation 10), allowing to interpret the Saliency as
the amount of the overestimation made after posterior update by
considering (28) instead of (26).

Maximizing the Saliency is here interpreted as promoting
the most optimistically biased Information Gain approximation,
irrespectively of the Information Gain itself, making it a “risk-
seeking” (rather than information seeking) objective, that links
with exploratory behavior. At last, the IGUB objective containing
both the IG objective and the Saliency, maximizing the IGUB is
expected to both promote high information gains and promote
conflicting predictions, making it an “optimistic” information-
seeking objective.

To conclude, remarkable here is the fact that both the
Saliency objective, the Infomax objective and the Free Energy
epistemic cost show a consistent inclusion in a more general
approximate Information Gainmaximization principle. The final
set of metrics to be compared in next section are finally displayed
in Table 1.

3.2. Fovea-Based Visual Scene Decoding
We now turn to an actual implementation of a saccadic visual
scene decoding setup. The image (i.e., the visual scene to decode)
is analyzed through a finite sequence of local foveated visual
samples. The control problem consists in choosing the next
saccade, given the past observations and the current scene
interpretation. The final decoding means identifying to which
category the image belongs to (here the label of the MNIST digits
dataset). In that setup,

• The viewpoint u is defined as the current gaze orientation
on the image (i.e., the central fixation setpoint in pixel
coordinates),
• The view x|u is a retinocentric visual sample measured at

position u, with central magnification and peripheral blurring,
• The latent state z (visual scene interpretation) is the category of

the image (here a digit label), to be guessed from several visual
samples.

3.2.1. Fovea-Based Vision

3.2.1.1. Pyramidal fovea-based visual observation
In superior vertebrates, two principal tricks are used to minimize
sensory resource consumption in scene exploration. The first
trick is the foveated retina, that concentrates the photoreceptors

at the center of the retina, with a more scarce distribution at
the periphery (Osterberg, 1935). A foveated retina allows both
treating central high spatial frequencies, and peripheral low
spatial frequencies at a single glance (i.e., process several scales
in parallel). The second trick is the sequential saccadic scene
exploration, already mentioned, that allows to grab high spatial
frequency information where it is necessary (serial processing).

The baseline vision model we propose relies first on learning
local foveated views on images. Consistently with (Kortum and
Geisler, 1996; Wang et al., 2003), we restrain here the foveal
transformation to its core algorithmic elements, i.e., the local
compression of an image according to a particular focus. Our
foveal image compression thus rests on a “pyramid” of 2D
Haar wavelet coefficients placed at the center of sight. Taking
the example of the MNIST dataset3 (see Figure 1A), we first
transform the original images according to a 5-levels wavelet
decomposition (see Figure 1B). We then define a viewpoint u =
(i, j, h) as a set of 3 coordinates, with i the row index, j the column
index and h the spatial scale. Each u generates a visual field made
of three wavelet coefficients xi,j,h , x|(i, j, h) ∈ R

3, obtained from
an horizontal, a vertical and an oblique filter at location (i, j) and
scale h. The multiscale visual information xi,j , x|(i, j) ∈ R

15

available at coordinates (i, j) corresponds to a set of 5 coefficient
triplets, namely:

xi,j = {xi,j,5, x⌊i/2⌋,⌊j/2⌋,4, x⌊i/4⌋,⌊j/4⌋,3, x⌊i/8⌋,⌊j/8⌋,2, x⌊i/16⌋,⌊j/16⌋,1}
(36)

(see Figure 1C), so that each multiscale visual field owns 15
coefficients only (to be compared with the 784 pixels of the
original image). Figure 1D displays a reconstructed image from
the 4 central viewpoints at coordinates (7, 7), (7, 8) (8, 7) and
(8, 8).

3.2.1.2. Algorithms
A generic sequential scene decoding setup is provided in
algorithms 1 and 2. A significant algorithmic add-on when
compared with formula (8) is the use of a dynamic actions set :
U . At each turn, the new selected action ũ is drawn off from U , so
that the next choice is made over fresh directions that have not yet
been explored. This implements the inhibition of return principle
stated in Itti and Koch (2001). A second algorithmic add-on is the

3http://yann.lecun.com/exdb/mnist

TABLE 1 | Action selection metrics summary.

Name Value Equation # Interpretation

Infomax H(q(n−1))− H(q(n)) (9) Posterior mutual information maximization

Saliency KL(q(n)||q(n−1)) (10) Posterior inconsistency maximization

VFE − log p(x(n)|u(n);q(n−1))+ KL(q(n−1)||q(n)) (11) Prior inconsistency minimization

Compression Improvement E
z∼q(n−1)

[

− log p(x(n−1)|z, u(n−1))
]

+ KL(q(n−1)||q(n−2)) (26) (approximate) Information Gain maximization

+E
z∼q(n)

[

log p(x(n−1)|z, u(n−1))
]

− KL(q(n)||q(n;n−2))

IGLB E
z∼q(n−1)

[

log p(z|x(n), u(n))
]

+ c (30) (pessimistic) Information Gain maximization

IGUB E
z∼q(n)

[

log p(z|x(n), u(n))
]

+ c (35) (optimistic) Information Gain maximization
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FIGURE 1 | A–C Foveal “pyramidal” encoding from image. (A) An original MNIST sample is recast on a 32× 32 grid. (B) It is then decomposed in a five levels Haar

wavelets decomposition issuing a total of 1024 wavelet coefficient. (C) Then, for each gaze orientation (i, j) ∈ {0, ..., 15}2, 3× 5 wavelet coefficients are read out at

coordinates (i, j), (⌊ i2 ⌋, ⌊
j
2 ⌋), (⌊

i
4 ⌋, ⌊

j
4 ⌋), (⌊

i
8 ⌋, ⌊

j
8 ⌋) and (⌊ i

16 ⌋, ⌊
j
16 ⌋) in level descending order. (D) Example image reconstruction from reading 60 central coefficients

at coordinates (7,7), (7,8), (8,7) and (8,8), issuing a 92% compression rate.

Algorithm 1 Prediction-Based Policy

Require: p (emission density), ρ (prior), A (objective function),
U (actions set)
for z, u ∈ Z ,U do

predict: x̃z,u ∼ p(X|z, u)
r(z, u)← A(z, u, x̃z,u, p, ρ)

end for

return ũ = argmax
u∈U

〈ρ, r(:, u)〉

Algorithm 2 Scene Exploration

Require: p (emission density), ρ0 (initial prior), A (objective), U
(actions set)
ρ ← ρ0
while H(ρ) > Href do

choose: ũ← Prediction-Based Policy(p, ρ,A,U)
read: xũ
update: odd← log p(xũ|Z, ũ)+ log ρ

ρ ← softmax(odd) {the posterior becomes the prior of the

next turn}
U ← U \ {ũ}

end while

use of a thresholdHref to stop the evidence accumulation process
when enough evidence has been gathered. This threshold is a
free parameter of the algorithm that sets whether we privilege a
conservative (tight) or optimistic (loose) threshold. The stopping
criterion needs to be optimized to arbitrate between resource
saving and decoding accuracy.

The actual saccade exploration algorithm moreover adapts
algorithm 2 the following way. The process starts from a loose
assumption based on reading the root wavelet coefficient of the
image, from which an initial guess ρ0 is formed. Then, each
follow-up saccade is defined as the gaze end-orientation (i, j) ∈
[0, .., 15]2. The posterior calculation rests on up to 5 coefficient

triplets (see Equation 36). After selecting gaze orientation (i, j),
all the corresponding coordinates (i, j, h)’s are discarded from U

and can not be reused for upcoming posterior estimation (for the
final posterior estimate may be consistent with a uniform scan
over the wavelet coefficients).

3.2.1.3. Baseline generative model
A generative model is learned for each u = (i, j, h) (making
a total of 266 data models) over the 55,000 examples of the
MNIST training set. For each category z and each viewpoint u,
a generative emission model is built over parameter set 2z,u =

(ρz,u,µz,u,6z,u),
so that:

∀z, u, x̃z,u ∼ p(X|z, u) = B(ρz,u)×N (µz,u,6z,u) (37)

with B a Bernouilli distribution and N a multivariate Gaussian.
The role of the Bernouilli is to “gate” the multivariate Gaussian
model in the high frequencies, where digit deformations is
reflected in an alternating presence or absence of pixels for high
level coefficients and at the periphery, allowing to discard the
“white” triplets from the Gaussian moments calculation. Each
resulting emission density p(X|Z, u) is a mixture of Bernouilli-
gated Gaussians over the 10 MNIST labels. On the inference
side, the posterior is explicitly calculated using Bayes rule, i.e.,
q(Z|x, u) = softmax log p(x|Z, u), issuing about 92% recognition
rate on the MNIST test set when combining the 266 log
likelihoods of each wavelet triplet of the full images with
Equation (5), a typical recognition rate for shallow models.

3.2.2. Metrics Comparison

3.2.2.1. Baseline model and decoding compression
Different examples of a sequential scene decoding are presented
in Figure 2 for one MNIST sample using algorithm 2 and
different objective functions. Note that several coefficient triplets
are read at each end-effector position (i, j) (see Figure 1C). There
is for instance a total of 5 triplets read out at the initial gaze
orientation, and between 1 and 4 triplets read-out for each
continuing saccade (not shown).

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2018 | Volume 12 | Article 76

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Daucé Active Fovea-Based Vision

FIGURE 2 | Scene exploration through saccades in the foveated vision model. (Top left) Original MNIST sample to be decoded, with corresponding label. (Left

panel) Course of saccades for different action selection metrics. Leftmost is the metric name. For each row, the number of thumbnail images reflects the number of

saccades. The scene decoding reads from left to right: more wavelet coefficients are grabbed at each step, visually reflected in an increased reconstruction neatness.

On overlay is the corresponding history of visual fixations (with rainbow time color code). The total number of saccades can vary for the different policies. Over the final

thumbnail is the number of saccades and the final response. All decoding steps are shown except when n > 10. (Right panel) corresponding posterior update in

function of the number of decoding steps, for 0 ≤ n ≤ 15 (y-logarithmic scale, one color per competing label). Baseline model (Equation 37); Href = 10−4.

Last, the decoding compression rate is defined as the proportion
of wavelet coefficients that are bypassed for reaching decision. In
Figure 2 first row for instance, a total of 25 coefficient triplets
is actually read-out from 7 saccades (not shown), representing
about 10% of the total 256 coefficient triplets, issuing a 90%
compression rate. The left-hand side of Figure 3 shows how the
classification rates vary in function of the average compression
rate, for different objective functions and recognition threshold
Href ∈ {10

−1, 10−2, 10−3, 10−4, 10−5}. The objectives are also
compared with a random baseline policy. The classification rates
monotonically increase with a decreasing recognition threshold.
Considering 92% as the upper bound here, a near optimal
recognition rate is obtained at Href = 10−5 for the CI objective.
Though all objectives functions show a consistent increase of the
classification rate with decreasing Href, the CI-based policy here
overtakes the others policies. The Infomax and the VFE-based

policies behave in a close-by fashion, and then the Salience-based
policy provides a less effective scene decoding. All scene decoding
policies provide elevated compression rates, with a close to
optimal classification obtained at around 85% compression of
the original data. It must be noticed that still a correct 90%
classification rate can be obtained with a random policy at around
70% compression rate, reflecting a strong redundancy in the
original images.

3.2.2.2. Convolutional neural network
A convolutional neural network (CNN) was designed in order
to provide a more effective inference and facilitate comparison
with state-of-the-art classifiers (see Figure 4). It is made of five
convolution layers having each a distinct input corresponding
to the five hierarchical levels of the wavelet decomposition.
The CNN is biasless, uses a (2,2) stride for the convolutions
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FIGURE 3 | Objective functions comparison. The classification rates and average compression rates are processed after 10,000 sequential scene decoding sessions

on the MNIST test set, with different objective (or loss) functions and different values of Href. The classification rate is shown in function of the decoding compression

rate. (Left) Baseline model, with recognition threshold Href varying from 10−5 up to Href = 10−1 (from left to right). (Right) CNN model, with recognition threshold

varying from Href = 10−2 up to Href = 1 (from left to right).

FIGURE 4 | Hierarchical convolutional neural network for scene decoding. The CNN is composed of four convolutional layers and one fully connected layer. The input

wavelet hierarchical organization is reflected in scale-dependent input inlay, consistently with stride-2 convolutional spatial integration.

without max-pooling, promoting neighbour independence in the
convolutional computation track. Rectified Linear Units are used
in all layers, except for the final layer owning linear units.

The network was trained during about 106 epochs with
Tensorflow4 on a laptop. Sparse foveal-consistent inputs are
used for the training. For each training example, many gaze
orientation (i1, j1), ..., (in, jn) are chosen at random, mimicking
a n-views foveal visual scan, with n randomly set from interval
{1, .., 256}. The multi-level input maps are then fed with
the corresponding wavelet coefficients triplets, “pyramidally”

4https://www.tensorflow.org

distilled from h = 5 to h = 0. The final network is expected to
perform recognition on randomly compressed images, for which
some wavelet coefficients are kept and some wavelet coefficients
are discarded. With standard parameter tuning [Adam optimizer
– Kingma and Ba (2014) – with a learning rate equal to 10−4],
the network attains a 99% recognition rate on the test set with
non-compressed wavelet transformed inputs (full information
case).

The cross-entropy loss used in training allows to interpret
the network output as approaching the data log-likelihood
(up to a constant), i.e., CNN(xi,j) ≃ log p(xi,j|Z, (i, j)) + c.
For decoding a scene, the input layers are initialized at zero
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and progressively filled with new wavelet coefficients obtained
during the scene exploration. The output is updated by adding
supplementary data at the input only, complementing the data

that was previously read, with exp
[

CNN(x(1 : n)|u(1 : n))
]

∝

p(x(1 : n)|Z, u(1 : n)) ∝ p(Z|x(1 : n), u(1 : n)) = q(n). The posterior
update is thus implemented from the data. There is no recurrence,
sequential accumulation or memory implemented in the network
(like in Equation 6).

Following algorithm 2 with the CNN as the approximate
cumulated posterior estimator, the decoding efficacy is shown for
different objective functions on the right-hand side of Figure 3,
with Href ∈ {1, 0.3, 0.1, 0.03, 0.01}. It is to be noted the CNN
is only used for estimating the q(n)’s posterior distributions,
with the baseline Bernouilli-gated multivariate Gaussian model
(Equation 37) used on the predictive/generative side. A clear
decoding improvement is obtained when compared with the left-
hand side of Figure 3, with higher classification rates with less
signal, attaining about 98,8% correct classification with less than
8% of the original image. Still, the general good performances of
the decoder blurs the differences between the different policies.
All objectives appear here equally good at effectively decoding the
scene (except for the random action selection policy).

3.2.2.3. Faulty model and failure robustness
Predictive policies are known to heavily rest on the generative
models, that makes them sensible to model flaws. Resistance
to model flaws is thus a property that should be prioritized
when acting in unknown or coarsely modeled environments,
or in the course of learning. In contrast with CNN-based
optimal decoding, a failed probabilistic model was designed
by simply setting ρu,z = 1 in Equation (37). This tends to
overestimate the signal strength at high frequencies, predicting
a dense signal in effectively sparse regions. The classification
accuracies are presented on Figure 5A for the different objective
functions considered here. In complement to the Compression
Improvement (Equation 26), the two variants referred as the
IG Lower Bound (Equation 30) and the IG Upper Bound
(Equation 35) are also considered.

The faulty model allows here to nicely separate the different
metrics with regards to their optimistic vs. conservative flavor.
While the CI is here barely better than a random sampling,
its conservative and optimistic variants, respectively, do clearly
better and clearly worst than random exploration. The VFE loss
and the Saliency objectives, as expected, amplify this effect with a
strong robustness to model flaws for the VFE loss and, at reverse,
a strong sensitivity to model flaws for the Saliency objective. The
Infomax also falls here in the optimistic category for its blindness
to sequential consistency makes it update the posterior the wrong
way.

3.2.3. Scaling Up IG Computation
The scaling of the model needs to be addressed when large
control spaces are considered. All predictive policies rely on a
mixed encoding setup that implies to consider all u’s and all z’s in
the prediction, which scales likeO(|U |×|Z|2) when the predicted
posterior is needed in the objective/loss calculation, which is the

case for the Infomax, the Saliency, the VFE the CI and the IGUB
(algorithm 1), andO(|U |× |Z|) in the IGLB case for it can bypass
the post-sample posterior calculation. A quadratic cost may still
be considered too heavy in real-case applications, implying to
consider cheaper setups.

• A first simplification, referred as the “sharp” IGLB in
Figures 5B,C, only samples a single z
from q(n−1), i.e.

ẑ = argmax
z

q(n−1)(z)

with ẑ the current guess, making the predictive policy scale like
O(|U |) for the main loop of algorithm 1 is now over the u’s
only.
• An additional simplification can be obtained when

considering the IGLB objective alone (Equation 30), for
it is, on contrary to all other objectives, independent of the
context q(n−1). For a given model p, and for every guess
ẑ ∈ Z , all the predictive log posteriors log p(ẑ|x̂ẑ,u, u) can
be pre-processed using the mode of the predicted visual field
x̂ẑ,u = argmax

x
p(x|ẑ, u) as a sample. This results in a set

of class-consistent action maps providing, for each u ∈ U ,
the expected log posterior value log p(ẑ|x̂ẑ,u, u), given ẑ

(Figure 6, first row). Then, for each guess ẑ, a class-specific
visual exploration strategy can be pre-processed, following
a log-posterior descending order over the u′s, from higher
IGLB values of toward lower IGLB values (brownish toward
whitish in Figure 6). |Z| saccade trajectories of size |U |
are then calculated offline and stored in ordered lists, with
a O(|U | × |Z|) memory load but only ≃ O(1) readout
computational cost. In practice, the viewpoint selected at step
n depends on the current guess ẑ, with on-the-fly trajectory
switch if the guess is revised during the course of saccades.
This strategy is referred a the pre-processed trajectories in
Figures 2, 5B,C.
• For comparison, a generic trajectory was also computed using

IGLB(u) = Ez∼p(Z)

[

log p(z|x̂z,u, u)
]

(38)

with a uniform prior over the z′s, i.e., p(z) = 1
|Z| . It is referred

a the generic trajectory in Figures 2, 5B,C.This strategy is
useful in the absence of a definite guess (uniform initial prior
for instance).

The action maps allow to analyze in detail the class-consistent
orientations (that appear brownish) as opposed to the class-
inconsistent orientations (pale orange to white). First to
be noticed is the relative scarceness of the class-consistent
orientations. A small set of saccades is expected to provide most
of the classification information while the rest of the image
is putatively uninformative (or even misleading if whitish). A
second aspect is that the class-relevant locations are all located
in the central part of the images, so there is very few chance
for the saccades to explore the periphery of the image where
little information is expected to be found. This indicates that the
model has captured the essential concentration of class-relevant
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FIGURE 5 | Method comparisons. (A) Objective functions comparison in a faulty model (see Figure 3). (B) Information Gain-based computational schemes

compared on the baseline model. (C) Information Gain-based computational schemes compared on the faulty model. The recognition threshold varies from

Href = 10−5 up to Href = 10−1 (from left to right).

FIGURE 6 | Action maps and pre-processed trajectories. Upper row (except rightmost map) color-coded pre-processed guess-consistent action maps for

ẑ ∈ {0, .., 9}, and u ∈ {0, .., 15}2, using the baseline generative model, from low (whitish) to high (brownish) log posteriors. Upper row, rightmost map:

Class-independent expected IGLB map. Lower row: Corresponding pre-processed visual scan-path (the red “+” provides the initial gaze orientation). Only the 5 first

saccades are shown, with average class prototype in the background. The rightmost background image is the average over all classes.

information in the central part of the images for that particular
training set.

The different simplification strategies are compared in
Figures 5B,C over the baseline and the faulty models. Both
the sharp IGLB and the pre-processed trajectories are shown
consistent with the CI objective on Figure 5B, despite their
considerably lower computational cost, while the generic
trajectory strategy appears less effective. Interestingly, those
computational simplifications also remain valid when robustness
to model flaws is considered (Figure 5C). Both the sharp IGLB
and the pre-processed trajectories allow to reach both robustness
and effective classification rates at considerably lower cost than
the “smooth” IGLB.

4. CONCLUSION

Stemming from the fovea-based scene decoding problem, a
generic predictive action selection framework was presented
which, accordingly with (Najemnik and Geisler, 2005), rests on a
predictive accuracymetric to choose action. An “active” inference
approach is also considered, which, accordingly with Friston et al.
(2012), optimizes sensory samples selection through action. In

our case, the visual field is interpreted under a mixed emission
model for the visual data is both generated by the viewpoint and
the scene constituents. This allows to unify the many objective
functions proposed in the literature under a singlemetric referred
as the Compression Improvement (CI) in Schmidhuber (2007),
that is shown to provide a consistent interpretation for most of
the objective functions used in perception-driven control.

Two variants of the CI objective are then proposed, using
either the pre-sample or the post-sample posterior in the
approximation. In the pre-sample case, it is shown to be
an Information Gain Lower Bound objective that always
underestimate the actual Information Gain. The IGLB objective
is said conservative for it should prevent from searching
for conflicting visual data that may challenge the current
interpretation. On the other hand, it is expected to lower the risk
of failed interpretation in the case of a (erroneous) conflicting
predictions. Conversely, in the post-sample case, the approximate
CI is shown to always overestimate the actual Information
Gain, making it the Information Gain Upper Bound objective
(IGUB)—or “optimistic” IG objective. Following the IGUB is
expected to perform a more thorough scene exploration for it
may preferentially head toward conflicting visual data that may
challenge the current interpretation. On the other hand, it is also
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expected to increase the risk of failed interpretation in the case of
(erroneous) conflicting predictions.

Remarkable is the fact that both the Saliency objective, the
Infomax objective and the Free Energy epistemic cost, that are
classic metrics of the literature, show a consistent inclusion in
a more general approximate Information Gain maximization
principle. Using for instance the Variational Free Energy (Friston
et al., 2015) as a loss (instead of the IGLB) is expected to bias the
action selection in an even more conservative way. Conversely,
using the Saliency objective (Itti and Baldi, 2005) instead of the
IGUB is expected to bias the action selection in an even more
optimistic way, subsequently increasing the risk of a failed scene
interpretation.

The presented numerical experiments thus highlight different
aspects of the setup. A first and principal result is that state-
of-the-art recognition rates are obtained with sequential fovea-
based computation using less than 10% of the original signal.
This strong input compression is made possible for the visual
data owns lot of redundancies that are not used at their best
in computer vision, doing useless computations over large parts
of the visual scene. The satisfactory results obtained in that
case reflect the advantage of mixing a predictive controller
with accurate state-of-the-art predictors, here a deep neural
network.

A second result is the sub-optimality of many action selection
metrics used in literature, like the “Infomax” (Butko and
Movellan, 2010) and the “Salience” objectives (Itti and Baldi,
2005), when the scene decoding setup is considered. Their sub-
optimality is not manifest with finely-tuned generative models,
but becomes patent when a coarse of faulty model is used.
This may appear counter-intuitive at first sight for the Infomax
objective is vastly dominant in predictive control (Najemnik and
Geisler, 2009), while the Salience objective provides among the
best predictions for human fixation zones (Itti and Baldi, 2005).
The mixed performances of the Salience objective in predictive
control may however be attenuated when learning is considered.
Heading toward inconsistently modeled places is indeed a
sensible behavior when the model is immature. This entails
maximizing predictions errors, which is a relevant principle
long considered in sparse reinforcement learning (Schmidhuber,
1991; Oudeyer and Kaplan, 2008; Pathak et al., 2017). This
trade-off reflects amore general contradiction between exploiting
at best the current knowledge from past observations vs.

challenging the current interpretation to leverage conflicting
facts, a variant of the exploration/exploitation trade-off.

Last, a notorious drawback of the predictive setup is its
computational cost scaling with the size of the actions sets,
that may grow combinatorially fast with increasing degrees
of freedom. Real-world predictive control is thus in need for
computationally-effective predictive models, here attainable with
the Information Gain Lower Bound (IGLB) objective, that,
though maximizing the Information Gain in approximation,
allow for low-complexity calculation when replacing the exact
posterior with a single guess in the prediction. In discrete latent
spaces, it is thus possible to pre-process guess-specific offline
trajectories, allowing to bypass computationally-demanding
predictions. This strongly simplified setup is shown efficient in
our case, showing both competitive decoding compression rates
and good robustness to model flaws.

IG-driven fovea-based sequential processing may finally be
useful in the case of high dimensional input data (like in e.g.,
computer vision), and should be tested on more challenging
computer vision setups. It is also to be determined how far
IG-based action selection may extend to more general partially
observed environments, and whether they could challenge more
established actions selection strategies in open-ended control
setups.
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