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Chord Recognition in Symbolic Music: A Segmental 
CRF Model, Segment-Level Features, and Comparative 
Evaluations on Classical and Popular Music
Kristen Masada and Razvan Bunescu

We present a new approach to harmonic analysis that is trained to segment music into a sequence of 
chord spans tagged with chord labels. Formulated as a semi-Markov Conditional Random Field (semi-CRF), 
this joint segmentation and labeling approach enables the use of a rich set of segment-level features, 
such as segment purity and chord coverage, that capture the extent to which the events in an entire 
segment of music are compatible with a candidate chord label. The new chord recognition model is 
evaluated extensively on three corpora of Western classical music and a newly created corpus of rock 
music. Experimental results show that the semi-CRF model performs substantially better than previous 
approaches when trained on a sufficient number of labeled examples and remains competitive when the 
amount of training data is limited.
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1. Introduction and Motivation
Harmonic analysis is an important step towards creating 
high-level representations of tonal music. High-level 
structural relationships form an essential component of 
music analysis, whose aim is to achieve a deep understanding 
of how music works. At its most basic level, harmonic 
analysis of music in symbolic form requires the partitioning 
of a musical input into segments along the time dimension, 
such that the notes in each segment correspond to a 
musical chord. This chord recognition task can often be time 
consuming and cognitively demanding, hence the utility 
of computer-based implementations. Reflecting historical 
trends in artificial intelligence, automatic approaches to 
harmonic analysis have evolved from purely grammar-based 
and rule-based systems (Winograd, 1968; Maxwell, 1992), 
to systems employing weighted rules and optimization 
algorithms (Temperley and Sleator, 1999; Pardo and 
Birmingham, 2002; Scholz and Ramalho, 2008; Rocher et 
al., 2009), to data driven approaches based on supervised 
machine learning (ML) (Raphael and Stoddard, 2003; 
Radicioni and Esposito, 2010). Due to their requirements 
for annotated data, ML approaches have also led to the 
development of music analysis datasets containing a large 
number of manually annotated harmonic structures, 
such as the 60 Bach chorales introduced by Radicioni 
and Esposito (2010), and the 27 themes and variations of 
TAVERN (Devaney et al., 2015).

In this work, we consider the music to be in 
symbolic form, i.e. as a collection of notes specified 
in terms of onset, offset, pitch, and metrical position. 
Symbolic representations can be extracted from formats 
such as MIDI, kern, or MusicXML. A relatively common 
strategy in ML approaches to chord recognition in 
symbolic music is to break the musical input into 
a sequence of short duration spans and then train 
sequence tagging algorithms such as Hidden Markov 
Models (HMMs) to assign a chord label to each span 
in the sequence (bottom of Figure 1). The spans can 
result from quantization using a fixed musical period 
such as half a measure (Raphael and Stoddard, 2003). 
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Figure 1: Segment-based recognition (top) vs. event-
based recognition (bottom) on measures 11 and 12 from 
 Beethoven WoO68, using note onsets and offsets to cre-
ate event boundaries.
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Alternatively, they can be constructed from consecutive 
note onsets and offsets (Radicioni and Esposito, 2010), 
as we also do in this paper. Variable-length chord 
segments are then created by joining consecutive spans 
labeled with the same chord symbol (at the top in 
Figure 1). A significant drawback of these short-span 
tagging approaches is that they do not explicitly model 
candidate segments during training and inference, 
consequently they cannot use segment-level features. 
Such features are needed, for example, to identify 
figuration notes (Appendix B) or to help label segments 
that do not start with the root note. The chordal analysis 
system of Pardo and Birmingham (2002) is an example 
where the assignment of chords to segments takes into 
account segment-based features, however the features 
have pre-defined weights and it uses a processing 
pipeline where segmentation is done independently of 
chord labeling.

In this paper, we propose a machine learning 
approach to chord recognition formulated under the 
framework of semi-Markov Conditional Random Fields 
(semi-CRFs). Also called segmental CRFs, this class of 
probabilistic graphical models can be trained to do joint 
segmentation and labeling of symbolic music (Section 
2), using efficient Viterbi-based inference algorithms 
whose time complexity is linear in the length of the 
input. The system employs a set of chord labels (Section 
3) that correspond to the main types of tonal music 
chords (Appendix A) found in the evaluation datasets. 
Compared to HMMs and sequential CRFs which 
label the events in a sequence, segmental CRFs label 
candidate segments, as such they can exploit segment-
level features. Correspondingly, we define a rich set of 
features that capture the extent to which the events 
in an entire segment of music are compatible with a 
candidate chord label (Section 4). The semi-CRF model 
incorporating these features is evaluated on three 
Western classical music datasets and a newly created 
dataset of Western pop music (Section 5). Experimental 
comparisons with two previous chord recognition 
models show that segmental CRFs obtain substantial 
improvements in performance on the three larger 
datasets, while also being competitive with the previous 
approaches on the smaller dataset (Section 6).

2. Semi-CRF Model for Chord Recognition
Since harmonic changes may occur only when notes begin 
or end, we first create a sorted list of all the note onsets 
and offsets in the input music, i.e. the list of partition 
points (Pardo and Birmingham 2002), shown as vertical 
dotted lines in Figure 1. A basic music event (Radicioni 
and Esposito, 2010) is then defined as the set of pitches 
sounding in the time interval between two consecutive 
partition points. As an example, Table 1 provides the 
pitches and overall duration for each event shown in 
Figure 2. The segment number and chord label associated 
with each event are also included. Not shown in this table 
is a boolean value for each pitch indicating whether or not 
it is held over from the previous event. For instance, this 
value would be false for C5 and E5 appearing in event e5, 

but true for C5 and E5 in event e6.
Let s = 〈s1, s2, …, sK〉 denote a segmentation of the 

musical input x, where a segment sk = 〈sk.f, sk.l〉 is 
identified by the positions sk.f and sk.l of its first and last 
events, respectively. Let y = 〈y1, y2, …, yK〉 be the vector 
of chord labels corresponding to the segmentation s. 
A semi-Markov CRF (Sarawagi and Cohen, 2004) defines 
a probability distribution over segmentations and their 
labels as shown in Equations 1 and 2. Here, the global 
segmentation feature vector F decomposes as a sum of 
local segment feature vectors f(sk, yk, yk–1, x), with label y0 
set to a constant “no chord” value.

 
( , , )

( , | , )
( )

T
e

P
Z

=
w F s y x

s y x w
x

 (1)

 1
1

( , , ) ( , , , )
K

k k k
k

s y y −
=

=∑F s y x f x  (2)

where ( , , )( )
T

eZ
s , y

w F s y xx
′ ′

′ ′= Σ  and w is a vector of parameters.
Following Muis and Lu (Muis and Lu, 2016), for faster 

inference, we further restrict the local segment features 
to two types: segment-label features f(sk, yk, x) that depend 
on the segment and its label, and label transition features 
g(yk, yk–1, x) that depend on the labels of the current 

Table 1: Input representation for measure 12 from 
 Beethoven WoO68, showing the pitches and duration 
for each event, as well as the corresponding segment 
and label, where G7 stands for G:maj:add7, and C stands 
for C:maj.

Seg. Label Event Pitches Len.

s1 G7 e1 G3, B3, D4, G5 1/8

G7 e2 G3, B3, D4, F5 1/8

G7 e3 B4, D5 3/16

G7 e4 B4, D5 1/16

s2 C e5 C4, C5, E5 1/8

C e6 G3, C5, E5 1/8

C e7 E3, G4, C5, E5 1/8

C e8 C3, G4, C5, E5 1/8

Figure 2: Segment and labels (top) vs. events (bottom) for 
measure 12 from Beethoven WoO68.
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and previous segments. The corresponding probability 
distribution over segmentations is shown in Equations 3 
to 5, which use two vectors of parameters: w for segment-
label features and u for transition features.

 
( , , ) ( , , )

( , | , , )
( )

T T
e

P
Z

+

=
w F s y x u G s y x

s y x w u
x

 (3)

 
1

( , , ) ( , , )
K

k k
k

s y
=

=∑F s y x f x  (4)

 
1

1

( , , ) ( , , )
K

k k
k

y y −
=

=∑G s y x g x  (5)

Given an arbitrary segment s and a label y, the vector of 
segment-label features can be written as f(s, y, x) = [f1(s, 
y), …, f|f|(s, y)], where the input x is left implicit in order 
to compress the notation. Similarly, given arbitrary labels 
y and y’, the vector of label transition features can be 
written as g(y, y’, x) = [g1(y, y’), …, g|g|(y, y’)]. In Section 4 we 
describe the set of segment-label features fi(s, y) and label 
transition features gj(y, y’) that are used in our semi-CRF 
chord recognition system.

As probabilistic graphical models, semi-CRFs can be 
represented using factor graphs, as illustrated in Figure 3. 
Factor graphs (Kschischang et al., 2001) are bipartite graphs 
that express how a global function (e.g. P(s, y|x, w, u)) of 
many variables (e.g. sk, yk, and x) factorizes into a product 
of local functions, or factors, (e.g. f and g) defined over 
fewer variables.

Equations 4 and 5 show that the contribution of any 
given feature to the final log-likelihood score is given 
by summing up its value over all the segments (for 
local features f) or segment pairs (for local features g). 
This design choice stems from two assumptions. First, we 
adopt the stationarity assumption, according to which 
the segment-label feature distribution does not change 
with the position in the music. Second, we use the 
Markov assumption, which implies that the label of a 
segment depends only on its boundaries and the labels 
of the adjacent segments. This assumption leads to the 
factorization of the probability distribution into a product 
of potentials. Both the stationarity assumption and the 
Markov assumption are commonly used in ML models 
for structured outputs, such as linear CRFs (Lafferty et 
al., 2001), semi-CRFs (Sarawagi and Cohen, 2004), HMMs 
(Rabiner, 1989), structural SVMs (Tsochantaridis et al., 
2004), or the structured perceptron (Collins, 2002) used 
in HMPerceptron. These assumptions lead to summing 

the same feature over multiple substructures in the 
overall output score, which makes inference and learning 
tractable using dynamic programming.

The inference problem for semi-CRFs refers to finding 
the most likely segmentation ŝ and its labeling ŷ for an 
input x, given the model parameters. For the weak semi-
CRF model in Equation 3, this corresponds to:
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The maximum is taken over all possible labeled 
segmentations of the input, up to a maximum segment 
length. Correspondingly, s and y can be seen as “candidate” 
segmentations and “candidate” labelings, respectively. 
Their number is exponential in the length of the input, 
which rules out a brute-force search. However, due to the 
factorization into vectors of local features fi(s, y) and gj(y, 
y’), it can be shown that the optimization problem from 
Equation 8 can be solved with a semi-Markov analogue 
of the usual Viterbi algorithm. Let the constant L be a 
maximum segment length. Following (Sarawagi and 
Cohen, 2004), let V(i, y) denote the largest value wTF(s̃, ỹ, x) 
+ uT G(s̃ , ỹ, x)} of a partial segmentation s̃ such that its last 
segment ends at position i and has label y. Then V(i, y) can 
be computed with the following dynamic programming 
recursion for i = 1, 2, …, |x|:
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where the base cases are V(0, y) = 0 and V(j, y) = –∞ if 
j < 0, and 〈i – l + 1, i〉 denotes the segment starting at 
position i – l + 1 and ending at position i. Once V(|x|, y) is 
computed for all labels y, the best labeled segmentation 
can be recovered in linear time by following the path 
traced by maxy V(|x|, y). 

The learning problem for semi-CRFs refers to finding the 
model parameters that maximize the likelihood over a set of 
training sequences   1, , N

n n n nT  x s y . Usually this is done 
by minimizing the negative log-likelihood –L(T; w, u) and an 
L2 regularization term, as shown below for weak semi-CRFs:
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This is a convex optimization problem, which is solved 
with the L-BFGS procedure in the StatNLP package used 
to implement our system. The partition function Z(x) and 
the feature expectations that appear in the gradient of 
the objective function are computed efficiently using a Figure 3: Factor graph representation of the semi-CRF.
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dynamic programming algorithm similar to the forward-
backward procedure (Sarawagi and Cohen, 2004).

3. Chord Recognition Labels
A chord is a group of notes that form a cohesive harmonic 
unit to the listener when sounding simultaneously 
(Aldwell et al., 2011). As explained in Appendix A, we 
design our system to handle the following types of 
chords: triads, augmented 6th chords, suspended chords, 
and power chords. The chord labels used in previous chord 
recognition research range from coarse grained labels that 
indicate only the chord root (Temperley and Sleator, 1999) 
to fine grained labels that capture mode, inversions, added 
and missing notes (Harte, 2010), and even chord function 
(Devaney et al., 2015). Here we follow the middle ground 
proposed by Radicioni and Esposito (2010) and define a 
core set of labels for triads that encode the chord root 
(12 pitch classes), the mode (major, minor, diminished), 
and the added note (none, fourth, sixth, seventh), for 
a total of 144 different labels. For example, the label 
C-major-none for a simple C major triad corresponds to 
the combination of a root of C with a mode of major and 
no added note. This is different from the label C-major-
seventh for a C major seventh chord, which corresponds 
to the combination of a root of C with a mode of major 
and an added note of seventh. Note that there is only 
one generic type of added seventh note, irrespective of 
whether the interval is a major, minor, or diminished 
seventh, which means that a C major seventh chord and a 
C dominant seventh chord are mapped to the same label. 
However, once the system recognizes a chord with an 
added seventh, determining whether it is a major, minor, 
or diminished seventh can be done accurately in a simple 
post-processing step: determine if the chord contains a 
non figuration note (defined in Appendix B) that is 11, 
10, or 9 half steps from the root, respectively, inverted or 
not, modulo 12. Once the type of the seventh interval is 
determined, it is straightforward to determine the type 
of seventh chord (dominant, major, minor, minor-major, 
fully diminished, or half-diminished) based on the mode 
of the chord (major, minor, or diminished).

Augmented sixth chords are modeled through a set of 
36 labels that capture the lowest note (12 pitch classes) 
and the 3 types (Appendix A.2). Similarly, suspended and 
power chords are modeled through a set of 48 labels that 
capture the root note (12 pitch classes) and the 4 types 
(Appendix A.3).

Because the labels do not encode for function, the 
model does not require knowing the key in which the 
input was written. While the number of labels may seem 
large, the number of parameters in our model is largely 
independent of the number of labels. This is because we 
design the chord recognition features (Section 4) to not 
test for the chord root, which also enables the system to 
recognize chords that were not seen during training. The 
decision to not use the key context was partly motivated by 
the fact that 3 of the 4 datasets we used for experimental 
evaluation do not have functional annotations (see Section 
5). Additionally, complete key annotation can be difficult 
to perform, both manually and automatically. Key changes 

occur gradually, thus making it difficult to determine the 
exact location where one key ends and another begins 
(Papadopoulos and Peeters, 2009). This makes locating 
modulations and tonicizations difficult and also hard to 
evaluate (Gómez, 2006). At the same time, we recognize 
that harmonic analysis is not complete without functional 
analysis. Functional analysis features could also benefit 
the basic chord recognition task described in this paper. 
In particular, the chord transition features that we define 
in Appendix C.4 depend on the absolute distance in 
half steps between the roots of the chords. However, 
a V-I transition has a different distribution than a I-IV 
transition, even though the root distance is the same. 
Chord transition distributions also differ between minor 
and major keys. As such, using key context could further 
improve chord recognition.

4. Chord Recognition Features
The semi-CRF model uses five major types of features, 
as described in detail in Appendix C. Segment purity 
features compute the percentage of segment notes that 
belong to a given chord (Appendix C.1). We include 
these on the grounds that segments with a higher purity 
with respect to a chord are more likely to be labeled 
with that chord. Chord coverage features determine if 
each note in a given chord appears at least once in the 
segment (Appendix C.2). Similar to segment purity, if 
the segment covers a higher percentage of the chord’s 
notes, it is more likely to be labeled with that chord. Bass 
features determine which note of a given chord appears 
as the bass in the segment (Appendix C.3). For a correctly 
labeled segment, its bass note often matches the root 
of its chord label. If the bass note instead matches the 
chord’s third or fifth, or is an added dissonance, this may 
indicate that the chord y is inverted or incorrect. Chord 
bigram features capture chord transition information 
(Appendix C.4). These features are useful in that the 
arrangement of chords in chord progressions is an 
important component of harmonic syntax. Finally, we 
include metrical accent features for chord changes, as 
chord segments are more likely to begin on accented 
beats (Appendix C.5).

5. Chord Recognition Datasets
For evaluation, we used four chord recognition datasets:

1. BaCh: this is the Bach Choral Harmony Dataset, a 
corpus of 60 four-part Bach chorales that contains 
5,664 events and 3,090 segments in total (Radicioni 
and Esposito, 2010).

2. TAVERN: this is a corpus of 27 complete sets of 
themes and variations for piano, composed by 
 Mozart and Beethoven. It consists of 63,876 events 
and 12,802 segments overall (Devaney et al., 2015).

3. KP Corpus: the Kostka-Payne corpus is a dataset of 
46 excerpts compiled by Bryan Pardo from Kostka 
and Payne’s music theory textbook. It contains 3,888 
events and 911 segments (Kostka and Payne, 1984).

4. Rock: this is a corpus of 59 pop and rock songs 
that we compiled from Hal Leonard’s The Best 
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Rock Songs Ever (Easy Piano) songbook. It is 25,621 
events and 4,221 segments in length.

5.1. The Bach Chorale (BaCh) Dataset
The BaCh corpus has been annotated by a human expert 
with chord labels, using the set of triad labels described 
in Section 3. Of the 144 possible labels, 102 appear in 
the dataset and of these only 68 appear 5 times or more. 
Some of the chord labels used in the manual annotation 
are enharmonic, e.g. C-sharp major and D-flat major, or 
D-sharp major and E-flat major. Reliably producing one of 
two enharmonic chords cannot be expected from a system 
that is agnostic of the key context. Therefore, we normalize 
the chord labels and for each mode we define a set of 12 
canonical roots, one for each scale degree. When two 
enharmonic chords are available for a given scale degree, 
we selected the one with the fewest sharps or flats in the 
corresponding key signature. Consequently, for the major 
mode we use the canonical root set {C, Db, D, Eb, E, F, Gb, G, 
Ab, A, Bb, B}, whereas for the minor and diminished modes 
we used the root set {C, C#, D, D#, E, F, F#, G, G#, A, Bb, 
B}. Thus, if a chord is manually labeled as C-sharp major, 
the label is automatically changed to the enharmonic 
D-flat major. The actual chord notes used in the music are 
left unchanged. Whether they are spelled with sharps or 
flats is immaterial, as long as they are enharmonic with 
the root, third, fifth, or added note of the labeled chord. 
After performing enharmonic normalization on the chords 
in the dataset, 90 labels remain.

5.2. The TAVERN Dataset
The TAVERN dataset1 currently contains 17 works by 
Beethoven (181 variations) and 10 by Mozart (100 
variations). The themes and variations are divided into a 
total of 1,060 phrases, 939 in major and 121 in minor. 
The pieces have two levels of segmentations: chords and 
phrases. The chords are annotated with Roman numerals, 
using the Humdrum representation for functional 
harmony.2 When finished, each phrase will have 
annotations from two different experts, with a third expert 
adjudicating cases of disagreement between the two. 
After adjudication, a unique annotation of each phrase is 
created and joined with the note data into a combined 
file encoded in standard **kern format. However, many 
pieces do not currently have the second annotation or the 
adjudicated version. Consequently, we only used the first 
annotation for each of the 27 sets. Furthermore, since our 
chord recognition approach is key agnostic, we developed 
a script that automatically translated the Roman numeral 
notation into the key-independent canonical set of labels 
used in BaCh. Because the TAVERN annotation does not 
mark added fourth notes, the only added chords that were 
generated by the translation script were those containing 
sixths and sevenths. This results in a set of 108 possible 
labels, of which 69 appear in the dataset.

5.3. The Kostka and Payne Corpus
The Kostka-Payne (KP) corpus3 does not contain chords 
with added fourth or sixth notes. However, it includes 
fine-grained chord types that are outside of the label set 

of triads described in Section 3, such as fully and half-
diminished seventh chords, dominant seventh chords, 
and dominant seventh flat ninth chords. We map these 
seventh chord variants to the generic seventh chords, as 
discussed in Section 3. Chords with ninth intervals are 
mapped to the corresponding chord without the ninth in 
our label set. The KP Corpus also contains the three types 
of augmented 6th chords introduced in Appendix A.2. 
Thus, by extending our chord set to include augmented 
6th labels, there are 12 roots × 3 triad modes × 2 added 
notes + 12 bass notes × 3 aug6 modes = 108 possible 
labels overall. Of these, 76 appear in the dataset.

A number of MIDI files in the KP corpus contain 
unlabeled sections at the beginning of the excerpt. 
These sections also appear as unlabeled in the original 
Kostka-Payne textbook. We omitted these sections from 
our evaluation, and also did not include them in the KP 
Corpus event and segment counts. Bryan Pardo’s original 
MIDI files for the KP Corpus also contain several missing 
chords, as well as chord labels that are shifted from their 
true onsets. We used chord and beat list files sent to us by 
David Temperley to correct these mistakes.

5.4. The Rock Dataset
To evaluate the system’s ability to recognize chords in a 
different genre, we compiled a corpus of 59 pop and rock 
songs from Hal Leonard’s The Best Rock Songs Ever (Easy 
Piano) songbook. Like the KP Corpus, the Rock dataset 
contains chords with added ninths—including major ninth 
chords and dominant seventh chords with a sharpened 
ninth—as well as inverted chords. We omit the ninth and 
inversion numbers in these cases. Unique from the other 
datasets, the Rock dataset also possesses suspended and 
power chords. We extend our chord set to include these, 
adding suspended second, suspended fourth, dominant 
seventh suspended fourth, and power chords. We use 
the major mode canonical root set for suspended second 
and power chords and the minor canonical root set for 
suspended fourth chords, as this configuration produces 
the least number of accidentals. In all, there are 12 roots × 
3 triad modes × 4 added notes + 12 roots × 4 sus and pow 
modes = 192 possible labels, with only 48 appearing in 
the dataset.

Similar to the KP Corpus, unlabeled segments occur 
at the beginning of some songs, which we omit from 
evaluation. Additionally, the Rock dataset uses an N.C. 
(i.e. no chord) label for some segments. We broke songs 
containing this label into subsections consisting of the 
segments occurring before and after each N.C. segment, 
discarding subsections less than three measures long.

To create the Rock dataset, we converted printed sheet 
music to MusicXML files using the optical music recognition 
(OMR) software PhotoScore.4 We noticed in the process of 
making the dataset that some of the originally annotated 
labels were incorrect. For instance, some segments with 
added note labels were missing the added note, while 
other segments were missing the root or were labeled with 
an incorrect mode. We automatically detected these cases 
and corrected each label by hand, considering context and 
genre-specific theory. We also omitted two songs (‘Takin’ 
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Care of Business’ and ‘I Love Rock N’ Roll’) from the 61 
songs in the original Hal Leonard songbook, the former 
because of its atonality and the latter because of a high 
percentage of mistakes in the original labels.

6. Experimental Evaluation
We implemented the semi-Markov CRF chord recognition 
system using a multi-threaded package5 that has been 
previously used for noun-phrase chunking of informal text 
(Muis and Lu, 2016). The maximum segment length used 
in the Viterbi procedure from Equation 9 was set to L = 20. 
At training time, segments that had more than L events 
were broken into segments of length L or less. At test time, 
the chord segmentation computed by the system was post-
processed by consolidating any sequence of consecutive 
segments that had the same label into one long segment.

The following sections describe the experimental results 
obtained on the four datasets from Section 5 for: our 
semi-CRF system; Radicioni and Esposito’s perceptron-
trained HMM system, HMPerceptron; and Temperley’s 
computational music system, Melisma Music Analyzer.6 
When interpretting these results, it is important to 
consider a number of important differences among the 
three systems:

• HMPerceptron and semi-CRF are data driven, there-
fore their performance depends on the number of 
training examples available. Both approaches are 
agnostic of music theoretic principles such as har-
mony changing primarily on strong metric positions, 
however they can learn such tendencies to the extent 
they are present in the training data.

• Compared to HMPerceptron, semi-CRFs can use 
segment-level features. Besides this conceptual dif-
ference, the semi-CRF system described here uses a 
much larger number of features than the HMPercep-
tron system, which by itself can lead to better perfor-
mance but may also require more training examples.

• Both Melisma and HMPerceptron use metrical ac-
cents automatically induced by Melisma, whereas 
semi-CRF uses the Music21 accents derived from the 
notated meter. The more accurate notated meter 
could favor the semi-CRF system, although results in 
Section 6.1 show that, at least on BaCh, HMPercep-
tron does not benefit from using the notated meter.

Table 2 shows a summary of the full chord and root-
level experimental results provided in this section. 
Two overall types of measures are used to evaluate a 
system’s performance on a dataset: event-level accuracy 
(AccE) and segment-level F-measure (FS). AccE simply refers 
to the percentage of events for which the system predicts 
the correct label out of the total number of events 
in the dataset. Segment-level F-measure is computed 
based on precision and recall, two evaluation measures 
commonly used in information retrieval (Baeza-Yates and 
Ribeiro-Neto, 1999), as follows:

• Precision (PS) is the percentage of segments predicted 
correctly by the system out of the total number of 
segments that it predicts (correctly or incorrectly) for 

all pieces in the dataset.
• Recall (RS) is the percentage of segments  predicted 

correctly out of the total number of segments 
 annotated in the original score for all pieces 
in the dataset.

• F-Measure (FS) is the harmonic mean between PS and 
RS, i.e. FS = 2PSRS/ (PS + RS).

Note that a predicted segment is considered correct if and 
only if both its boundaries and its label match those of a 
true segment.

6.1. BaCh Evaluation
We evaluated the semi-CRF model on BaCh using 
10-fold cross validation: the 60 Bach chorales were 
randomly split into a set of 10 folds, and each fold 
was used as test data, with the other nine folds being 
used for training. We then evaluated HMPerceptron 
using the same randomly generated folds to enable 
comparison with our system. However, we noticed 
that the performance of HMPerceptron could vary 
significantly between two different random partitions 
of the data into folds. Therefore, we repeated the 
10-fold cross validation experiment 10 times, each 
time shuffling the 60 Bach chorales and partitioning 
them into 10 folds. For each experiment, the test 
results from the 10 folds were pooled together and one 
value was computed for each performance measure 
(accuracy, precision, recall, and F-measure). The overall 
performance measures for the two systems were then 
computed by averaging over the 10 values (one from 
each experiment). The sample standard deviation for 
each performance measure was also computed over 
the same 10 values.

For semi-CRF, we computed the frequency of 
occurrence of each feature in the training data, using 
only the true segment boundaries and their labels. To 
speed up training and reduce overfitting, we only used 
features whose counts were at least 5. The performance 
measures were computed by averaging the results from 
the 10 test folds for each of the fold sets. Table 3 shows 
the averaged event-level and segment-level performance 
of the semi-CRF model, together with two versions of 
the HMPerceptron: HMPerceptron1, for which we do 
enharmonic normalization both on training and test 
data, similar to the normalization done for semi-CRF; 
and HMPerceptron2, which is the original system from 
(Radicioni and Esposito, 2010) that does enharmonic 
normalization only on test data.

The semi-CRF model achieves a 6.2% improvement 
in event-level accuracy over the original model 
HMPerceptron2, which corresponds to a 27.0% relative 
error reduction.7 The improvement in accuracy over 
HMPerceptron1 is statistically significant at an averaged 
p-value of 0.001, using a one-tailed Welch’s t-test over the 
sample of 60 chorale results for each of the 10 fold sets. 
The improvement in segment-level performance is even 
more substantial, with a 7.8% absolute improvement 
in F-measure over the original HMPerceptron2 model, 
and a 7.6% improvement in F-measure over the 
HMPerceptron1 version, which is statistically significant 
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at an averaged p-value of 0.002, using a one-tailed 
Welch’s t-test. The standard deviation values computed 
for both event-level accuracy and F-Measure are about 
one order of magnitude smaller for semi-CRF than for 
HMPerceptron, demonstrating that the semi-CRF is also 
more stable than the HMPerceptron. As HMPerceptron1 
outperforms HMPerceptron2 in both event and 
segment-level accuracies, we will use HMPerceptron1 
for the remaining evaluations and will simply refer to it 
as HMPerceptron.

We also evaluated performance in terms of predicting 
the correct root of the chord, e.g. if the true chord label 
were C:maj, a predicted chord of C:maj:add7 would still 
be considered correct, because it has the same root 
as the correct label. We performed this evaluation for 
semi-CRF, HMPerceptron, and the harmony component 
of Temperley’s Melisma. The results in Table 4 show 
that semi-CRF improves upon the event-level accuracy 
of HMPerceptron by 4.1%, producing a relative error 
reduction of 27.0%, and that of Melisma by 4.6%. Semi-
CRF also achieves an F-measure that is 7.2% higher than 
HMPerceptron and 9.5% higher than Melisma. These 
improvements are statistically significant with a p-value 
of 0.01 using a one-tailed Welch’s t-test.

Metrical accent is important for harmonic analysis: 
chord changes tend to happen in strong metrical 
positions; figurations such as passing and neighboring 
tones appear in metrically weak positions, whereas 
suspensions appear on metrically strong beats. We 
verified empirically the importance of metrical accent 
by evaluating the semi-CRF model on a random fold set 
from the BaCh corpus with and without all accent-based 
features. The results from Table 5 show a substantial 
decrease in accuracy when the accent-based features are 
removed from the system.

Finally, we ran an evaluation of HMPerceptron 
on a random fold set from BaCh in two scenarios: 
HMPerceptron with Melisma metrical accent and 
HMPerceptron with Music21 accent. The results did not 
show a significant difference: with Melisma accent the 
event accuracy was 79.8% for an F-measure of 70.2%, 
whereas with Music21 accent the event accuracy was 
79.8% for an F-measure of 70.3%. This negligible 
difference is likely due to the fact that HMPerceptron 
uses only coarse-grained accent information, i.e. whether 
a position is accented (Melisma accent 3 or more) or not 
accented (Melisma accent less than 3).

6.1.1. BaCh Error Analysis
Error analysis revealed wrong predictions being made 
on chords that contained dissonances that spanned the 
duration of the entire segment (e.g. a second above the 
root of the annotated chord), likely due to an insufficient 
number of such examples during training. Manual 
inspection also revealed a non-trivial number of cases 
in which we disagreed with the manually annotated 
chords, e.g. some chord labels were clear mistakes, as 
the corresponding segments did not contain any of the 
notes in the chord. This further illustrates the necessity 
of building music analysis datasets that are annotated by 
multiple experts, with adjudication steps akin to the ones 
followed by TAVERN.

6.2. TAVERN Evaluation
To evaluate on the TAVERN corpus, we created a fixed 
training-test split: 6 Beethoven sets (B063, B064, B065, 
B066, B068, B069) and 4 Mozart sets (K025, K179, 
K265, K353) were used for testing, while the remaining 
11 Beethoven sets and 6 Mozart sets were used for 
training. All sets were normalized enharmonically 

Table 2: Dataset statistics and summary of results (event-level accuracy AccE and segment-level F-measure FS).

Dataset Statistics Full chord evaluation Root-level evaluation

semi-CRF HMPerceptron semi-CRF HMPerceptron Melisma

Events Seg.’s Labels AccE FS AccE FS AccE FS AccE FS AccE FS

BaCh 5,664 3,090 90 83.2 77.5 77.2 69.9 88.9 84.2 84.8 77.0 84.3 74.7

TAVERN 63,876 12,802 69 78.0 64.0 57.0 22.5 86.0 71.4 69.2 33.2 76.7 41.5

KPCorpus 3,888 911 76 73.0 53.0 72.9 45.4 79.3 59.0 79.0 51.9 81.9 62.2

Rock 25,621 4,221 48 70.1 55.9 61.3 34.6 86.1 65.1 80.7 42.9 77.9 36.3

Table 3: Comparative results (%) and standard  deviations 
on the BaCh dataset, using Event-level accuracy (AccE) 
and Segment-level precision (PS), recall (RS), and 
F-measure (FS).

BaCh: Full chord evaluation

System AccE PS RS FS

semi-CRF 83.2
0.2

79.4
0.2

75.8
0.2

77.5
0.2

HMPerceptron1 77.2
2.1

71.2
2.0

68.8
2.2

69.9
1.8

HMPerceptron2 77.0
2.1

71.0
2.0

68.5
2.3

69.7
1.8

Table 4: Root only results (%) on the BaCh dataset, 
using Event-level accuracy (AccE) and Segment-level 
 precision (PS), recall (RS), and F-measure (FS).

BaCh: Root only evaluation

System AccE PS RS FS

semi-CRF 88.9 85.4 83.0 84.2

HMPerceptron 84.8 78.0 76.2 77.0

Melisma 84.3 73.2 76.3 74.7



Masada and Bunescu: Chord Recognition in Symbolic Music8 

before being used for training or testing. Table 6 
shows the event-level and segment-level performance 
of the semi-CRF and HMPerceptron model on the 
TAVERN dataset.

As shown in Table 6, semi-CRF outperforms 
HMPerceptron by 21.0% for event-level chord evaluation 
and by 41.5% in terms of chord-level F-measure. Root 
only evaluations provided in Table 7 reveal that  semi-
CRF improves upon HMPerceptron’s event-level root 
accuracy by 16.8% and Melisma’s event accuracy by 9.3%. 
Semi-CRF also produces a segment-level F-measure value 
that is 38.2% higher than that of HMPerceptron and 
29.9% higher than that of Melisma. These improvements 
are statistically significant with a p-value of 0.01 using a 
one-tailed Welch’s t-test.

6.2.1. TAVERN Error Analysis
The results in Tables 3 and 6 show that chord recognition 
is substantially more difficult in the TAVERN dataset than in 
BaCh. The comparatively lower performance on TAVERN is 
likely due to the substantially larger number of figurations 
and higher rhythmic diversity of the variations compared 
to the easier, mostly note-for-note texture of the chorales. 
Error analysis on TAVERN revealed many segments where 
the first event did not contain the root of the chord, such 
as in Figures 4 and 5. For such segments, HMPerceptron 
incorrectly assigned chord labels whose root matched 
the bass of this first event. Since a single wrongly labeled 
event invalidates the entire segment, this can explain the 

larger discrepancy between the event-level accuracy and 
the segment-level performance. In contrast, semi-CRF 
assigned the correct labels in these cases, likely due to its 
ability to exploit context through segment-level features, 
such as the chord root coverage feature f4 and its duration-
weighted version f11. In the case of Figure 4, C# appears in 
the bass of the first beat of the measure and HMPerceptron 
incorrectly predicts a segment with label C#:dim for this 
beat. In contrast, semi-CRF correctly predicts the label 
A:maj7 for this segment. In Figure 5, semi-CRF correctly 
predicts a C:maj segment that lasts for the entirety of the 
measure, while HMPerceptron predicts an E:min segment 
for the first beat, as E appears doubled in the bass here.

6.3. KP Corpus Evaluation
To evaluate on the full KP Corpus dataset, we split the 
excerpts into 11 folds. In this configuration, 9 folds 
contain 4 excerpts each, while the remaining 2 folds 
contain 5 excerpts. We then created two versions of semi-
CRF: the original system without augmented 6th chord 
features (semi-CRF1) and a system with augmented 6th 
features (semi-CRF2). We tested both versions on all 46 
excerpts, as shown in Table 8. We could not perform the 
same evaluation on HMPerceptron because it was not 
designed to handle augmented 6th chords.

The results in Table 8 demonstrate the utility of adding 
augmented 6th chord features to our system, as semi-
CRF2 outperforms semi-CRF1 on all measures. We will use 

Table 5: Full chord Event (AccE) and Segment-level (PS, RS, 
FS) results (%) on the BaCh dataset, with and without 
metrical accent features.

BaCh: Metrical accent evaluation of semi-CRF

System AccE PS RS FS

With accent 83.6 79.6 75.9 77.6

Without accent 77.7 74.8 68.0 71.2

Table 6: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the TAVERN dataset.

TAVERN: Full chord evaluation

System AccE PS RS FS

semi-CRF 78.0 67.3 60.9 64.0

HMPerceptron 57.0 24.5 20.8 22.5

Table 7: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the TAVERN dataset.

TAVERN: Root only evaluation

System AccE PS RS FS

semi-CRF 86.0 74.6 68.4 71.4

HMPerceptron 69.2 38.2 29.4 33.2

Melisma 76.7 42.3 40.7 41.5

Figure 4: Semi-CRF correctly predicts A:maj7 (top) for 
the first beat of measure 55 from Mozart K025, while 
 HMPerceptron predicts C#:dim (bottom).

Figure 5: Semi-CRF correctly predicts C:maj (top) for all of 
measure 280 from Mozart K179, while HMPerceptron 
 predicts E:min (bottom) for the first beat and C:maj for 
the other two beats (bottom).
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semi-CRF2 for the rest of the evaluations in this section, 
simply calling it semi-CRF.

We additionally perform root only evaluation on the 
full dataset for semi-CRF and Melisma. We ignore events 
that belong to the true augmented 6th chord segments 
when computing the root accuracies for both systems, as 
augmented 6th chords technically do not contain a root 
note. As shown in Table 9, Melisma is only marginally 
better than semi-CRF in terms of event-level root accuracy, 
however it has a segment-level F-measure that is 1.1% better.

To enable comparison with HMPerceptron, we also 
evaluate all systems on the 36 excerpts that do not contain 
augmented 6th chords. Because of the reduced number 
of excerpts available for training, we used leave-one-out 
evaluation for both semi-CRF and HMPerceptron. Table 10 
shows that semi-CRF obtains a marginal improvement 
in chord event accuracy and a more substantial 7.6% 
improvement in segment-level F-measure in comparison 
with HMPerceptron. The comparative results in Table 11 
show that Melisma outperforms both machine learning 
systems for root only evaluation. Nevertheless, the semi-
CRF is still competitive with Melisma in terms of both 
event-level accuracy and segment-level F-measure.

We additionally compare semi-CRF against the HarmAn 
algorithm created by Pardo and Birmingham (2002), which 
achieves a 75.8% event-level accuracy on the KP Corpus. 
We made several modifications to the initial evaluation of 
semi-CRF on the full KP Corpus to enable this comparison. 
For instance, Pardo and Birmingham omit a Schumann 
piece from their evaluation, testing HarmAn on 45 excerpts 
instead of 46. We omitted this piece as well. They also look 
at the labels that appear in the dataset beforehand, ignoring 
any segments whose correct labels are chords that appear 
less than 2% of the time when rounded. We followed suit 
with this, ignoring segments labeled with augmented 6th 
chords and other less common labels. Overall, semi-CRF 
obtains an event-level accuracy of 75.3%, demonstrating 
that it is competitive with HarmAn. However, it is important 
to note that these results are still not fully comparable: 
sometimes HarmAn predicts multiple labels for a single 
segment, and when the correct label is among these, Pardo 

and Birmingham divide by the number of labels the system 
predicts and consider this fractional value to be correct. 
In contrast, semi-CRF always predicts one label per segment.

6.3.1. KP Corpus Error Analysis
Both machine learning systems struggled on the KP 
corpus, with Melisma performing better on both event-
level accuracy and segment-level F-measure. This can be 
explained by the smaller dataset, and thus the smaller 
number of available training examples. The KP corpus was 
the smallest of the four datasets, especially in terms of the 
number of segments – less than a third compared to BaCh, 
and less than a tenth compared to TAVERN. Furthermore, the 
textbook excerpts are more diverse, as they are taken from 11 
composers and are meant to illustrate a wide variety of music 
theory concepts, leading to mismatch between the training 
and test distributions and thus lower test performance.

6.4. Rock Evaluation
We split the 59 songs in the rock dataset into 10 folds: 9 
folds with 6 songs and 1 fold with 5 songs. Similar to the 
full KP Corpus evaluation from Section 6.3, we create two 
versions of the semi-CRF model. The first is the original 
semi-CRF system (semi-CRF1) which does not contain 
suspended and power chord features. The second is a new 
version of semi-CRF (semi-CRF3) which has suspended 
and power chord features added to it. We do not include 
HMPerceptron in the evaluation of the full dataset, as it is 
not designed for suspended and power chords.

As shown in Table 12, semi-CRF3 obtains higher event 
and segment-level accuracies than semi-CRF1. Therefore, we 
use semi-CRF3 for the rest of the experiments, simply 
calling it semi-CRF.

We perform root only evaluation on the full Rock 
dataset using semi-CRF and Melisma. In this case, it is 
not necessary to omit the true segments whose labels 
are suspended or power chords, as these types of 
chords contain a root. As shown in Table 13, semi-CRF 
outperforms Melisma on all measures: it obtains an 8.4% 

Table 8: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the KP Corpus dataset.

KP Corpus 46 excerpts: Full chord evaluation

System AccE PS RS FS

semi-CRF1 72.0 59.0 49.2 53.5

semi-CRF2
73.4 59.6 50.1 54.3

Table 9: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the KP Corpus dataset.

KP Corpus 46 excerpts: Root only evaluation

System AccE PS RS FS

semi-CRF 80.7 66.3 56.2 60.8

Melisma 80.9 60.6 63.3 61.9

Table 10: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the KP Corpus dataset.

KP Corpus 36 excerpts: Full chord evaluation

System AccE PS RS FS

semi-CRF 73.0 55.6 50.7 53.0

HMPerceptron 72.9 48.2 43.6 45.4

Table 11: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the KP Corpus dataset.

KP Corpus 36 excerpts: Root only evaluation

System AccE PS RS FS

semi-CRF 79.3 61.8 56.4 59.0

HMPerceptron 79.0 54.7 49.9 51.9

Melisma 81.9 60.7 63.7 62.2
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improvement in event-level root accuracy and a 31.5% 
improvement in segment-level F-measure over Melisma.

We also evaluate only on the 51 songs that do not 
contain suspended or power chords to compare semi-
CRF against HMPerceptron. We do this by splitting the 
reduced number of songs into 10 folds: 9 folds with 
5 test songs and 46 training songs, and 1 fold with 6 
test songs and 45 training songs. The results shown in 
Table 14 demonstrate that semi-CRF performs better 
than HMPerceptron: it achieves an 8.8% improvement in 
event-level chord accuracy and a 21.3% improvement in 
F-measure over HMPerceptron. Additionally, we evaluate 
the root-level performance of all systems on the 51 songs. 
The results in Table 15 show that the semi-CRF achieves 
better root-level accuracy than both systems: it obtains 
a 5.4% improvement in event-level root accuracy over 
HMPerceptron and a 8.2% improvement over Melisma. 
In terms of segment-level accuracy, it demonstrates a 
22.2% improvement in F-measure over HMPerceptron 
and a 28.8% improvement over Melisma. These results 
are statistically significant with a p-value of 0.01 using a 
one-tailed Welch’s t-test.

6.4.1. Rock Error Analysis
As mentioned in Section 5.4, we automatically detected 
and manually fixed a number of mistakes that we found 
in the original chord annotations. In some instances, 
although the root of the provided chord label was missing 
from the corresponding segment, the label was in fact 
correct. In these instances, it was often the case that the 
root appeared in the previous segment and thus was still 
perceptually salient to the listener, either because of its 
long duration or because it appeared in the last event of 
the previous segment. Sometimes, the same harmonic and 
melodic patterns were repeated throughout the piece, 
with the root appearing in the first few repetitions of 
these patterns, but disappearing later on. This was true for 
‘Twist and Shout’ by the Beatles, in which the same I IV 
V7 progression of C major, F major, and G dominant 7 is 
repeated throughout the song, with the root C disappearing 
from C major segments by measure 11. Due to their 

inability to exploit larger scale patterns, neither system 
could predict the correct label for such segments.

We also found that three of the songs that we manually 
detected as having labels with incorrect modes (‘Great Balls 
of Fire,’ ‘Heartbreak Hotel,’ and ‘Shake, Rattle, and Roll’) 
were heavily influenced by blues. The three songs contain 
many major chord segments where the major third is 
purposefully swapped for a minor third to create a blues 
feel. We kept the labels as they were in these instances, but 
again both systems struggled to correctly predict the true 
label in these cases.

Figure 6 contains a brief excerpt from ‘Let It Be’ by the 
Beatles demonstrating the utility of a segmental approach 
over an event-based approach. Semi-CRF correctly 
predicts a segment spanning measure 15 with the label 
G:maj, while HMPerceptron predicts these same segment 
boundaries, but incorrectly produces the label G:maj:add6. 
Semi-CRF most likely predicts the correct label because 
of its ability to heuristically detect figuration: the E5 on 
the first beat of measure 15 is a suspension, while the 
E5 on the fourth beat is a neighboring tone. It would be 
difficult for an event-based approach to recognize these 
notes as nonharmonic tones, as detecting figuration 
requires segment information. For instance, to detect a 
neighbor, this requires determining if one of its anchor 
notes belongs to the candidate segment (see Appendix B 
for a full definition of neighbor and anchor tones).

7. Related Work
Numerous approaches for computerized harmonic 
analysis have been proposed over the years, starting with 
the pioneering system of Winograd (1968), in which a 
systemic grammar was used to encode knowledge of 
harmony. Barthelemy and Bonardi (2001) and more 
recently Rizo et al. (2016) provide a good survey of 
previous work in harmonic analysis of symbolic music. 
Here, we focus on the three systems that inspired our 
work: Melisma (Temperley and Sleator, 1999), HarmAn 
(Pardo and Birmingham, 2002), and HMPerceptron 
(Radicioni and Esposito, 2010) (listed in chronological 
order). These systems, as well as our semi-CRF approach, 

Table 12: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the Rock dataset.

Rock 59 songs: Full chord evaluation

System AccE PS RS FS

semi-CRF1 66.0 49.8 47.3 48.5

semi-CRF3
69.4 62.0 54.9 58.3

Table 13: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the Rock dataset.

Rock 59 songs: Root only evaluation

System AccE PS RS FS

semi-CRF 85.8 70.9 63.2 66.8

Melisma 77.4 29.5 44.0 35.3

Table 15: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the Rock dataset.

Rock 51 songs: Root only evaluation

System AccE PS RS FS

semi-CRF 86.1 68.6 61.9 65.1

HMPerceptron 80.7 51.3 36.9 42.9

Melisma 77.9 30.6 45.8 36.3

Table 14: Event (AccE) and Segment-level (PS, RS, FS) results 
(%) on the Rock dataset.

Rock 51 songs: Full chord evaluation

System AccE PS RS FS

semi-CRF 70.1 58.8 53.2 55.9

HMPerceptron 61.3 41.0 29.9 34.6
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incorporate knowledge of music theory through 
manually defined rules or features. For example, the 
“compatibility rule” used in Melisma is analogous to 
the chord coverage features used in the semi-CRF, the 
“positive evidence” score computed based on the six 
template classes in HarmAn, or the “Asserted-notes” 
features in HMPerceptron. Likewise, the segment purity 
features used in semi-CRF are analogous to the “negative 
evidence” scores from HarmAn, while the figuration 
heuristics used in semi-CRF can be seen as the counterpart 
of the “ornamental dissonance rule” used in Melisma. 
In these systems, each rule or feature is assigned an 
importance, or weight, in order to enable the calculation 
of an overall score for any candidate chord segmentation. 
Given a set of weights, optimization algorithms are used 
to determine the maximum scoring segmentation and 
labeling of the musical input. HMPerceptron uses the 
Viterbi algorithm (Rabiner, 1989) to find the optimal 
sequence of event labels, whereas semi-CRF uses a 
generalization of Viterbi (Sarawagi and Cohen, 2004) 
to find the joint most likely segmentation and labeling. 
The dynamic programming algorithm used in Melisma 
is actually an instantiation of the same general Viterbi 
algorithm – like HMPerceptron and semi-CRF it makes 
a first-order Markov assumption and computes a similar 
lattice structure that enables a linear time complexity 
in the length of the input. HarmAn, on the other hand, 
uses the Relaxation algorithm (Cormen et al., 2009), 
whose original quadratic complexity is reduced to linear 
through a greedy approximation.

While the four systems are similar in terms of 
the musical knowledge they incorporate and their 
optimization algorithms, there are two important aspects 
that differentiate them:

1. Are the weights learned from the data, or pre-
specified by an expert? HMPerceptron and semi-CRF 
train their parameters, whereas Melisma and Har-
mAn have parameters that are predefined manually.

2. Is chord recognition done as a joint segmenta-
tion and labeling of the input, or as a labeling of 
event sequences? HarmAn and semi-CRF are in the 
segment-based labeling category, whereas Melisma 
and HMPerceptron are event-based.

Learning the weights from the data is more feasible, 
more scalable, and, given a sufficient amount of training 
examples, much more likely to lead to optimal performance. 

Furthermore, the segment-level classification has the 
advantage of enabling segment-level features that can be 
more informative than event-level analogues. The semi-
CRF approach described in this paper is the first to take 
advantage of both learning the weights and performing a 
joint segmentation and labeling of the input.

8. Future Work
Manually engineering features for chord recognition is 
a cognitively demanding and time consuming process 
that requires music theoretical knowledge and that is not 
guaranteed to lead to optimal performance, especially 
when complex features are required. In future work 
we plan to investigate automatic feature extraction 
using recurrent neural networks (RNN). While RNNs 
can theoretically learn useful features from raw musical 
input, they are still event-level taggers, even when used in 
more sophisticated configurations, such as bi-directional 
deep LSTMs (Graves, 2012). We plan to use the Segmental 
RNNs of Kong et al. (2016), which combine the benefits 
of RNNs and semi-CRFs: bidirectional RNNs compute 
representations of candidate segments, whereas segment-
label compatibility scores are integrated using a semi-
Markov CRF. Learning the features entirely from scratch 
could require a larger number of training examples, which 
may not be feasible to obtain. An alternative is to combine 
RNN sequence models with explicit knowledge of music 
theory, as was done recently by Jaques et al. (2017) for the 
task of melody generation.

Music analysis tasks are mutually dependent on each 
other. Voice separation and chord recognition, for 
example, have interdependencies, such as figuration 
notes belonging to the same voice as their anchor notes. 
Temperley and Sleator (1999) note that harmonic analysis, 
in particular chord changes, can benefit meter modeling, 
whereas knowledge of meter is deemed crucial for chord 
recognition. This “serious chicken-and-egg problem” can be 
addressed by modeling the interdependent tasks together, 
for which probabilistic graphical models are a natural 
choice. Correspondingly, we plan to develop models that 
jointly solve multiple music analysis tasks, an approach 
that reflects more closely the way humans process music.

9. Conclusion
We presented a semi-Markov CRF model that approaches 
chord recognition as a joint segmentation and labeling 
task. Compared to event-level tagging approaches based 
on HMMs or linear CRFs, the segment-level approach 
has the advantage that it can accommodate features 
that consider all the notes in a candidate segment. 
This capability was shown to be especially useful for 
music with complex textures that diverge from the 
simpler note-for-note structures of the Bach chorales. 
The semi-CRF’s parameters are trained on music 
annotated with chord labels, a data-driven approach that 
is more feasible than manually tuning the parameters, 
especially when the number of rules or features is large. 
Empirical evaluations on three datasets of classical 
music and a newly created dataset of rock music show 
that the semi-CRF model performs substantially better 
than previous approaches when trained on a sufficient 

Figure 6: Measures 14–15 of ‘Let It Be’ by the Beatles, 
where HMPerceptron incorrectly predicts G:maj6 for 
measure 15 (bottom), while semi-CRF correctly predicts 
G:maj (top).
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number of labeled examples and stays competitive when 
the training data is small. The code is made publicly 
available on the first author’s GitHub.8

Notes
 1 Link to TAVERN: https://github.com/jcdevaney/

TAVERN.
 2 Link to Humdrum: http://www.humdrum.org/

Humdrum/representations/harm.rep.html.
 3 Link to Kostka-Payne corpus: http://www.

cs.northwestern.edu/~pardo/kpcorpus.zip.
 4 Link to PhotoScore: http://www.neuratron.com/

photoscore.htm.
 5 Link to StatNLP: http://statnlp.org/research/ie/.
 6 Link to David Temperley’s Melisma Music Analyzer: 

http://www.link.cs.cmu.edu/melisma/.
 7 27% = (83.2–77.0)/(100–77.0).
 8 Link to Code: https://github.com/kristenmasada/

chord_recognition_semi_crf.

Additional Files
The additional files for this article can be found as follows:

• Appendix A. Types of Chords in Tonal Music. 
DOI: https://doi.org/10.5334/tismir.18.s1

• Appendix B. Figuration Heuristics. DOI: https://doi.
org/10.5334/tismir.18.s1

• Appendix C. Chord Recognition Features. 
DOI:  https://doi.org/10.5334/tismir.18.s1
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