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Abstract. A deterministic continuous dynamical system is considered. This system contains two 
contours. The length of the ith contour equals ci, i = 1, 2. There is a moving segment (cluster) on each 
contour. The length of the cluster, located on the ith contour, equals li , i = 1, 2. If a cluster moves 
without delays, then the velocity of the cluster is equal to 1.  There is a common point (node) of the 
contours. Clusters cannot cross the node simultaneously, and therefore delays of clusters occur. A set 
of repeating system states is called a spectral cycle. Spectral cycles and values of average velocities of 
clusters have been found. The system belongs to a class of contour systems. This class of dynamical 
systems has been introduced and studied by A.P. Buslaev. 

 
1 Introduction  

In works of A.P. Buslaev basic approaches for 
describing flows on complex networks have been laid 
down. In accordance with these approaches a model 
is a dynamical system. The supporter of this system is 
a system of contours with a network structure. 
Particles (clusters) move on contours in accordance 
with some rules. Some limitations are imposed on the 
system. These limitations allow us to study the 
system analytically. 

In [1] (Nagel, Schreckenberg, 1992), a transport 
model has been introduced. This model is a cellular 
automaton. In the model, particles move on an 
infinite or closed sequence of cells in accordance with 
given rules. In general case, Nagel–Schreckenberg 
model and its versions are too complicated for 
analytic research and were studied by simulation. 

Analytic results for a simple version of Nagel–
Schreckenberg model have been obtained in [2] 
(Belitzky, Ferrary, 2005) (a preprint of this paper has 
been published in 1999). These results have been 
obtained under assumption that, at any step, each 
particle moves onto a cell forward if the cell ahead is 
vacant and does not move if this cell is occupied. It is 
noted in [2] that the model is equivalent to the 
elementary cellular automaton 184 (CA 184) in 
classification of Wolfram, [3]. Results, similar to 
results of [2], have been obtained independently in 
[4] (Blank, 2000). In accordance with results of [3], 
[4], all particles move after some moment at every 
time for any initial state if the density of particles (the 
number of particles divided by the number of cells) is 

not more than ½, then the average velocity of 
particles (the average number of transitions of a 
particle per time unit) equals (1–ρ)/ρ, where ρ is the 
density.  In [5] (Gray, Griffeath, 2001), analytical 
results have been obtained for somewhat more 
general traffic model. In [6] (Kanai, 2008), analytical 
results have been obtained for a stochastic version of 
the traffic model. Some generalizations of results of 
[3]–[5] have been obtained in [7] (Blank, 2010).  

A two-dimensional traffic model with a toroidal 
supporter  (BML traffic model) has been introduced 
in [8] (Biham, Middelton, Levin, 1992). In this 
model, particle move in accordance with a rule, 
similar to the rule CA 184. Conditions of self-
organization for BML model has been obtained in [9] 
(Austin, Benjamini, 2006).      

The concept of a contour system has been 
introduced in [10] (Buslaev contour systems). 

In [11] (Buslaev, Fomina, Tatashev, Yashina, 
2018) the concept of spectrum of a contour system 
has been introduced for a deterministic dynamical 
system with a finite set of states. In such system, a 
sequence of states repeated periodically from some 
moment. This sequence of states is called a spectral 
cycle. The system, considered in [11], is a closed 
chain of contours. Particles move on each contour in 
accordance with the rule of the cellular automaton 
240 (CA 240). There is one cluster on each contour. 
The spectrum of the system is a set of spectral cycles 
and corresponding values of clusters velocities. 
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In [12] (Buslaev, Tatashev, Yashina, 2016), [13] 
(Buslaev, Tatashev, 2017) and [14] (Buslaev, 
Tatashev, 2018), a discrete two-contours system was 
considered. In this system, particles move on 
contours in accordance with the rule of CA 184 or 
CA 240. In [12], [13], the following generalization 
was also considered. The supporter of the system 
contains N contours. There is one common point of 
the contours. In [12]–[14] theorems have been proved 
for different versions of movement rules. In [12]–
[14], mainly, systems with contours of the same 
length were considered. For a system, containing 
contours of different lengths, in [13] conditions of 
self-organization (system resulting in a state of free 
movement from any initial state) have been obtained. 

Buslaev contour systems were also studied in [13]–
[24]. 

In this paper, a pair of contours is studied such that 
the lengths of the contours are different. There is a 
moving cluster on each contour. There exists a 
common point of contours (node). Delays occurs at 
the node. We have been found spectral cycles and 
obtained formulas for velocities of clusters. 

 
2 System description 
 

We consider a discrete dynamical system containing 
two contours 1 and 2, figure 1. The length of the 
contour i is equal to ci, i = 1, 2. There is a moving 
segment cluster (cluster i) on the contour i (i = 1, 2). 
The contours have a common point (node). At any 
time, each cluster moves in the direction of 
movement. The cluster i passes the distance ci per ci 
time units (the velocity equals 1) if there is no delay, i 
= 1, 2. The length of the cluster i is equal to 0 < li < ci 
, i = 1, 2. The coordinate system [0, ci ] is introduced 
on the contour i, i  = 1, 2. The direction of the 
coordinate axis is reverse to the direction of 
movement by modulo ci, i = 1, 2. The coordinate of 
the node is equal to 0 for both contours. The state of 
the system is the vector  

(α1 (t), α2 (t)), 
where αi(t) is the coordinate of the leading point of 
the cluster i, i = 1, 2. We say that the cluster i covers 
the node at time t if ci − li < αi (t) < 1, i = 1, 2. We say 
that the cluster i is at the node at time t if αi(t) = 0, i = 
1, 2. Admissible states of the system are only the 
states such that no more than cluster covers the node. 
If at time t, the cluster i, is at the node, and the other 
cluster covers the node, then a delay of the cluster i 
occurs, i = 1, 2. If both clusters are at the node, i.e., 
the system is in the state (0, 0), then a conflict occurs. 
In the case of a conflict, only one cluster moves in 
accordance with a conflict resolution rule. We 
suppose that the conflict resolution rule is the 
following. If a conflict occurs at the initial time t = 0, 
or a conflict occurs at time t = t0 and there are no 
delays at the time interval [0, t), then, at time t = t0, 
the cluster 1 moves. Assume that a conflict occurs at 
the time t = t0, i.e., α1(t0) = α2(t0) = 0. Suppose the 
latest delay in the time interval [0, t0) occurs at time   
t = t1, and, at time t1, the cluster i0, i0 = 1, 2, does not 

move. Then, at time t0, the same cluster i0 does not 
move and the other cluster moves. 

The initial state of the system is given. This state 
should be admissible. 

 

 

Fig. 1. A two-contours system. 

3 Concepts of spectral cycle, velocity 
and free movement 
A spectral cycle is a set of states, repeated 
periodically. Suppose T is the period of the cycle; Hi 
is the distance that the cluster i passes on a spectral 
cycle for the period), i = 1, 2. The number  

𝑣𝑣𝑖𝑖 =
𝐻𝐻𝑖𝑖  
𝑇𝑇

 
is called the average velocity of the cluster i on the 

spectral cycle, i = 1, 2. 
The system is in state of free movement from some 

moment t0 if both clusters move at any moment t ≥ t0 . 
If the system results in a state of free movement, then 
the velocity of clusters is equal to 1. 

4 Behavior of the system 
We have proved the following theorems, which give 
conditions of free movement. 

Theorem 1. If  𝑐𝑐2 
𝑐𝑐1

   is an irrational number, then 
the system does not result in a state of free movement 
from any initial state. 

Theorem 2. Suppose  𝑐𝑐2 
𝑐𝑐1

  is a rational number, and 
d is the greatest common divisor of c1 and c2 , i.e., d 
is the greatest number such that there exist  natural 
numbers k1 , k2 satisfying the condition k1d = c1, k2d 
= c2 . Then the following is true. 

If the condition holds 
                                    l1 + l2  ≤ d,                            (1) 

then the system results in the state of free 
movement over a finite time from any initial state 
(self-organization). 

If (1) does not result in the state of free movement 
over a finite time from no initial state. 

Assume that the condition (1) does not hold. 
Let us introduce auxiliary parameters g1, g2 b1, b2 

and describe a way to calculate these parameters. 
We shall see that, if inequality (1) does not hold, 

there is one spectral cycle or there are two spectral 
cycles depending on values of a1 , a2 , b1 , b2. The 
average velocities of clusters depend on these 
parameters. 
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Suppose A is the set of system states such that one 
cluster does not move in that state; Ai is the set of 
system states such that the cluster i does not move,     
i = 1, 2. The set A1 contains states (0, α2),                  
c2 − l2 < α2 < 1. The set A2 contains states (α1, 0),     
c1 – l1 < α1 < 1. We have A = A1 ∪ A2 ∪ (0, 0). Since 
the condition of self-organization does not hold, then 
the system results in the states set A from any initial 
state over a finite time, and comes out of the set A 
through the state (0, c2 − l2) or (c1 – l1, 0). 

Assume that, at time t0, the system is in the state  
(0, c2 − l2). Let b be a number such that 0 < b < l2. 
Suppose there exist integer non-negative numbers k, s 
satisfying the equality 

a1k – a2s = c2 − l2 + b.                 (2) 
Due to that (1) does not hold, there exists k and s 

satisfying the condition. 
Let k0(j) be the minimum integer non-negative 

value of k such that there exists s satisfying the 
condition (2). Then at time t0 + c1k0 (j) the system 
results in the state (0, c2 − b) ∈ A1 if the system has 
not resulted in another state belonging to A. 

Denote by g(b) the value c1k0(b), 0 < b < l2 . If for a 
fixed value 0 there do not exist integer non-negative 
solutions of (1), then we assume that g1(b) = ∞. Let b 
be an integer number such that −l1 < b < 0. Assume 
that there exist integer non-negative numbers k, s 
satisfying (2). Let k0(j) be a minimum integer non-
negative value of k such that there exists s satisfying 
the condition. Then at time t0 = c1k0(b)+|b| the system 
results in the state (c1 − |b|, 0) ∈ A2 if the system has 
not resulted in another state belonging to A. Denote 
by g1(b) the value c1k0(b) + |b|, −l1 < b < 0. If for a 
given value b there do not exist integer non-negative 
solutions of (2), we assume that g1(b) = ∞. Suppose 
there are exist integer non-negative numbers k, s such 
that c1k - c2s = c2 − l2 . Let k0(0) be the minimum 
integer non-negative number k such that there exist s 
satisfying the condition. Then at time t0+ k0(b) the 
system results in the state (0, 0) if the system has not 
resulted in another state belonging to A. Denote by 
g1(0) the value c1k0(0). If for b = 0 there do not exist 
integer non-negative solutions of (2), then we assume 
that g1(0) = ∞. 

Suppose g1= g2(b1) = min g1 (b), −l1< b < l2 ; then, 
at time t0 + g1 , the system results either in the state 
(0, c2 –b1 ) if  0 < b1< l2, or in the state (c1 − |b1|, 0) if 
–l1< b1 ≤ 0, or in the state (0, 0) if b1= 0. 

Assume that at time t0, the system is in the state 
(c1− l1, 0). Let b be an integer number such that         
0 < b < l1. Assume that there are exist integer non-
negative numbers k, s such that 

c2 s − c1 s = c1 − l1 + b.              (3) 
Suppose s0 (j) is the minimum integer non-negative 

number s such there exists integer non-negative 
number k satisfying the condition (3). Then, at time t0 
+ s0 (j), the system results in the state (c1 − b, 0) ∈ A2 
if the system has not resulted in another state 
belonging to the set A. Denote by g2 (b) the value  
c2s0(j), 0 < b < l1 . If, for given b, there are no integer 
non-negative numbers satisfying (3), then we suppose 
g1(b) = ∞. Let b be an integer number such that −l2 < 
b < 0. Assume that there are integer non-negative 

numbers k, s satisfying (3). Let s0 (j) be the minimum 
integer s such that there exists k satisfying the 
condition. Then at time t0 + c2 s0 (b) + |b| the system 
results in the state (0, c2 − |b|) ∈ A1 if the system has 
not resulted in another state belonging the set A. 
Denote by g2 (b) the value c2s0 (j) + |j|, −l2 < j < 0. If, 
for given b, there are no integer non-negative 
numbers k, s satisfying (4), then we assume that g1(0) 
= ∞. Suppose that there exist integers non-negative 
numbers such that c2s−c1 k = c1 –l1, and s0 (0) is the 
minimum value of s such that there exists k satisfying 
the condition. Then the system, at time t0 = c2 s0(0), 
results in the state   (0, 0) if the system has not 
resulted in another state belonging to the set A. If, for 
b = 0, there exist no integer non-negative numbers 
satisfying (3), then we assume that g1 (0) = ∞. 

Denote by g2 (0) the value c2b0 (0). Suppose 
         

g2 = g2 (b) = min (b), −l2< j < l1 . Then, at time t0 + g2, 
the system results either in the state (c1 – b2, 0) if       
0 < b2 < l1 , or in the state (0, c2 − b2 ) if –l2< b2 < 0, 
or in the state (0, 0) if b2 = 0. 

Theorem 3. Suppose inequalities b1 ≥ 0, b2 < 0 
hold; then there exist a unique spectral cycle, and 
this cycle contains the state (0, c2 –l2). The period of 
the cycle is equal to g1+l2− b1 . Average velocities of 
clusters are equal to 

𝑣𝑣1 =
𝑔𝑔1

𝑔𝑔1 + 𝑙𝑙1 − 𝑏𝑏1
, 𝑣𝑣2 = 1  

Proof. Since (2) does not hold, the system does not 
result in the state of free movement. Hence the 
system results in a state, belonging the set A1 , over a 
finite time, and, after this, in the state (0, c2 –l2), or a 
state, belonging the set A2 , and, after this, in the state 
(c1 –l1, 0). From each of these state, the system result 
in a state, belonging the set   A1∪(0, 0), and, returning 
in the set A, will be only in the set A1∪(0, 0). On the 
spectral cycle, the system is in states, not belonging 
to the set A1 (both clusters move in these states), 
during g1 time units and the system is in states, 
belonging to the set A1 (only the cluster 2 moves in 
these states), during 𝑙𝑙1 − 𝑏𝑏1 time units. From this, 
Theorem 3 follows. 

Theorem 4. Suppose inequalities b1 < 0, b2 ≥ 0 
hold; then there exists a unique spectral cycle, and 
this cycle contains the state (c1 –l1 , 0). The period of 
this spectral cycle equals g2 + l1–b2 . Velocities of 
clusters are equal to  

𝑣𝑣1 = 1, 𝑣𝑣2 =
𝑔𝑔2

𝑔𝑔2 + 𝑙𝑙1 − 𝑏𝑏2
, 

 
Theorem 5. Suppose inequalities b1 < 0, b2 < 0 

hold. Then there a unique spectral cycle. The spectral 
cycle contains the states (c1− l1, 0) and (0, c2− l2). 
The period of the spectral cycle equals 
g1+g2+l1+l2−|b1|−|b2|. Velocities of clusters are 
equal to 

𝑣𝑣1 = 1 −
𝑐𝑐2 − |𝑏𝑏2|

𝑔𝑔1 + 𝑔𝑔2 + 𝑙𝑙1 + 𝑙𝑙2 − |𝑏𝑏1| − |𝑏𝑏2|
 , 

 

𝑣𝑣2 = 1 −
𝑐𝑐1 − |𝑏𝑏1|

𝑔𝑔1 + 𝑔𝑔2 + 𝑙𝑙1 + 𝑙𝑙2 − |𝑏𝑏1| − |𝑏𝑏2|
 .  

Theorems 4, 5 are proved similarly to Theorem 3. 
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Theorem 6. Suppose inequalities b1≥ 0, b2 ≥ 0 
hold. Then there are two spectral cycles. One of these 
cycles contains the state (0, c2 –l2 ). The period of this 
cycle equals g1 +l2 –b1 . On this cycle, velocities of 
clusters are equal to 

𝑣𝑣1 = 𝑔𝑔1
𝑔𝑔1+𝑙𝑙2−𝑏𝑏1

, 𝑣𝑣2 = 1. 
The other cycle contains the state (c1 –l1, 0). The 

period of this cycle equals g2 +l1 − b2 . On this cycle, 
velocities of clusters are equal to 

𝑣𝑣1 = 1, 𝑣𝑣2 =
𝑔𝑔2

𝑔𝑔2 + 𝑙𝑙1 − 𝑏𝑏2
 . 

Proof. Depending on the initial state, the system 
results in a state of the set A1 or in the set A2 . If the 
system is in the state of the set A1 , then, returning to 
the set A, the system will only in states of A1 ∪ (0, 0). 
If the system is in the state of the set A2, then, 
returning to the set A, the system will only in states of 
A2 ∪ (0, 0). The rest of the proof of Theorem 6 is 
similar to the proof of Theorem 3. 

Example 1. Suppose c1 = 4, l1 = 2, c2 = 6, l2 = 2. 
In this case we have 

b1 = 0, g1 = 4, b2 = 0, g2 = 6. 
There exist two spectral cycles. On one of these 
cycles, the clusters move with velocities  

 𝑣𝑣1 = 2
3

, 𝑣𝑣2 = 1. 
The period of this cycle equals T = 6. 

On the other spectral cycle, the clusters move with 
velocities 

𝑣𝑣1 = 1, 𝑣𝑣2 = 3
4
.. 

The period of this cycle equals T = 8. 

5 Conclusion 
We study the spectrum of two-contours system with 
contours of different lengths. The length of the 
contour i is equal to ci, i = 1,2. There is a moving 
cluster on each contour. The length of the cluster, 
moving on the contour i, is equal to li, i = 1,2. There 
is a common point of the contours. This point is 
called the node. More than one cluster cannot cross 
the node simultaneously. A cluster stops if it comes 
to the node at time such that at this time the other 
cluster crosses the node. If clusters come to the node 
simultaneously, then only one the cluster moves in 
accordance with a conflict resolution rule. A set of 
states such that these states are repeated periodically 
is called a spectral cycle. We say that the system has 
the property of self-organization if the system results 
in the state of free movement over a finite time. In 
this paper, we have obtained conditions of self-
organization. We have proved that, if the condition of 
self-organization does not hold, then, depending on 
c1, c2, l1, l2, there are one or two spectral cycles. 
Formulas for average velocities of clusters have been 
obtained. 
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