
REVIEW
published: 21 December 2018

doi: 10.3389/fimmu.2018.02924

Frontiers in Immunology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2924

Edited by:

James Francis Curtin,

Dublin Institute of Technology, Ireland

Reviewed by:

Carlos Alfaro,

NavarraBiomed, Spain

Rodabe N. Amaria,

University of Texas MD Anderson

Cancer Center, United States

*Correspondence:

Qing Liu

liuqingdr@csu.edu.cn

Rong-Fu Wang

rwang3@houstonmethodist.org

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 11 September 2018

Accepted: 28 November 2018

Published: 21 December 2018

Citation:

Ma Q, Long W, Xing C, Chu J, Luo M,

Wang HY, Liu Q and Wang R-F (2018)

Cancer Stem Cells and

Immunosuppressive

Microenvironment in Glioma.

Front. Immunol. 9:2924.

doi: 10.3389/fimmu.2018.02924

Cancer Stem Cells and
Immunosuppressive
Microenvironment in Glioma
Qianquan Ma 1,2, Wenyong Long 1, Changsheng Xing 2, Junjun Chu 2, Mei Luo 1,2,

Helen Y. Wang 2, Qing Liu 1* and Rong-Fu Wang 2,3,4*

1Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China, 2Center for Inflammation and

Epigenetics, Houston Methodist Research Institute, Houston, TX, United States, 3 Institute of Biosciences and Technology,

College of Medicine, Texas A&M University, Houston, TX, United States, 4Department of Microbiology and Immunology, Weill

Cornell Medical College, Cornell University, New York, NY, United States

Glioma is one of the most common malignant tumors of the central nervous system

and is characterized by extensive infiltrative growth, neovascularization, and resistance

to various combined therapies. In addition to heterogenous populations of tumor

cells, the glioma stem cells (GSCs) and other nontumor cells present in the glioma

microenvironment serve as critical regulators of tumor progression and recurrence.

In this review, we discuss the role of several resident or peripheral factors with

distinct tumor-promoting features and their dynamic interactions in the development of

glioma. Localized antitumor factors could be silenced or even converted to suppressive

phenotypes, due to stemness-related cell reprogramming and immunosuppressive

mediators in glioma-derived microenvironment. Furthermore, we summarize the latest

knowledge on GSCs and key microenvironment components, and discuss the emerging

immunotherapeutic strategies to cure this disease.
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INTRODUCTION

Glioma is one of the most common primary tumors of the central nervous system (CNS).
According to the criteria established by the World Health Organization (WHO) and based
on various histopathological characteristics and prognostic factors, gliomas can be classified
into four different grades (I–IV). Grade I includes pilocytic astrocytoma; diffuse or anaplastic
astrocytomas and oligodendrogliomas are categorized as grades II–III and glioblastomas (GBMs)
are categorized as the most malignant grade (grade IV) (1, 2). Despite of advanced multimodal
therapeutic strategies, which combine aggressive surgery, radiation, and chemotherapy, patients
with GBM have dismal prognosis, with median overall survival time of <16 months (3). Resistance
of malignant gliomas to conventional therapies has been widely reported as a consequence
of oncogenic signaling activation and distinct metabolic mechanisms when cancer cells are
exposed to various chemotherapeutic and/or cytostatic agents (4–7). Furthermore, infiltration of
immune cells (with critical activities) into tumor regions contributes to the establishment of an
immunosuppressive tumor microenvironment (TME) to promote tumor development, metastasis,
and resistance to cancer therapies (8, 9).

In this review, we will discuss the role of key subpopulations of stem cells and their orchestrated
immunological interactions with TME in gliomas. In addition, we will further delineate the current
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immunotherapeutic approaches for targeting the rare
subpopulation of stem cells. Comprehensive understanding
of the complex crosstalks among these cells and processes will
facilitate the establishment of therapeutic strategies, which might
eventually cure this malignant disease.

GLIOMA STEM CELLS (GSCs)

The stem cell theory for cancer maintenance and recurrence
has been proposed many years ago and the premise of this
theory is consistently being supported by studies conducted in
hematopoietic malignancies and solid tumors (10). The tumors
are composed of small and rare subpopulation of cells with stem-
like properties such as self-renewal, multi-lineage differentiation
potential and resistance to conventional treatments. In malignant
gliomas, similar to other types of cancer, several studies have
identified and isolated the GSCs that harbor tumor-initiating
properties (11, 12). Although the origin of these multipotent cells
is not clearly defined, the GSCs are thought to reside at the apex of
hierarchy in tumorigenesis with potential to induce angiogenesis,
metastasis and modulate therapeutic responses. Further, due to
an enhanced DNA repair capacity, GSCs recover rapidly from
conventional therapeutic stress, which leads to resistance and
eventual disease relapse in glioma patients (13). Since GSCs
play critical role in tumorigenesis of glioma, great strides have
been made to discover unique cellular characteristics and genetic
pathways of these cells.

Cell surface molecules differentially expressed on GSCs and
functionally associated with the maintenance of GSCs are
ideal markers for sorting and targeting GSC population. The
classic biomarker used to define GSCs is CD133. CD133+

subpopulation of glioma cells exhibit increased self-renewal and
proliferation properties in vitro and these cells are capable
of initiating tumor within brain which retains homogeneous
histological features of the original donor (12). In addition,
GSCs also exhibit CD15, CD36, CD44, and CD49f/Integrin
markers, indicating that there is a possibility of targeting GSCs
through specific monoclonal antibodies against these surface
markers. However, these surface markers are also expressed
on normal neural stem cells (NSCs). Further, to make matters
worse, the definition of surface markers of GSCs has been
challenging despite of the functional evidence for its stem-like
behavior in certain cell subpopulations of gliomas. For example,
some notable CD133− glioma cells have been reported as
extremely malignant phenotype with stronger tumor-promoting
potentialities (14, 15). Increasing evidence suggests that a number
of crucial signal transduction pathways are involved in the
maintenance of GSCs. Most notable ones are Notch, Sonic
Hedgehog, Wnt/β-catenin, Akt, and STAT3 signaling pathways.
However, it will be difficult to target these pathways since there is
considerable overlap between NSCs and GSCs.

It is well established that cellular reprogramming can convert
differentiated somatic cells into inducible pluripotent stem cells
(iPSCs) by enforced expression of four factors: SOX2, OCT4,
KLF4, and c-MYC (16, 17). Inspired by iPSCs technology and the
similarity between iPSCs and cancer stem cells reprogramming,

researchers generated glioma stem-like state cells through a
dedifferentiated process of glioma cells by overexpression of
crucial genes: POU3F2, SOX2, OLIG2, and SALL2 (18), which
indicates the impact of critical tumor-promoting genes on the
fate of GSCs and further regulation of glioma development. Thus,
many transcriptional factors with well-recognized functions
in embryonic development have subsequently been identified
as oncogenic drivers in tumors, including PHF20, SOX2,
SOX9, and OCT4. Notably, PHF20 was initially discovered
as a tumor specific antigen in GBM. Patients treated with
PHF20 antibody have significantly better outcomes than those
without antibody treatment (19). Our previous study showed
that PHF20-deficient mouse embryonic fibroblasts could not
be converted to fully reprogrammed iPSCs by down regulating
OCT4, which revealed that this protein exerts predominant
effects on reprogramming (17). Subsequently, PHF20 was found
abundantly expressed in neurogenic tumors and plays a vital role
in carcinogenesis by significantly up-regulating the expression
of SOX2 and OCT4, further enhancing the self-renewal and
tumor-initiating capability of neuroblastoma (20). Noteworthy,
previous studies have shown high expression of SOX2 and SOX9
in GSCs subpopulation and that these proteins are important
for GSC maintenance (21, 22). In addition, recent studies
including our ongoing experiments, suggest that deletion of
SOX2, SOX9, and OCT4 impair GSCs activities and delay the
onset of tumorigenesis (23, 24)_ENREF_35. Collectively, these
studies demonstrate the pivotal role of PHF20-SOX2-SOX9-
OCT4 axis in aggressive behavior of GSCs (Figure 1). Moreover,
interrogating the interactions of these specific stem genes in
different contexts may shed some light on establishing the origin
of gliomas and provide us with novel therapeutic options to target
GSCs.

IMMUNOTHERAPEUTIC STRATEGIES
TARGETING GSCs (FIGURE 1)

Monoclonal Antibodies (mAbs)
The use of antibodies for treating patients with cancer has
been established for 20 years and mAbs are one of the major
contributions of tumor immuno-oncology with their potential to
induce direct cell killing and regulate cellular immune response
(25). Given the various markers define GSCs, the mAb therapy
proposes one of the most promising approaches to target
this malignancy. Amplification and mutation of the epidermal
growth factor receptor (EGFR) represents crucial genetic
signature in GSCs and mAbs directly targeting EGFR is used
as a well-known therapeutic approach in glioma. Cetuximab,
the most notable mAb against EFGR, functionally prevents
EGFR-mediated signaling by interfering with ligand binding and
EGFR extracellular dimerization. In addition, cetuximab might
also trigger EGFR receptor internalization and destruction (26).
Other unconjugated mAbs against EGFR, such as panitumumab
and nimotuzumab, exhibit similar efficacy against GSCs as
cetuximab (27). The autocrine TGF-β signaling is involved in
multiple cellular processes in tumor development and high serum
levels of TGF-β are detected inmalignant glioma which positively
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FIGURE 1 | Therapeutic approaches targeting GSCs are critical in glioma treatment. GSCs play important roles in the establishment and recurrence of glioma.

Non-stem glioma cells are capable to reprogram to GSCs under the influence of crucial stem genes. Directly targeting GSCs by different strategies will be efficient to

gradually eliminate tumor in combination with conventional therapies.

correlated with tumor grade and prognosis. Additionally, the
TGF-β signaling has been reported as a key regulator in the
maintenance of GSCs (28). Studies have shown that the activation
of TGF-β related pathways induce self-renewal and inhibition
of differentiation in GSCs through the regulation of various
stem genes, such as SOX4, SOX2, and LIF (28, 29). Numbers of
TGF-β targeting therapies are currently under investigation in
diverse studies, showing safety and effective outcome for glioma
patients. The TGF-β neutralizing antibody, GC1008, shows
significant improvement in the survival of patients with recurrent
gliomas, with no major toxicity observed during treatment (30).
Another important mAb for glioma treatment is bevacizumab,
a FDA-approved humanized mAb against VEGF. A number of
clinical trials are currently evaluating efficacy of bevacizumab in
combination with other therapeutic approaches in patients with
newly diagnosed glioma (31). Although bevacizumab is known
to have outstanding anti-angiogenic property, one potential
mechanism by which bevacizumab inhibits glioma growth is
due to disturbance of the perivascular niche where GSCs reside.
Disruption of the supportive microenvironment causes GSCs
more susceptible to damage from other therapies (31, 32).

Cancer Vaccines
In contrast to mAbs, cancer vaccines are classified into a
subcategory of active immunotherapy due to their ability to
motivate the host immune system to recognize and kill tumor

cells. Themost successful access of vaccine is the ability to harness
the potent antigen-presenting processes of dendritic cells (DCs).
Every component from tumor cells can be utilized in stimulation
of DCs, leading to their recognition of tumor-associated antigens
(TAAs). After reintroduction into patients, the stimulated DCs
mediate prolonged antitumor response by presenting TAAs to
tumor specific T cells (33). In our previous study, we report
the co-delivery of tumor specific antigen and dual toll-like
receptors (TLRs) into DCs via a novel microparticle (mesoporous
silicon vector) induce efficient host immune responses against
melanoma (34). Interestingly, as cellular components from killed
tumor cells boost DC function for active immunostimulation, the
efficacy and safety of postoperative administration of autologous
DC vaccination is evaluated in a clinical trial. These clinical
studies show that lysate-pulsed DC vaccination is efficient and
safe following tumor resection (35). Given the identical biological
properties and tumorigenic potential of GSCs, it is possible
to create comprehensive immune therapies against glioma by
directly targeting this subpopulation of tumor cells (36). In the
first GSCs targeted vaccine therapy in humans, single GSCs are
separated and allowed to form tumorsphere, and the mRNA
isolated from autologous GSCs are transfected into monocyte-
derived DCs. Patients that received this vaccine treatment via
intradermal injection following synergic anti-tumor therapy
show promising clinical outcomes without serious adverse
reactions (37). In one clinical trial, a variety of TAAs which are
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specifically associated with tumorigenic GSCs (HER-2, AIM-2,
gp100, IL13Rα2, TRP-2, MAGE1) are targeted by ICT-07 vaccine
and the results demonstrate improvement of the progression-
free survival. Intriguingly, in those patients who require double
surgery, the second tumor sample exhibits decreased number
of GSCs, indicating vaccine efficacy in targeting these cells
within tumor (38). As the CNS largely lacks activated DCs
in the processes of active immunotherapy, most currently,
hematopoietic stem and progenitor cells (HSPCs) have been
administrated intracranially to supply resident DCs and to induce
effective T cell responses. When transferring into CNS, HPSCs
differentiate into CD86+CD11c+MHCII+ cells which present
activated DCs phenotype and function to promote cytotoxic
immune responses. The HSPC-derived cells are extremely
effective due to the high expression of co-stimulatory markers
like CD86, which facilitates potent anti-tumor immunity (39).
In recent years, SOX2, a transcription factor which plays an
essential role in the maintenance of GSCs, has been reported to
represent a novel target for active immunotherapy. Vaccinations
with SOX2 peptides significantly enhance systemic and local
immune response and prolong overall survival in animal models
in combination with or without chemotherapy (40). In this
regard, we assume that targeting SOX2, likely together with
selected oncogenes, may introduce us to a new approach to treat
GSCs through active immunotherapies.

Chimeric Antigen Receptor (CAR) T Cells
Distinct to active immunotherapies which stimulate the innate
immune system by TAAs, the adoptively transferred CAR T
cells directly target tumor antigens independent of antigen
presentation to perform their anti-tumor activities. CAR, which
links TAA-specific mAb to T cell activation signaling, are
designed to target any antigen on surface of tumor cells and
transferred to T cell populations (41). Given that intrinsic tumor
specific T cells are infrequent and anergic, the CAR T cells could
be expanded in vitro to sufficient levels to induce potent cytotoxic
immune responses. Despite the successful application of CAR
T cells in hematologic malignancies, this therapeutic strategy
is not well-developed in solid tumors due to the deficiency of
antigens that are exclusively expressed on tumor surface and the
involvement of the suppressive microenvironment in the setting
of tumor bed (42). Considering the strong side effects of current
CAR T therapies in CNS like hydrocephalus, the use of CAR T
cells is even rare in the treatment of glioma (43, 44).

However, a tumor specific mutation of EGFR, the EGFRvIII,
which is most frequently seen in patients with glioma, has
emerged as an ideal target for CAR T cell treatment. The
CART-EGFRvIII cells have been found effective and safe in
patients with residual or recurrent glioma (45). Besides EGFRvIII,
disialoganglioside GD2 is observed in high levels in patients with
diffuse intrinsic pontine glioma, and the GD2 targeted CAR T
cells demonstrate potent antitumor efficacy and well controlled
T cell-related inflammation (46). Number of preclinical studies
have revealed that IL13Rα2 and HER2 can be targeted and
ablated with administration of CAR T cells in GSCs (47, 48).
These studies indicate that GSCs can be potentially targeted with
appropriately designed CAR T cells.

Oncolytic Adenovirus
Oncolytic adenoviruses have been documented as promising
anti-tumor agents based on their abilities to selectively replicate
in and effectively kill cancer cells, including cancer stem cells (49).
Besides the classical cancer-specific replication and lytic activity,
adenoviral infection also modulates host immunity which
presents a more comprehensive understanding of oncolytic
virus-associated anti-cancer activities (50). The use of oncolytic
adenoviruses as a potent therapeutic approach against GSCs have
been explored extensively (51, 52). In a phase I clinical trial,
DNX-2401 (Delta-24-RGD; tasadenoturev), a tumor selective
and infectivity enhanced oncolytic adenovirus is injected into
patients with recurrent malignant glioma. The phase I study
(administration of DNX-2401) demonstrates a good safety
record, dramatic reduction in the tumor size and long-term
survival in this cohort of patients. In addition to direct oncolytic
effect, elevated immune cell infiltration and enhanced cytotoxic T
cell function also participate in the effective antitumor responses
thereby, indicating significant clinical efficacy of virotherapy
(52). Ongoing clinical trial (NCT02798406) focused on the
combination therapy with DNX-2401 and PD-1 inhibition
should provide more promising evidence pertaining to oncolytic
adenovirus-based anti-glioma strategies.

Glioma-Associated Microenvironment
Human gliomas produce numerous cytokines, chemokines,
and growth factors, which in turn promote the infiltration
of various immune cells into tumors14,15. Although CNS is
“immune privileged,” the brain blood barrier (BBB) has been
shown to be compromised (the exchange of many substances
between the brain and blood circulation) under specific
pathological conditions (7, 53). In patients with high-grade
glioma, the BBB appears to lose its effective function due to
abnormal sprouting structures, tumor-induced formation of new
vessels, and dysfunction of tight junctions, leading to severe
infiltration of inflammatory cells (54). Additionally, peripheral
antitumor immune cells are frequently reprogrammed into a
distinct immunosuppressive phenotype in TME soon after their
chemotaxis to the tumor (4, 55). Various types of immune cells in
solid glioma tissue directly regulate the interactions between the
tumor and host, which can help the tumor suppress, modulate,
or even evade immune responses at different levels (6, 53)
(Figure 2).

Tumor-Associated Macrophages (TAMs)
and Microglia
Clinical studies have shown that malignant gliomas are
extensively infiltrated by myeloid-derived cells, including TAMs
and microglia. Most TAMs arise from circulating monocytes,
which are recruited to the brain parenchyma under pathological
conditions (56, 57). This is relevant in brain tumors, particularly
glioma, which is always accompanied by disruption of BBB
during disease progression (58). Brain microglia arise from
embryonic yolk sac progenitor cells, and unlike other tissue-
resident macrophages, this unique population acquires self-
renewal ability. Moreover, microglia also exhibit prolonged
cellular longevity and local proliferation within the brain (57).
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FIGURE 2 | Immunosuppressive cellular components in glioma microenvironment. Tumor cells release molecules which contribute to multiple unique

immunosuppression mediated by various cellular players in glioma microenvironment. (A) Cytokines or chemoattractants secreted by glioma cells induce

peripheral-derived TAMs and resident microglia to possess M2 phenotype, which enables the production of tumor-promoting factors. (B) Tumor cells induce massive

infiltration of MDSCs via multiple approaches, which further exert an immunosuppressive function mainly through T cell inhibition. (C) After recruited to the tumor site,

Tregs directly suppress the activity of cytolytic T cells and induce their apoptosis. (D) Despite well-characterized specialties in recognizing and killing tumor cells, the

functions of NK cells in glioma microenvironment are limited due to the existence of HLA-G or TGF-β. TAMs, MDSCs and Tregs also collaborate to suppress the

activity of NK cells. (E) Tumor-associated neutrophils (TANs) are attracted into tumor bed, where they could evade apoptosis by interacting with diverse molecules,

and further benefit the inner-tumor angiogenesis and T cell suppression. (F) In glioma microenvironment, PIGF and ADAM10 cooperate to induce suppressive

CD19+CD25hi Bregs, which are responsible for Tregs proliferation and suppression of other T cells.

Because of their considerable diversity and plasticity, TAM
populations can be divided into two groups, the “classically
activated” M1 phenotype and the “alternatively activated” M2
phenotype (59, 60). Malignant gliomas actively recruit microglia
and macrophages to tumor sites where these cell acquire
amoeboid morphology and adopt an M2 tumor-promoting
phenotype, thus contributing to the immunosuppressive tumor
environment (58). This recruitment is mediated through the
secretion of various chemo-attractants, such as C-C motif
chemokine ligand (CCL) 2, colony-stimulating factor (CSF)-
1, CX3CL1, and stromal-derived factor (SDF)-1. CCL2, also
known as monocyte chemotactic protein-1, is first identified in

glioma cells as a cytokine that could induce the accumulation
of TAMs around tumor tissues (61). Ectopic expressions of
CCL2 both at the mRNA and protein levels are strongly
correlated with enhanced infiltration of TAMs at tumor sites
and promote tumor aggressiveness in an experimental animal
model (62). Moreover, overexpression of CCL2 is induced by
upregulation of protein S100 calcium binding protein B, and this
positive correlation between the two proteins promotes TAM
recruitment in the glioma microenvironment (63). Macrophages
also critically depend on themultiple functions of CSF-1, which is
constitutively expressed by glioma cells, facilitated by its receptor
CSF-1R. Attenuated interactions between CSF-1 and CSF-1R
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with CSF-1R-targeting inhibitors reduce the number of TAMs in
tumor sites and impair the invasion ability of glioma cells.

After migrating into the glioma environment, TAMs tend to
possess the M2 phenotype, and their differentiation is driven
by the secretion of immunosuppressive factors, including CSF-1,
CCL2, IL-4, IL-6, IL-10, and transforming growth factor (TGF-
β), from tumor cells (64, 65). Additionally, ectopic activation
of the signal transducer and activator of transcription (STAT)
3 pathway has been reported to play a crucial role in the
maintenance of the M2 phenotype of TAMs (66). Vascular cell
adhesion protein-1 expression mediated by STAT3 is positively
correlated with TAM adhesion and immunosuppressive function
in gliomas (67). The switch of glioma-associated TAMs in
turn leads to the establishment of an immunosuppressive
microenvironment via direct impairment of T-cell activation
and proliferation due to the lack of expression of costimulatory
molecules (CD40, CD80, and CD86) and the production of low
levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α)
upon TLR stimulation, thus contributes to the failure of T-cell
stimulation and proliferation and makes T-cells less capable of
mediating tumor cytotoxicity compared with microglia isolated
from the normal brain (68, 69). In contrast, overexpression of
immunosuppressive mediators, such as FasL and programmed
cell death-ligand 1 (PD-L1) on the surface of TAMs in glioma
microenvironment also result in the apoptosis of T cells and
deficiencies in immunosurveillance (70). When M2 TAMs
release low levels of IFN-γ and high levels of IL-10, microglia
act as potent regulatory T cells (Tregs) inducer and further
supports immune suppression in the glioma environment (71).
M2 TAMs may also help to induce the immunosuppressive
niche by decreasing lymphokine-activated killer cells, natural
killer (NK) cells, and cytotoxic T lymphocyte (CTL) activity.
TAMs consistently produced anti-inflammatory cytokines, such
as IL-10, TGF-β, and IL-6, thereby mediating a wide range of
immunosuppressive functions (72, 73).

Myeloid-Derived Suppressor Cells
(MDSCs)
MDSCs are heterogeneous population of immature myeloid
cells consisting of myeloid progenitors and precursors of
macrophages, granulocytes, and dendritic cells (74, 75). MDSCs
share some common features such as their myeloid origin,
immature state, and most importantly, the ability to convert
immune responses from a Th1 phenotype toward a Th2
phenotype, which result in potent inhibition of CD4+ and CD8+

T cells and significant immunosuppression in tumor settings
(76, 77). Direct interaction between glioma cells and monocytes
is required to achieve a tumor-promoting immunosuppressive
phenotype. And extensive MDSC infiltration around the TME
has been observed in all gliomamodels and patients. Glioma cells
utilize several approaches to induce the undifferentiated state and
stimulate the expansion of MDSCs. Multiple chemokines, e.g.,
pro-inflammatory factors (IL-1β, IL-6), activated T cell-derived
cytokines (IFN-γ, IL-4, IL-10, and IL-13) and multiple soluble
mediators secreted by gliomas (granulocyte macrophage [GM]-
CSF, vascular endothelial growth factor [VEGF], PGE-2, and

TGF-β2), attract MDSCs toward the tumor and synergistically
initiate immunosuppressive pathways that commit immature
myeloid cells to become MDSCs; this then further promotes the
differentiation of MDSCs toward TAMs (78–80).

After recruitment to the tumor site, MDSCs exhibit four
distinct T-cell inhibitory effects. The first is the direct depletion
of nutrients essential for the growth and differentiation
of lymphocytes, such as L-arginine and L-cysteine. Further,
proliferation of antigen-activated T-cells is blocked due to
decrease in T-cell receptor-associated CD3ζ chain, which is
caused by lacking of amino acids, L-arginine and L-cysteine.
Consistent with this notion, arginine supplementation can relieve
T-cell suppression and restore T-cell function in gliomas. The
second effect is the interaction with naïve CD4+ T cells;
upregulation of PD-L1 on the surface of tumor-derived MDSCs
leads to the functional exhaustion of CD4+ effector T cells.
Moreover, MDSCs can also mediate the conversion of naïve
CD4+ T cells into induced Tregs by producing cytokines. TGF-
β produced by tumor-associated MDSCs, together with IL-10
and scarcity of arginine expression, has been shown to facilitate
the differentiation and expansion of forkhead box P3 (FOXP3)+

Tregs in other tumor types. Based on the overexpression of
these factors and the existence of both MDSCs and Tregs
in the glioma microenvironment, researchers hypothesize that
MDSC-mediated expansion of FOXP3+ Tregs may also occur
in gliomas (81). The third type of mechanism is the generation
of reactive nitrogen species and reactive oxygen species (ROS).
Nitric oxide (NO) production in animal models of glioma has
been documented as a potent inducer of T-cell suppression
through induction of oxidative stress. Finally, the fourth effect
deals with impairment of T-cell trafficking and viability (77, 82).
Moreover, increased levels of IL-10 and PD-L1 observed on the
surface of MDSCs during coculture with glioma cells indicates
that MDSCs may induce T-cell anergy through binding with PD-
1 (83, 84). Since both MDSCs and TAMs around the glioma
microenvironment express high levels of IL-10 and are skewed
toward an immunosuppressive phenotype by IL-10, it is likely
that MDSCs and TAMs promote polarization of each other in
glioma. Thus, coordinated regulation between PD-L1 and IL-10
may result in reduced glioma-derived antigen presentation and
hamper the effective antitumor response even further.

Tregs
High occurrences of Tregs are found in tumor sites of various
types of cancers, and studies have shown that hyperactivity
of Treg function may be associated with tumor evasion (85,
86)_ENREF_84. We have identified tumor-specific Tregs in
several types of cancers (87, 88)_ENREF_85. In particular, we
demonstrate that the suppressive function of human naturally
occurring CD4+ CD25+ Treg cells and tumor-derived antigen-
specific CD4+ Treg cells can be reversed by TLR8 signaling
pathway in DCs independent mechanism, but requires the
activation of TLR8-MyD88-IRAK4 signaling pathway (89).
Further, Tregs are reported to have keys role in the pathogenesis
of glioma (90). For instance, glioma patients show significant
infiltration of Tregs that correlates with WHO grades. Studies
have shown that GBM has the largest amount of Tregs around
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the tumor tissue, further indicating a direct correlation between
tumormalignancy and recruitment/infiltration of Tregs (91). The
organized combination of several chemokines secreted by tumor
cells and the expression of chemokine receptors on the surface of
Tregs lead to the expansion and migration of tumor-associated
Tregs from circulation. For example, tumor-derived Tregs are
continuously induced via the CCL22/CCR4 and CCL28/CCR10
axes in GBMmultiforme. Further, Treg recruitment is secondary
to the release of these chemoattractants, implying that although
Tregs may be necessary for tumor development, they are
not contributing the initial establishment of the tumor (92,
93). Additionally, in GBM animal models, indoleamine 2,3-
dioxygenase (IDO), which is expressed on tumor cells, was found
to stimulate recruitment of Tregs, resulting in the impairment of
immune surveillance (94).

After infiltrating into tumor sites, Tregs are activated
through recognition of tumor-specific antigens and self-antigens
(released from dying tumor cells) which positively regulate the
immunosuppressive TME by attenuating tumor-specific effector
T cells. In absence of Tregs, CD8+ T cells from glioma patients
are able to restore their proliferative and cytotoxic activities,
while CD4+ T cells were able to expand in response to antigen
stimulation (95). The suppressive role of Tregs in the antigen-
presenting process is the primary pattern of Treg-mediated
immunological self-tolerance. Antigen-presenting cells, such as
lymphocytes and dendritic cells (DCs), are inhibited by Tregs
through downregulation of IL-2 and IFN-γ, which are crucial
factors responsible for activation of both T cells and DCs (90).
Additionally, immunosuppressive mediators, such as TGF-β and
IL-10, are secreted from target cells which further enhance the
induction of Tregs (96). Furthermore, FOXP3, a unique marker
expressed on the surface of Tregs, has also shown to contribute to
immunosuppression. Specifically, FOXP3 induces the expression
of heme oxygenase-1, which engages in FOXP3-mediated
immune suppression in a cell-to-cell contact-dependent manner,
further impairing the proliferation of T cells (90, 97). Another
possible mechanism for suppressing the function of Tregs is
mediated through immune-checkpoint molecules constitutively
expressed on the surface of Tregs, e.g., CTLA-4 and PD-
L1 (98–100). Ectopic expression of these molecules and their
ligands (CD80, CD86, and PD-L1) downregulates the activities of
antigen-presenting cells and tumor-specific T cells through direct
cell-to-cell interactions with Tregs (101).

NK Cells
NK cells are an important type of cytotoxic innate lymphocytes
that provide rapid responses to viral infections and tumor
formation. In the presence of surface activating receptors and
absence of inhibiting receptors, NK cells are able to directly lyse
MHC-I-deficient tumor cells or other pathogens (102). Under
normal circumstances, activation of NK cells is inhibited by
binding surface inhibitory receptors with HLA class I antigens
to protect nonpathological cells from being killed and to
maintain homeostasis. Disruption of homeostasis by various
pathological changes reduces HLA-I expression and impairs
the immune-tolerance mediated by NK cells (103). However,
ectopic high expression of HLA-I found in malignant gliomas

through different tumor-dependent mechanisms can further
strengthen the impairment of immune surveillance (104). HLA-
G, an inhibitory ligand in GBM, is found to bind to its receptor
Ig-like transcript 2 on NK cells, activating a major tumor-
immune escape mechanism (105, 106). Moreover, epigenetic
signals or cytokines, such as TGF-β, secreted locally by glioma
cells can dysregulate the expression of natural-killer group 2,
member D, an activator of NK cells, thereby inhibiting tumor-
specific cytolysis and preventing the immune response (107, 108).
Additionally, direct contacts with other immunosuppressive cells
around the glioma, such as glioma-associated macrophages,
MDSCs, and Tregs, also induce the infiltrated NK cells to exhibit
a nonfunctional phenotype (72, 109, 110).

Neutrophils
Neutrophils are the most abundant granulocytes in humans,
comprising nearly 70% of all leukocytes in the body, and
are considered as the first line of defense in the innate
immune response under pathological conditions (111). Similar to
macrophages and MDSCs, tumor-associated neutrophils (TANs)
may also participate in immune suppression and subsequent
tumorigenesis and tumor growth (112, 113). The phenotype
of TANs can be divided into two distinct subsets (N1 and
N2), with the anti-tumor N1 type modulating IFN-γ while the
tumor-promoting N2 type regulating TGF-β; the N2 type is the
major subtype observed in the TME (114). Elevated numbers of
neutrophils have been found to be correlated with poor patient
survival in severaltypes of cancer (115, 116), including glioma
(117), suggesting that the infiltration of neutrophils may affect
tumor immunosuppression. Several studies have shown that
chemo attractants released by tumor cells induce the recruitment
and infiltration of neutrophils into tumor sites and subsequently
tilt them to N2 TANs. As the most potent neutrophil-attracting
mediator, CXCL8 plays a critical role in orchestrating neutrophil
recruitment by binding to the receptors CXCR1 and CXCR2
(118). In glioma, high level of CXCL8 is found in tumor cells,
and correlated with increased neutrophil infiltration and tumor
progression (119). Since neutrophils are very short-lived cells
with a circulating half-life of <1 day, the apoptotic process is
strongly inhibited in these cells by some specific prosurvival
factors (e.g., G-CSF, GM-CSF, and IFN-α) (115), as well as
activated CD4+ and CD8+ T lymphocytes (120). Furthermore,
the hypoxic environment facilitates resistance of neutrophils
to apoptosis in a hypoxia-inducible factor (HIF)-1α-dependent
manner (121). Stimulation with these factors promotes the
survival and immunosuppressive functions of neutrophils to
enhance tumor progression.

Most studies of neutrophils and gliomas have demonstrated
the effect of these cells in response to tumor angiogenesis
and anti-angiogenic therapies. Neutrophils are able to influence
angiogenesis inside tumors by releasing angiogenic factors,
which promote endothelial cell migration and proliferation
(116). Further, neutrophils may also promote angiogenesis by
shifting GSCs from a proneural stage to mesenchymal subtype
through upregulation of S100A4 (122). Moreover, neutrophils
may also play role in the immunosuppression of glioma TME.
Arginase 1 is a critical immunosuppressive molecule that can
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directly inhibit CD8 T-cell function and stimulate TAMs to
promote tumor growth (123). Neutrophils are stimulated to
release immunosuppressive arginase 1 by supernatants from
tumor cells in a CXCL8-dependent manner, and knockdown
of CXCL8 blocks this effect (124). In addition, elevation
of neutrophil-to-lymphocyte ratio and increased intratumoral
infiltration of neutrophils are documented to be correlated with
a decreased CD3+ T-cell infiltration in tumor samples from
patients with glioma (117). Mutation of isocitrate dehydrogenase
1 results in improved clinical outcomes and has been shown to
decrease leukocyte chemotaxis and immune infiltration of TANs,
thereby blocking malignant immunosuppression in glioma
(125).

B Cells and Regulatory B Cells (Bregs)
In addition to the contribution of TAMs, MDSCs, Tregs,
and TANs in suppression of the antitumor immune response,
subsets of B cells with immunosuppressive or regulatory abilities
have recently emerged as contributors to immune responses in
the pathogenesis of autoimmune diseases and human tumors
(126, 127). Bregs are originally identified in autoimmune
disease; however, recent studies have shown that interaction
between Bregs and many other immune cell types in the
TME augment the suppressive microenvironment and promote
tumor growth (128). Various human solid tumors exhibit
upregulation of tumor-infiltrative Bregs as malignant B cells
that suppress the antitumor cellular immune response through
the expression of suppressive ligands (129–131). Additionally,
human CD19+CD25hi B cells (which suppress CD4+ T-cell
proliferation and enhance CTLA-4 and FOXP3 expression
on the surface of Tregs in a TGF-β-dependent manner) are
considered representatives of the Breg population (132). Further,
CD19+CD24hiCD38hi B cells in the peripheral blood circulatory
system are responsible for suppressing the production of IFN-γ
and TNF-α from CD4+ T cells (133).

It has been shown in many different tumors that secretion
of various cytokines (including IL-6, IL-10, IL-35, and TGF-
β) from Bregs support the activation and expansion of Tregs,
TAMs, andMDSCs around the tumor bed, thereby skewing these
cells toward suppressive subsets to enhance the tumor-promoting
microenvironment (134, 135). In addition, placental growth
factor (a member in the VEGF family), secreted by glioma tumor
cells appears to switch tumor-infiltrating B cells to Bregsand
suppress the CD8+ T-cell response (136). Similarly, glioma
tumor cells can also induce Bregs by releasing the disintegrin and
metalloproteinase domain-containing protein 10 and contribute
to the recruitment of Tregs and suppression of CD8+ T cells
(137).

Hypoxia and Immunosuppression of the
TME
Hypoxia is a hallmark of all solid tumors and is the consequence
of abnormal morphology of blood vessels, which are unable to
deliver adequate oxygen and nutrients to rapidly proliferating
tumor cells (138). This pathological condition contributes to
a number of events, including angiogenesis, effective T-cell
suppression, and neoplastic progression (139). Consequently, the

TME also evolves a mechanical switch to counterbalance the
low level of oxygen and support the acquisition of properties
in tumor cells required to adapt to the hypoxic surroundings.
This adaptive transcriptional program is mainly mediated by HIF
proteins (140). Hypoxic conditions dominate most TMEs; thus,
HIF activation is observed in most cancers and contributes to the
establishment of immunosuppression in these regions (141, 142).
Previous studies have shown that TME contains many types
of immunosuppressive cells such as TAMs, MDSCs, and Tregs,
all of which are affected by hypoxic stress, particularly HIFs
(143).

Because TAMs represent a crucial factor in the
immunosuppressive TME, accumulating evidence has indicated
that HIF plays a prominent role in the attraction and activation
of TAMs. In breast cancer, hypoxia upregulates the expression
of CSF-1 via mediation of CCL5/CCR5, which induces the
recruitment of TAMs and MDSCs from the peripheral blood to
tumor sites and converts them to the suppressive phenotype.
Additionally, hypoxic tumor regions stabilize HIF-1α, which
in turn upregulates CXCR4 to further increase the chemotactic
responsiveness of TAMs and MDSCs (144). Analysis of the
link between the innate immune hypoxic response and tumor
progression has also shown that activated myeloid HIF-1α
regulates arginase and inducible NO synthase expression to
induce T-cell suppression in the hypoxic microenvironment,
whereas targeted deletion of HIF-1α in TAMs inhibites arginase
production and blocks tumor progression (145). Notably,
many researchers have postulated that there is an underlying
relationship between hypoxia and Tregs (142, 146). Hypoxia
promotes immunosuppression by activating the STAT3 pathway
via phosphorylation (147), and activated STAT3 in Tregs
further inhibits CD8+ T-cell differentiation and DC maturation
by modulating the expression of FOXP3, TGF-β, and IL-10
(148, 149). Moreover, overexpression of PD-1 on the surface
of suppressive cells has been observed in proliferating cancer
cells exposed to hypoxia (150). Immunosuppressive factors
induced by hypoxia and STAT3 together promote a tumorigenic
microenvironment through apoptosis of effector T cells and
induction of Tregs.

Gliomas exhibit a hypoxic environment similar to that
of other solid tumors; therefore, the effects of hypoxia on
glioma have been investigated in detail (Figure 3). In a
hypoxic environment, glioma cells show increased expression
of periostin, which promotes the recruitment and migration
of TAMs (151). Intriguingly, after recruitment of macrophages
to hypoxia areas, macrophage migration is impaired, which
could explain why TAMs appear to preferentially accumulate
in hypoxic areas (78, 152). Trapped in hypoxic conditions,
TAMs are easily converted into specific immunosuppressive
M2 phenotype through powerful induction from HIF-1α via
RTK/PI3K pathway (151). Additionally, hypoxia during the
development of glioma activates HLA-G, an immune checkpoint
molecule that contributes to the immune escape of tumor
cells (153). In GBM, HIF-1α promotes the recruitment of
bone marrow derived CD45+ myeloid cells and pericytes
by induction of VEGF and SDF-1α, which can enhance
vascular remodeling and neovascularization inside tumors (154).
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FIGURE 3 | Hypoxia and immune checkpoint in glioma microenvironment. In immunosuppressive glioma microenvironment, despite the direct molecular and cellular

mechanisms, the environmental factors, such as hypoxia and immune checkpoint, also play critical roles in the failure of immunosurveillance. (A) Compared with

normal tissues, inner-glioma environment is always recognized as hypoxic and sufficient in immune cell infiltrations, due to the abnormalities in blood vessel

morphology and impairing of BBB integrity. Upregulation of hypoxia-related factors, such as HIF-1α, cooperate with specific immune cells from leaky BBB to establish

an immunosuppressive microenvironment and suppress the function of cytolytic T cells. (B) Under physiological condition, T cells can be activated through the

engagement of MHC to TCR, together with the co-stimulatory signals, to recognize and lyse tumor cells. However, in glioma microenvironment, the elevated

expression of CTLA-4 in immunosuppressive cells act as a competitive antagonist of the secondary activation signal, and further lead to the silencing of T cells.

Furthermore, induced high expression of PD-1 on T cell surface, as well as PD-L1 on suppressive cells and tumor cells, lead to the anergy and apoptosis of T cells

through ligand binding.

Elevated expression of HIF-1α also gives rise to a population
of CD133+ glioma cancer stem cells, which contribute to
hypoxia-induced expansion of Tregs and immunosuppression
(155).

Immune Checkpoints
The augmentation of antitumor immune responses by boosting
tumor-specific stimulatory signaling to promote immune-
mediated tumor growth arrest has been studied for several years.
However, more recent studies have now suggested that a network
of suppressive mechanisms may exert a dominant role in the
TME, acting in concert to impede immune surveillance and
promote tumor development. Based on this perspective, immune
checkpoints are thought to play a significant role in generating
this immunosuppressive tumor context during the progression
of cancer, and the interference with these immune inhibitory
checkpoints has attracted attention as a potential strategy for
cancer immunotherapy (156, 157). Among the various immune
checkpoints being studied, CTLA-4 and PD-1 have emerged
as important tools. CTLA-4 (also known as CD152) has been
identified as the first negative regulator of T-cell activation
and function, and transduces suppressive signals through active
antagonism of other costimulatory ligands to CD28 due to its
high affinity and ability to exhaust T cells (158, 159). In addition

to its direct inhibitory effects, CTLA-4 also enhances Treg-
induced immunosuppression. Because CTLA-4 downregulates
CD80 and CD86 on antigen-presenting cells, natural Tregs
require CTLA-4 to suppress immune responses, which sustain
the self-tolerance and immune homeostasis of these cells (160,
161). Similar to CTLA-4, PD-1 is also expressed on the surface
of most components of the immune system, such as activated
T cells, B cells, NK cells, TAMs, and DCs (162). A number of
studies have shown that high PD-1 levels are detected during
the activation phase of T cells, compared to the weak expression
of PD-1 at the rest (163, 164). Further, elevated expression of
PD-1 and its ligand PD-L1 are detectable in various malignant
cancers, which connect with the exhaustion of specific T cells
(165). The interaction of PD-L1 with PD-1 significantly reduces
the production of IFN-γ from activated T cells and leads to
T-cell anergy (166). Additionally, PD-L1 also accelerates the
differentiation of native CD4+ T cells into Tregs and sustains
their suppressive phenotype through multiple pathways (167,
168).

Tumor-infiltrating immune cells of glioma patients exhibit
significant expression of CTLA-4 (particularly for CD4+ effector
T cells and Tregs). Since Tregs constitute a major subset of CD4+

T cells, elevation in Treg/CD4+ T-cell ratio (with pronounced
expression of CTLA-4) in TME leads to the inhibition of
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tumor-reactive T cells, either by direct cell contact or through
TGF-β and IL-10, correlating with the disease progression in
glioma patients (169, 170). The critical roles of CTLA-4 in
regulating immunosuppressive antitumor responses have been
illustrated in glioma, which suggest that anti-CTLA-4 treatment
will largely enhance CD4+ T-cell proliferation and restore the
Treg/CD4+ ratio to further support the antitumor response
(171). Additionally, downregulation of CTLA-4 on peripheral
lymphocytes is associated with an improved prognosis in patients
with glioma (172). PD-1 is also upregulated in peripheral
effector T lymphocytes during glioma disease progression and
PD-1 expressing cells extremely high in glioma-infiltrating
lymphocytes compared with that of healthy controls (173).
Binding of PD-1 with its ligand PD-L1, (expressed at high
levels in the immunosuppressive microenvironment due to loss
of PTEN [phosphatase and tensin homolog] and activation of
the PI3K pathway), generally augments the inhibition of T-cell
function and maintains immunological tolerance by impeding
the downstream activation pathway and inducing exhaustion
(174, 175). Earlier studies reveal that an immunosuppressive
state is induced by TAMs or Tregs by the PD-1 axis,
which represents crucial cancer-promoting conditions both in
neoplastic progression and subsequent immune escape (176).
Thus, collectively various studies suggest that blockade of

PD-1 signaling may inhibit immune suppression and sustain
antitumor immune responses in various cancers, including
glioma (Figure 3).

Immunotherapeutic Strategies Targeting
Suppressive TME of Glioma
Harnessing the immune system is becoming a novel and
most powerful approach to eradicate malignant cells in
cancer therapies (177). A range of different immunotherapies
targeting the immunosuppressive components of glioma
TME are currently being investigated (Figure 4). Since the
abundance of TAMs and microglia in glioma exert significant
tumor-promoting influence, various therapeutic strategies
which modulate their immunosuppressive functions have been
investigated (178). TAMs and microglia critically depend on
CSF-1R for multiple functions and blockade of CSF-1R has
shown therapeutic efficacy in glioma models and patients. In
TME, TAMs tend to exhibit tumorigenic M2 phenotype and
contribute to glioma development. However, when targeted by
CSF1R inhibitors, the TAMs could switch to an anti-tumorigenic
M1 phenotype and promote tumor cell death. Administration
of PLX3397, a pharmacological inhibitor of CSF-1R which
could cross the BBB, reduces the recruitment and invasion of

FIGURE 4 | Novel therapeutic strategies against the immunosuppressive TME of glioma. As multiple factors, like TAMs, microglia, MDSCs, Tregs and immune

checkpoint molecules, work together to enhance immunosuppression and progression of glioma, various strategies have been generated to target these processes.

The blockade of suppressive cell recruitment and migration, impairment of their activities, or direct depletion of these factors will synergistically promote the anti-tumor

immune responses and improve the prognosis of glioma patients.
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TAMs and microglia in vivo (179). Similarly, application of
another CSF-1R inhibitor, BLZ945, significantly blocked the
progression of established tumors and increased survival in
animal models. Interestingly, after treatment with BLZ945, the
remaining TAMs show less activated M2 markers with impaired
tumor-promoting functions (180). Although CSF1R inhibition is
expected to be a promising strategy for glioma treatment, another
study suggests the potential drug-resistance mechanisms. The
resistance to CSF1R inhibition might be mediated by elevated
activities of PI3K and IGF-1/IGF-1R pathways in TME.
Therefore, combining CSF-1R blockade with PI3K or IGF-
1R inhibition prolongs overall survival in recurrent gliomas
(181).

Immunosuppression induced by MDSCs also establishes a
huge barrier for immunotherapeutic approaches, and recent
therapies aimed at abolishing the activities of these cells
have shown to be effective in anti-tumor response. Blockade
of cyclooxygenase-2 (COX2) reduces the recruitment and
accumulation of MDSCs and leads to the elevated numbers
of cytotoxic T cells in glioma TME (182). Moreover, COX2
inhibitor greatly improves the efficacy of other immunotherapies
in glioma animal models with significantly prolonged survival
time compared with immunotherapy alone (183, 184). It has
been demonstrated that CCL2 is crucial in promoting infiltration
of MDSCs into tumor sites. Further, systemic administration of
CCL2 neutralizing antibody by itself or in combination with
temozolomide (TMZ) reduces accumulation of MDSCs and
enhances the survival of tumor bearing mice (185). A pre-clinical
CAR T cell therapy in mouse models shows that IL13Rα2-CAR
T cells not only enhance the abilities of tumor specific T cells
but also give rise to a decrease in MDSCs numbers during early
stage of treatment which suggests that reducingMDSCs numbers
might contribute to additional anti-glioma efficacy (186). For
instance, studies have demonstrated that elimination of MDSCs
in glioma TME by Gr-1 antibody strongly amplifies the TK/Flt3L
gene therapy induced tumor specific T cell response, which
results in increased median survival and percentage of long-term
survivors (187).

In addition to changing TAMs and MDSCs from an anti-
to pro-tumor phenotype, the glioma TME is able to recruit
Tregs to tumor site during early stages of tumor progression
and inhibit T cell functions. Additional studies are therefore
considering Tregs as potential target during immunotherapy
(188). Since IDO [indoleamine (2,3)-dioxygenase] expressed by
glioma cells is essential for recruitment of Tregs, the use of IDO
inhibitors has been shown to decrease the overall accumulation of
Tregs and enhance survival in established glioma (189). Another
immune checkpoint that is constitutively expressed on Tregs
is glucocorticoid-induced TNFR related protein (GITR), and
antibodies against GITR, provide another pathway for targeting
this suppressive cell type with promising data coming from
glioma models (190). Additionally, direct depletion of Tregs
through anti-CD25 treatment results in greater accumulation
of cytotoxic T cells and infiltration of non-immunosuppressive
MDSCs in glioma TME compared to control-treated mice,
thereby displaying complete protection against tumor challenge
(191).

For glioma immunotherapy, immune checkpoints have
received considerable interests due to their profound suppressive
potential. Although the list of various immune checkpoints is
growing fast, the most commonly studied molecules are PD-
1 and CTLA-4 which have already demonstrated promising
benefits in patients with glioma in numerous studies (192). The
anti-PD-1 antibody nivolumab (inhibitor of immune checkpoint)
has advanced farthest clinical development (NCT02550249).
The first large phase III trial for GBM initiated in 2014,
where nivolumab in recurrent GBM was either used alone
or in combination with the anti-CTLA-4 antibody ipilimumab
(NCT02017717). Further, pidilizumab, another PD-1 inhibitor,
is also being tested for diffuse intrinsic pontine glioma
and recurrent GBM (NCT01952769). Moreover, addition of
immune checkpoint blockade to conventional glioma treatments
has been recognized to enhance the therapeutic efficacy
and lead to ample benefits (193). In addition, synergy
between checkpoint inhibitors and radio-therapy has been
observed in preclinical studies with improved outcomes and
decreased toxicity and side effects (194, 195). In another phase
III clinical trial (NCT02617589), investigators are exploring
nivolumab as an alternative to TMZ, each in combination
with radiotherapy, in patients with newly diagnosed MGMT-
unmethylated tumors. Similarly, combination of checkpoint
inhibition with chemotherapy has also resulted in a favorable
outcome (196). While these synergistic combinations have
been proved as effective in enhancing antitumor immune
responses, ongoing clinical studies might reveal their benefit and
complement them as a standard therapeutic strategy in treating
the suppressive TME of glioma.

CONCLUSION

The studies targeting stem cells and microenvironment of
gliomas in recent years have shown that the progression
of gliomas critically relies on the functions of these two
components. Various components within the tumor bed such
as GSCs, different types of immune cells, cytokines, and
other molecules, in coordination with each other, contribute
to a more supportive TME which promotes glioma cell
growth and metastasis. Further investigation of GSCs and
the immunosuppressive phenotype caused by the TME will
provide opportunities to not only achieve a more comprehensive
understanding of tumor biology but also develop specific
medical therapies to target the weaknesses underlying tumor
development and attack tumor cells in more effective ways. For
example, various preclinical studies have clearly demonstrated
that combination immunotherapies such as vaccines, Treg
depletion, or immune checkpoint blockade, together with
chemotherapy have more profound outcomes compared to
conventional chemotherapy alone. However, in addition to
current advances in immunotherapy and glioma research,
additional studies are needed to determine the distinct biological
processes and immunosuppressive landscape of various subtypes
of glioma to further establish more advanced and personalized
treatment strategies.
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