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Background: Physical activity (PA) is paramount for human health and well-being.

However, there is a lack of information regarding the types of PA and the way they

can exert an influence on functional and mental health as well as quality of life. Studies

have measured and classified PA type in controlled conditions, but only provided limited

insight into the validity of classifiers under real-life conditions. The advantage of utilizing

the type dimension and the significance of real-life study designs for PA monitoring

brought us to conduct a systematic literature review on PA type detection (PATD) under

real-life conditions focused on three main criteria: methods for detecting PA types, using

accelerometer data collected by portable devices, and real-life settings.

Method: The search of the databases, Web of Science, Scopus, PsycINFO, and

PubMed, identified 1,170 publications. After screening of titles, abstracts and full texts

using the above selection criteria, 21 publications were included in this review.

Results: This review is organized according to the three key elements constituting the

PATD process using real-life datasets, including data collection, preprocessing, and PATD

methods. Recommendations regarding these key elements are proposed, particularly

regarding two important PA classes, i.e., posture and motion activities. Existing studies

generally reported high to near-perfect classification accuracies. However, the data

collection protocols and performance reporting schemes used varied significantly

between studies, hindering a transparent performance comparison across methods.

Conclusion: Generally, considerably less studies focused on PA types, compared to

other measures of PA assessment, such as PA intensity, and even less focused on real-life

settings. To reliably differentiate the basic postures and motion activities in real life, two

3D accelerometers (thigh and hip) sampling at 20Hz were found to provide the minimal

sensor configuration. Decision trees are the most common classifier used in practical

applications with real-life data. Despite the significant progress made over the past year

in assessing PA in real-life settings, it remains difficult, if not impossible, to compare

the performance of the various proposed methods. Thus, there is an urgent need for

labeled, fully documented, and openly available reference datasets including a common

evaluation framework.
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INTRODUCTION

Physical activity (PA) is a key component of promoting
health and well-being (Haskell et al., 2007), and “is defined as
any bodily movement produced by skeletal muscles that results in
energy expenditure” (Caspersen et al., 1985). A physically active
lifestyle is crucial for healthy aging and is associated with several
important health outcomes, such as higher levels of functional
health, a lower risk of falling, and better cognitive function (Voss
et al., 2016). PA is a complex behavior with fourmain dimensions,
which can be abbreviated as FITT: Frequency of the activity,
usually measured in occasions per week; Intensity at which the
activity is carried out; Time: the duration of the bout of activity;
and Type of activity (Cavill et al., 2006).

This paper aims to systematically review the existing
methodologies that meet the three main criteria: (1) they detect
PA types; (2) the PA data collection is performed in real-life
settings; and (3) portable devices used include accelerometer
sensors (and possibly additional sensors).

PA Types
Researchers utilize various subjective and objective techniques
as well as PA dimensions (FITT) to characterize and interpret
PA. There are numerous studies using thresholds to derive PA
intensity (or PA level, i.e., categorized PA intensity) to quantify
human PA (Clemente et al., 2016; Vanroy et al., 2016; Krüger
et al., 2017; Laakkonen et al., 2017; McCarthy et al., 2017;
Rockette-Wagner et al., 2017; Vanderloo and Tucker, 2017).
However, it is controversial whether defined thresholds for
assessing PA levels can be applied to people from different age
groups. Most studies measuring PA in everyday life have focused
on energy expenditure, but there are studies that report that PA
types per se, such as walking and sitting, can influence health
(Hamer and Chida, 2007; Patel et al., 2010). There is evidence that
suggests self-reported measures underestimate postural positions
and overestimate postural duration (Unge et al., 2005; Teschke
et al., 2009), hence objective, reproducible methods providing
valid measurements of PA types during daily life are required
(Unge et al., 2005; Hendrick et al., 2009).

Today, little is known about types and patterns of PA and
the way they can influence functional and mental health as well
as quality of life (Taraldsen et al., 2012). Accurate measurement
of the daily PA types independently of other PA measures is
therefore important, with one of the challenges in PA research
being to quantify exactly how much and what type of PA
is taking place (McCarthy and Grey, 2015). Furthermore, the
concept of PA types is easier to communicate. For instance,
recommendations regarding the amount of time that should be
spent walking are easier to follow than recommending a certain
level of activity intensity, a concept that most laypersons are
unlikely to clearly understand. Understanding how a specific type
of PA, such as walking, can play a role in human health, providing
useful guidance that is more tangible for people. It would further
facilitate a more transparent comparison of accelerometer data
across different studies (Hendrick et al., 2009).

Abbreviations: PATD, Physical activity type detection.

Real-Life Settings
Most studies reporting on the development of measurement
methods to classify PA types have used an experimental protocol
based on predefined physical activities under laboratory, that
is, controlled conditions (van Hees et al., 2013). However,
laboratory settings invariably separate participants from their
everyday life and activities, subjecting them to an artificial context
(Csikszentmihalyi, 2011). It is thus questionable whether and to
what extent laboratory-derived algorithms and models can be
applied to data acquired under real-life conditions (De Vries
et al., 2011). Natural daily settings such as home, workplace,
school, or outdoor environments are examples of real-life
conditions. Experimental protocols performed under controlled
conditions are commonly used for the training and evaluation of
PA type classification techniques. Such protocols, however, only
offer limited insight into the validity of PA classification under
real-life conditions (van Hees et al., 2013). Therefore, automatic
PA type detection methods should be developed using data
acquired in real-life conditions (Bastian et al., 2015). Assessment
of PA outside a laboratory setting is important because people’s
daily activity is typically different from what can be measured in
the clinic (Hache et al., 2011).

Accelerometer Sensors
Sensors are the main sources for PA type recognition. Among
the existing portable sensors, accelerometers have gained most
attention and are increasingly popular among users (Shoaib
et al., 2014). Accelerometers are small, light-weight, and mobile
sensors that can record acceleration as well as information about
the movement and activity of users. Accelerometers may be
built into custom-made activity sensing devices, but current
smartphones also include built-in accelerometers and related
sensors, which further enhances the potential of such sensors for
PA measurement.

Recently, several review articles have discussed PA from
different perspectives, with some focused on a particular age
group (Murphy, 2009; Taraldsen et al., 2012; Schrack et al., 2016).
As noted by Taraldsen et al. (2012) and Schrack et al. (2016),
a great variety of methods exist for collecting and analyzing
PA data, which poses significant challenges to comparing and
synthesizing results. There is an urgent need for establishing
guidelines for analyzing and interpreting PA data. Preece et al.
(2009) and Clark et al. (2017) reviewed the literature with a
focus on analysis techniques used for monitoring PA. There are
also review papers highlighting the data collection step in an
attempt to provide information about how different devices can
be utilized in the PA monitoring process (McCarthy and Grey,
2015; Cornacchia et al., 2017; Migueles et al., 2017).

Despite the series of existing review articles, we believe that
it is timely to conduct a systematic review of the literature
in PA monitoring with a focus on methods of PA type
detection (PATD) in real-life environments using accelerometer
measurements, which to the best of our knowledge does not exist
so far. There are still gaps in the existing related reviews that
warrant an updated synthesis and more information is required
about methodological issues using real-life data for PATD. By
systematically analyzing and comparing the related literature,
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we seek to provide relevant insights to help researchers select
appropriate study designs and data processing methods when
conducting a study using accelerometers for PA type detection.

METHODOLOGY

This section introduces the research questions and the
methodology adopted in this paper.

Research Questions
This review paper aims to answer the following research
questions:

Q1: What are the characteristics of commonly used data
collection processes for PATD? The data collection
processes will be compared according to ambulatory
assessment specifications and participant characteristics.

Q2: What are the existing preprocessing methods used in real-
life PATD with respect to segmentation, as well as feature
extraction and selection? The review will mainly focus on
the strengths and weaknesses of these methods and the
signal features that are commonly used.

Q3: What methods are used for physical activity type detection,
and what are their strengths and weaknesses? These
methods will be compared according to accuracy, number,
and types of activities detected, as well as the size of the
training dataset.

Study Selection
Four databases were searched to conduct the systematic literature
review, including Web of Science, Scopus, PsycINFO, and
MEDLINE (PubMed) using keywords contained in the title,
abstract, keywords, text, and topic. The selection of databases,
keywords, and inclusion criteria was based on extensive research
in the PA area and brainstorming with experts. This paper
considers post-1990 literature, as to the best of our knowledge,
PATD in real-life was first introduced in 1996 (Makikawa and
Murakami, 1996). Two categories of search terms were used
and at least one of each two categories of search terms must
be used to combine: (1) “Acceleromet∗,” “Inertial measurement
unit,” “gyroscope,” “IMU”; (2) (“Physical activit∗” and ((“mode”)
or (“type”))).

Inclusion and Exclusion Criteria
The inclusion criteria were: (1) focus on methods for PA type
detection; (2) data collection in real-life conditions; (3); one or
more portable devices used including accelerometer sensor(s)
to collect PA-related data; and (4) written in English. When
there were multiple papers from the same authors presenting
the same methodology, only the most comprehensive article
was included in the review. Papers reporting outdoor data
collection in addition to laboratory-based data collection were
also included. Studies not reporting additional information about
PATD methods, which means not making some improvements
or meaningful comparison of existing methods, were excluded.
Book chapters, dissertations, review papers, and studies using
non-human data were also excluded. The first paper introducing

the concept of PATD in real-life (Makikawa andMurakami, 1996)
was included despite it lacking a practical section.

The search process is illustrated in Figure 1. The number of
papers collected from each database were: 570 (Web of Science),
850 (Scopus), 120 (PsycINFO), 90 (PubMed). After removing
duplicates, 1,170 were identified, of which 90 were retained
following the screening of titles and abstracts. After full text
screening, 21 publications were included in the detailed review.
The first author assessed all titles and abstracts and all full text
articles, decisions to accept or reject a paper were agreed among
all authors.

Data Extraction
The literature review was organized according to the three
main stages of the PATD process: data collection, preprocessing,
and PATD. As shown in Figure 2, various factors can play
a role in how accurately a PA type can be detected using
real-life data. Thus, the information extracted from each
article relates to these key factors, providing the structure for
reporting results:

- Data collection (Data Collection): ambulatory assessment
specification (e.g., device type, sampling rate); participant
characteristics (e.g., number of participants, age group)

- Data preprocessing methods (Section Preprocessing
Methods): signal filtering; signal segmentation; feature
extraction; feature selection/dimensionality reduction

- PATD methods (Physical Activity Type Detection Methods):
focusing on different PATD classifiers as well as how they
compare regarding the classification of different PA types.

RESULTS

Data Collection
This section organizes the results regarding data collection and
attempts to answer the first research question. The extracted
information is summarized in Tables 1–3. Some studies did not
report device specifications or participant characteristics, and
thus were not included in the tables.

Ambulatory Assessment Specification
The ambulatory assessment specification includes information
about the type of device and sensors used for the data collection,
the sampling rate, and sensor placement.

Device type
Monitoring PA in real-life has seen major advances in the
past decade due to progress made in mobile and wearable
technology. There are important factors such as availability,
cost, and wearing comfort for the users, sensor specifications
of the measurement device and the target physical activities
being identified, all of which can play a role in choosing an
appropriate device for the study. The device used for the data
collection is the cornerstone of the PATD process, as it contains
all the necessary information, such as sensor specification and
raw data, on which the preprocessing and data analysis are
based. Different devices have different technical specifications,
leading to data with different characteristics. On one hand, it
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FIGURE 1 | Flowchart of the systematic literature review on PATD.

FIGURE 2 | Flowchart of PATD process.

is possible to have several sensors embedded in a single device,
yielding a “multi-sensor configuration.” On the other hand, in a
“multi-device configuration,” several devices are used on different
parts of the body. As shown in Table 1, the existing customized
or commercial devices for objective movement analysis (e.g.,
Actigraph, Tracmor, INEEA, etc.) as well as smartphones have
the potential to be used for PATD. Among them, customized
devices, particularly the Actigraph (Actigraph LLC., Pensacola,
FL), which enables daily recordings for several days (Skotte
et al., 2014), is the most common device type used for data
collection. The papers using the Actigraph are highlighted in
bold in Table 1. For a comprehensive review of existing studies

assessing PA using the ActiGraphGT3X, please refer to (Migueles
et al., 2017). As shown in Figure 3, there has been a recent
trend towards using smartphones. Smartphones are the seconds
most common device type used for PATD, since they feature
multiple sensors. Also, there is no need for the participant
to carry an additional device, which leads to less annoyance
in long-term, real-life PA monitoring. However, using several
sensors simultaneously causes more battery consumption, which
can be problematic for a battery-limited device, such as a
smartphone. Moreover, sampling may be interrupted or rates
slowed down if priority services (such as an incoming phone call)
take precedence.
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TABLE 1 | Ambulatory assessment specification.

Ambulatory assessment specification References

Device Customized device (e.g., Actigraph, Tracmor,

IDEEA, etc.)

Troped et al., 2008; De Vries et al., 2011; Ruch et al., 2011;

Skotte et al., 2014; Fergus et al., 2015,

Bonomi et al., 2009; Godfrey et al., 2011; Gyllensten and Bonomi,

2011; Reiss and Stricker, 2011; Kwak and Lee, 2012; Nguyen

et al., 2013; van Hees et al., 2013; Adaskevicius, 2014; Barshan

and Yuksek, 2014; el Achkar et al., 2016

Smartphone Bisio et al., 2012; Bayat et al., 2014; Shoaib et al., 2014;

Spinsante et al., 2016

Sensor type Accelerometer

Accelerometer + Additional sensor

(e.g., heart rate, GPS, pressure sensor, imaging

sensor, barometer, etc.)

1D De Vries et al., 2011,

Troped et al., 2008; Ruch et al., 2011; Nguyen et al., 2013;

Fergus et al., 2015; el Achkar et al., 2016

2D Nguyen et al., 2013; el Achkar et al., 2016

3D Bonomi et al., 2009; Godfrey et al., 2011; Gyllensten and Bonomi,

2011; Bisio et al., 2012; Bayat et al., 2014; Spinsante et al., 2016,

Kwak and Lee, 2012; van Hees et al., 2013; Adaskevicius,

2014; Shoaib et al., 2014; Skotte et al., 2014

IMU (3D accelerometer + 3D gyroscope + 3D

magnetometer)

IMU+ Additional sensor

Barshan and Yuksek, 2014,

Reiss and Stricker, 2011; el Achkar et al., 2016

Number of sensors 1 Accelerometer

1 Accelerometer + Additional Sensor

Bonomi et al., 2009; Godfrey et al., 2011; Bisio et al., 2012; Bayat

et al., 2014; Spinsante et al., 2016,

Troped et al., 2008; Kwak and Lee, 2012; Adaskevicius,

2014; Fergus et al., 2015

>1 Accelerometer

>1 Accelerometer + Additional Sensor

De Vries et al., 2011,

Reiss and Stricker, 2011; Ruch et al., 2011; Nguyen et al.,

2013; van Hees et al., 2013; Barshan and Yuksek, 2014;

Shoaib et al., 2014; Skotte et al., 2014; el Achkar et al., 2016

Sampling rate Counts/steps Troped et al., 2008; De Vries et al., 2011; Godfrey et al., 2011;

Ruch et al., 2011; Nguyen et al., 2013; Fergus et al., 2015; el

Achkar et al., 2016

Medium (20–50Hz) Bonomi et al., 2009; Gyllensten and Bonomi, 2011; Adaskevicius,

2014; Barshan and Yuksek, 2014; Shoaib et al., 2014 Skotte

et al., 2014 Garcia-Ceja and Brena, 2016 Spinsante et al., 2016

High (>50Hz) Reiss and Stricker, 2011; van Hees et al., 2013; Bayat et al.,

2014; Garcia-Ceja and Brena, 2016

Sensor placement One part of body C Makikawa and Murakami, 1996; Troped et al., 2008; Bonomi

et al., 2009; Fergus et al., 2015

U Godfrey et al., 2011; Kwak and Lee, 2012; Adaskevicius, 2014

L Bisio et al., 2012; Spinsante et al., 2016

Two parts of body H&L Bayat et al., 2014

C&L De Vries et al., 2011; Nguyen et al., 2013; Skotte et al., 2014; el

Achkar et al., 2016

C&H Ruch et al., 2011

Three parts of body U&C&L Gyllensten and Bonomi, 2011

U&L&H Reiss and Stricker, 2011; Barshan and Yuksek, 2014

C&L&H van Hees et al., 2013; Shoaib et al., 2014

Four parts of body C&L&H&U Garcia-Ceja and Brena, 2016

D, Dimension; IMU, inertial measurement unit; Hz, Hertz; C, central part of body; U, upper part of body; L, lower part of body; H, hand.

Sensor type
During the past decade, the tendency to utilize mobile sensing
in PATD increased dramatically, owing to wearable sensors for
continuous daily PA monitoring of subjects. Different sensors
can obtain different movement information, informing the
classifiers used for PA type recognition. Our results indicate
that in addition to accelerometers, there were various additional

portable sensors, termed “additional sensors,” such as heart rate
sensors (Kwak and Lee, 2012; Fergus et al., 2015), barometer
and foot pressure sensors (Skotte et al., 2014; el Achkar et al.,
2016), imaging sensors (Ruch et al., 2011; van Hees et al.,
2013; Adaskevicius, 2014), and GPS (Troped et al., 2008;
Nguyen et al., 2013). For example, in el Achkar et al. (2016) a
gyroscope helped to differentiate between motion and posture
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TABLE 2 | Details regarding sensor placement.

References Sensor

placement

References Sensor

placement

Fergus et al., 2015 H Gyllensten and

Bonomi, 2011

I, T, U, M, N, F

Spinsante et al.,

2016

K van Hees et al.,

2013

B, C, Q, R, H,

W, I, E, V

Bayat et al., 2014 A/K/L/Y el Achkar et al.,

2016

T/U, X, M

Godfrey et al.,

2011

F Adaskevicius,

2014

G

Garcia-Ceja and

Brena, 2016

F, B, K, J, I,

T

Kwak and Lee,

2012

F

Nguyen et al.,

2013

J, Q Troped et al., 2008 H

Skotte et al., 2014 H, M Ruch et al., 2011 H/W, J

Bonomi et al.,

2009

I Barshan and

Yuksek, 2014

B, C, O, P, F

Makikawa and

Murakami, 1996

J Bisio et al., 2012 K/L

De Vries et al.,

2011

H, Q/R Reiss and Stricker,

2011

D, F, S

Shoaib et al., 2014 K, L, E, B, J

See the senors placement legend in Figure 6.

states. Foot pressure sensors provided information to separate
sitting from standing. Barometers were used for identification
of activities with elevation change, and finally accelerometer
data were utilized for recognizing stairs and ramp climbing.
In Kwak and Lee (2012), combining heart rate data with
accelerometer data increased the fuzzy classification performance
by 20% for differentiating walking speeds compared to using
an accelerometer alone. The studies using accelerometers and
additional sensors are highlighted in bold in Table 1. Commonly,
these sensors are all easy-to-use, cheap, and small enough
to avoid putting a prohibitive burden on the participant.
Multi-sensor configurations provide better results for activity
classification but are not suitable for long-term monitoring if
all the sensors are not embedded in a single device, which
in turn raises an important issue regarding sensor placement
(el Achkar et al., 2016).

Among the existing wearable sensors, the accelerometer
has gained the most attention and increasing popularity
among users (Shoaib et al., 2014). There are different types
of accelerometer, including uni-axial (1D), dual-axial (2D),
and tree-axial (3D). Results indicated that using data from
multiple-axial accelerometers improves the accuracy of PATD
models. However, in recent years, other sensors, such as the
gyroscope and magnetometer, have been combined with an
accelerometer to build inertial measurement units (IMU) to
improve activity recognition performance (Shoaib et al., 2014)
(Figure 4). As 3D accelerometers can provide data in three
different dimensions, more distinctive features can be extracted
compared to when using 1D or 2D accelerometers, respectively.
Figure 4 shows that more than 50% of the studies tended to use

TABLE 3 | Participant characteristics.

Participant characteristics References

Age groups Children (<13 y) Ruch et al., 2011; Fergus et al.,

2015

Adolescents, young

and middle-aged adults

(13–55 y)

Troped et al., 2008; Bonomi

et al., 2009; Gyllensten and

Bonomi, 2011; Reiss and

Stricker, 2011; Nguyen et al.,

2013; van Hees et al., 2013;

Barshan and Yuksek, 2014;

Bayat et al., 2014; Shoaib et al.,

2014; Skotte et al., 2014

Older adults (>55 y) el Achkar et al., 2016

Adults of all ages De Vries et al., 2011; Godfrey

et al., 2011; Spinsante et al.,

2016

Number of

participants

<10 Reiss and Stricker, 2011; Bisio

et al., 2012; Adaskevicius, 2014;

Barshan and Yuksek, 2014;

Bayat et al., 2014

10–30 Troped et al., 2008; Bonomi

et al., 2009; Godfrey et al., 2011;

van Hees et al., 2013; Shoaib

et al., 2014; Skotte et al., 2014;

Fergus et al., 2015; el Achkar

et al., 2016

>30 De Vries et al., 2011; Gyllensten

and Bonomi, 2011; Ruch et al.,

2011; Garcia-Ceja and Brena,

2016; Spinsante et al., 2016

3D accelerometers, followed by 1D-accelerometers, 3D-IMU, and
2D-accelerometers, respectively.

Number of sensors
Determining the number of sensors to use for real-life data
collection is challenging. Increasing the number of sensors may
raise the number of activities that can be classified and improve
the classification performance, but may also render the data
analysis more complex and place more burden on participants
if it requires a multi-device configuration. Conversely, using
only a single accelerometer may not provide enough information
for detecting different types of activity. For example, De Vries
et al. (2011) show that dual accelerometer placement (hip and
ankle) should be considered when detecting activities such as
sitting, standing, using the stairs, walking, and cycling rather
than using only one hip-worn accelerometer. This is supported
by Gyllensten and Bonomi (2011), who also found that it is
problematic to classify real-life activity data by laboratory-trained
algorithms using only a single waist-mounted 3D accelerometer.
Conversely, studies have shown that using a single sensor can lead
to meaningful results in PATD if the appropriate signal features
are chosen (Bayat et al., 2014; Shoaib et al., 2014). In general, the
number and kinds of PA types targeted for detection can also
play role in choosing the number of sensors for data collection.
Approximately 50% of the included studies utilized only one
accelerometer for the PATD and achieved reasonable results
for distinguishing postures and motion activities. Nonetheless,
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FIGURE 3 | Temporal trend of the devices used for PATD.

FIGURE 4 | Temporal trend of the different types of accelerometers used for PATD.

as mentioned above some studies applied additional sensors
(highlighted in bold in Table 1).

Sampling rate
The sampling rate is the number of readings of accelerometer
data recorded per unit time. The sampling rate used for PATD
varied between 10 and 100Hz. Some studies also applied the
terms “activity count” (Troped et al., 2008; De Vries et al., 2011;
Ruch et al., 2011; Fergus et al., 2015) or “activity steps” (Troped
et al., 2008; Nguyen et al., 2013; el Achkar et al., 2016) to report
their sampling granularity (Table 1). Activity counts are the sum
of the accelerations measured over a selected period (epoch time)
(Ruch et al., 2011). Therefore, the studies were grouped into
three classes: activity count/step, medium (20–50Hz), and high
(>50Hz) sampling rate.

Studies show that a higher accelerometer sampling rate
provides more relevant information for PATD than data than
a lower rate. Furthermore, using a low sampling rate may
make it difficult to distinguish transitions between different
activities or discriminate characteristics of certain activity types
of cyclical, periodic nature (De Vries et al., 2011). The study
by De Vries et al. (2011) applied accelerometer data (counts)
of epochs of only 1 second, succeeding in classifying the rather
distinctive PA types of cycling, walking, and sitting with more

that 80% accuracy using two 1D accelerometers. However, the
method’s performance in discriminatingmore subtly differing PA
types, that is, sitting and standing, going up, and going down
the stairs and in differentiating between two different walking
speeds and cycling was weak. The authors conclude that in
order to detect transitions between activities or characteristics
representing activity types of cyclical nature, accelerometer data
with a sampling rate >20Hz are needed. This is confirmed
by Figure 5, which suggests that more studies have recently
gravitated toward using sampling rates higher than 20Hz, that is,
in the “medium” and “high” categories ofTable 1, which is clearly
needed to reliably differentiate between multiple types of posture
and motion PAs.

Sensor placement
Choosing the sensor placement depends on the type of activities
to be identified. Immobility of the device position or wearing
comfort for the participants can also play a role in choosing the
sensor placement. Figure 6 and Table 2 show the accelerometers’
body placement for the included studies. As illustrated, sensors
can be placed on the lower part of the body (pants pocket,
thigh, leg, ankle, knee, shoe, feet), hands (wrist, upper arm),
central part of the body (waist, lower back, hip), or upper
part of the body (chest, shirt pocket), or different combinations
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FIGURE 5 | Temporal trend of the sensor sampling rate used for PATD.

FIGURE 6 | Accelerometer sensor placement: (A) Sensor placement; (B) Frequency of usage of different sensor placements.

of the placements mentioned. The central part of the body is
used most commonly due to this area being more immobile
than the extremities. When only a single accelerometer is used,
the most popular sensor location is on the waist (or hip), as
this is near the center of the body and can best represent
human movement (Liao et al., 2015). Studies have investigated
sensor locations for the most accurate classification performance
in distinguishing different PA types (De Vries et al., 2011;
Skotte et al., 2014; Spinsante et al., 2016), concluding that the
positions close to center of the body such as thigh, hip, and
pocket can lead to high performance in detecting daily activities
such as sitting, standing, walking, running, walking stairs,
and cycling.

Participant Characteristics
This section summarizes the information extracted regarding
participant characteristics in terms of age of the study
sample and the number of people who participated in the
eligible studies.

Age
Participants’ mobility and PA behavior may differ with age.
Children may perform activities more quickly (Ruch et al., 2011),
whereas older adults would be expected to be slower. Eligible
studies in this review cover different age ranges, from children
aged 10–12 (Ruch et al., 2011; Fergus et al., 2015) to older adults
with a mean age of 83 (Godfrey et al., 2011). Table 3 illustrates
that most studies focused on young people, with only a limited
number of studies of older people or children. Using predefined
thresholds to distinguish between different physical activities
may lead to different findings for the people of different age
groups. Therefore the age of the investigated population and of
the data used to train the classification model is another key
factor for the PATD process.

Number of participants
Sample size is another key factor for the PATD process. The larger
the sample size, the greater the number of activities that can be
investigated. Papers were classified into three groups based on
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TABLE 4 | Preprocessing methods.

Preprocessing

method

Method References

Filtering Butterworth, median

filtering, moving average,

FIR

Godfrey et al., 2011;

van Hees et al., 2013;

Skotte et al., 2014; el

Achkar et al., 2016;

Spinsante et al., 2016,

Makikawa and

Murakami, 1996;

Adaskevicius, 2014;

Bayat et al., 2014;

Garcia-Ceja and Brena,

2016

Signal

segmentation

Windowing

technique

Sliding

window

Bonomi et al., 2009;

Gyllensten and

Bonomi, 2011; Reiss

and Stricker, 2011;

Bisio et al., 2012;

Nguyen et al., 2013;

van Hees et al., 2013;

Barshan and Yuksek,

2014; Bayat et al.,

2014; Shoaib et al.,

2014; Skotte et al.,

2014; Garcia-Ceja and

Brena, 2016

Activity-based

window

el Achkar et al., 2016;

Spinsante et al., 2016

Feature

extraction

See details in Table 5.

Feature

selection

PCA Gyllensten and

Bonomi, 2011; van

Hees et al., 2013;

Barshan and Yuksek,

2014

Clustering Reiss and Stricker,

2011; Bayat et al.,

2014

the number of participants (Table 3). Surprisingly, most studies
were limited to a small sample size (<30 participants). Given
a small sample size, only a limited number of activities can be
reliably differentiated, and the results may be biased toward the
activity behavior of the few selected individuals, with reduced
reproducibility. Being able to reliably capture the differences in
inter- and intra-individual PA behavior under real-life conditions
requires training data sets of large samples.

Preprocessing Methods
Different preprocessing methods can be applied to prepare the
raw accelerometer data for the activity classification process,
including filtering, signal segmentation, feature extraction,
and feature selection/dimensionality reduction (Table 4). This
section summarizes the preprocessing methods used in the
included works to answer the second research question.

Signal Filtering
Raw acceleration data includes three main components, which
are gravity, body acceleration, and noise. The raw signal often

TABLE 5 | Features used in the PATD process categorized by domain.

Feature domain Extracted features

Time domain Mean, median, average resultant acceleration, min-max,

range, variance, SD, coefficient of variation, RMS,

interquartile range, nth percentiles, skewness, kurtosis,

correlation, angular feature, peak-to-peak distance,

cross-correlation, absolute deviation, zero crossings,

accelerometer angle, number of peaks, peak amplitude,

peak interval, lag-one autocorrelation, autocorrelation

sequence

Frequency domain Dominant frequency, the amplitude of the spectral peak,

sum of FFT coefficient, spectral energy, spectral entropy,

cross-spectral densities, power of dominant frequency,

power spectral density, cross-spectral density, peaks of

the DFT

contains high-frequency noise that leads to the distortion of the
actual signal (Adaskevicius, 2014). In signal processing, a filter
removes unwanted components or features from a signal (Smith,
1997). Typical filters used in the eligible studies are for separating
signals such as noise removal, or separating the gravitational
(DC, low-frequency) component from the body acceleration
(AC, high-frequency) component. AsTable 4 shows, they include
Butterworth (most common), median, moving average and FIR
(finite impulse response) filters.

Godfrey et al. (2011) removed signal drift by band-pass
filtering the vertical profiles using a 2nd order Butterworth
band-pass filter with lower and upper cut-off frequency of 0.15
and 15Hz, respectively. The elevation was low-pass filtered
(Butterworth order 10 filter, 0.1Hz cutoff) to remove high-
frequency noise caused by gait and weather fluctuations that
could mask an elevation change in the work of (el Achkar et al.,
2016). Skotte et al. (2014) applied a low-pass Butterworth 4th
order filter at 5Hz. Spinsante et al. (2016) used a Butterworth
3rd order filter at 0.3Hz. van Hees et al. (2013) also applied
a Butterworth filter to extract features such as mean and SD
of Euclidean norm of the bandpass-filtered acceleration signals
(0.2–18, 4th order Butterworth filter) and mean of Euclidean
norm of the low-pass-filtered acceleration signals (0.5, 4th order
Butterworth filter).

To reduce scattered misclassification, Skotte et al. applied
median filtering with a window size of 29 s for cycling and
9 s for the other activities. They found that median filtering
improved the overall classification but removed occurrences of
short, isolated physical activity types. For example, a walking
period shorter than 5 s was not detectable if surrounded by longer
periods of standing still (Skotte et al., 2014).

Moving average is a simple filter method for reducing noise.
This makes it the premier filter for time domain encoded signals,
although it is considered the worst filter for frequency domain
encoded signals, with little ability to separate one band of
frequencies from another (Smith, 1997). Adaskevicius applied
a 5-point moving average filter to reduce the signal noise
(Adaskevicius, 2014). The same filter method with 10 points was
used for noise reduction by (Garcia-Ceja and Brena, 2016).

Frontiers in Physiology | www.frontiersin.org 9 February 2019 | Volume 10 | Article 75

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Allahbakhshi et al. Real-Life PA Type Detection

Bayat et al. generated a digital low-pass filter with a cut-off
frequency of 0.25Hz. to separate the AC component from the DC
component in each time series of accelerometer signals. The AC
component is mostly related to the dynamic motion the subject
is performing, such as walking or running. On the other hand,
the DC component of the acceleration signal is mainly tied to
the influence of gravity. The authors concluded that the optimal
cutoff frequency in order to exclude the gravity component alone
would range from 0.1 to 0.5Hz (Bayat et al., 2014). Makikawa
andMurakami (1996) suggested separating acceleration data into
posture data and motion data by the finite impulse response
(FIR) filter. They indicated that low-pass FIR filtered data (below
0.1Hz) contains the subject’s posture change, and the rest of the
data contains his/her actions. For more information about digital
signal processing and filtering, we refer to (Smith, 1997).

Signal Segmentation
PATD models mostly divide the raw sensor data into smaller
segments; classifiers are then applied separately to each
window. Windowing techniques are a commonly used signal
segmentation approach for PATD, including the sliding window
and the activity-based window method. The sliding (or moving)
window technique integrates sensor readings over a fixed time
(Kozina et al., 2011) as shown in Figure 7. Features are computed
per time window and used as input for learning/testing in the
classification stage (Kozina et al., 2011). Two approaches are
commonly used for data segmentation with sliding windows: the
first relies on non-overlapping sliding windows (Bonomi et al.,
2009; van Hees et al., 2013; Spinsante et al., 2016), while the
seconds uses overlapping sliding windows (Shoaib et al., 2014;
Skotte et al., 2014; el Achkar et al., 2016; Spinsante et al., 2016).
For example, two consecutive time windows may have 50% of
data in common. A range of window sizes have been used in the
included studies, ranging from 2 s (van Hees et al., 2013; Shoaib
et al., 2014; Skotte et al., 2014) to 1min (Nguyen et al., 2013).
Nonetheless, there was a large inconsistency in deciding which
points to choose to segment the data stream. The challenge of
the windowing technique is the selection of an adequate segment
size for the time window (Shoaib et al., 2014), which decides
how often the features are extracted, consequently affecting the
PA classifier performance. Moreover, applying a fixed sliding
window hinders the exact detection of the activity boundaries, as
in natural conditions, the segmentation would rarely correspond
with the beginning or end of an activity (Bonomi et al., 2009).
Therefore, the overlapping technique may be used to address the
problem of boundary ambiguity.

An alternative type of windowing technique is activity-
based windowing, where the extracted time windows have
to belong to the same activity and are non-fixed (el Achkar
et al., 2016; Spinsante et al., 2016). Therefore, activity-based
windowing, in contrast to the windowing technique, selects the
segment size based on activity transitions, thereby removing
boundary ambiguity of acceleration features that might generate
a misclassification. However, some studies highlight that fixed-
size, overlapping sliding window segmentation is a common
approach in medical research, e.g., in patient monitoring,

FIGURE 7 | Sliding fixed-size window.

due to the simplicity and ease of interpreting the algorithm
(Bersch et al., 2014).

Feature Extraction
PATD relies on features that have been extracted from
accelerometer signals by transforming the input signals to and
from different domains of representation (Figo et al., 2010). Good
features should be informative, discriminating between PA types
(Barshan and Yuksek, 2014). A feature space is formed by the
total number of features extracted from the data (Spinsante et al.,
2016). Table 5 summarizes the features that were used in the
eligible papers, grouped according to the domain in which the
features were computed, in this case the time domain and the
frequency domain (Spinsante et al., 2016). Time domain features
are typically mathematical or statistical measures derived directly
from the sensor data. The window of the sensor data must first
be transformed into the frequency domain, normally using a fast
Fourier transform (FFT), in order to derive frequency domain
features.

The study of Gyllensten and Bonomi (2011) found that the
acceleration features for posture and motion differ greatly in
real-life settings from those obtained in laboratory experiments.
Also, real-life data showed a higher degree of overlap between
features than laboratory data. Hence, determining what the
most discriminative features are, acting as input to the PA
type classifiers, to achieve the best PATD performance is
what makes the feature extraction step challenging (see also
the following Feature Selection).A wide range of features
have been identified in the literature, depending on the
data type from which they are extracted and the target PA
types (Spinsante et al., 2016). Thus, it makes little sense
trying to compile a simple best list of features. Instead,
representative examples are provided below relating features
to particular PATD problems. Choosing appropriate features
is crucial for detecting desired activity types. For instance,
when using a single sensor and the device orientation is
not fixed, recognizing certain activity types such as sitting
becomes challenging, and the mean values of accelerometer
readings do not form discriminative features (Bisio et al.,
2012; Barshan and Yuksek, 2014). Extracting orientation
independent features such as acceleration magnitude helps
(Spinsante et al., 2016). To avoid the orientation problem, a
good solution is to estimate the gravity component, which
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can result in orientation independent features such as the
vertical and horizontal components of accelerometer signals
as computed in (Adaskevicius, 2014). As noted by Bayat
et al. (2014), the average on each axis of a 3D accelerometer
over a given time period can serve as a good estimate for
gravity component.

To group activities into posture and motion, the SD of the
acceleration in the mediolateral axis and SD in the vertical
direction were used as discriminating features in (Bonomi et al.,
2009) and (Skotte et al., 2014), respectively. (el Achkar et al.,
2016) extracted angular velocity from gyroscope readings to
distinguish motion from posture by performing step detection.
They used the integration metric, which measures the area under
the signal curve and is commonly applied to estimate speed
from accelerometer signals (Figo et al., 2010). Using the integral
of the total magnitude of 3D acceleration, after subtracting
the magnitude of static acceleration (gravity), Godfrey et al.
(2011) provided an estimate of vertical velocity from a 3D chest-
mounted accelerometer to differentiate between walking and the
postural transitions of standing to sitting, or sitting to standing.
This was achieved by examining the maximum positive and
negative peak values of the vertical velocity around the time of
a postural transition.

To differentiate between postures, Bonomi et al. (2009)
suggested using the cross-correlation between subsequent time
intervals of the z-axis of a 3D accelerometer to identify
sitting and standing. The scalar product of a chest-mounted
3D accelerometer provided the change of trunk tilt feature,
without the need of a gyroscope, helping in separating between
postures, i.e., sitting, standing, and lying (Godfrey et al.,
2011). Discriminating between sitting and standing postures
is challenging using only the inclination of a single 3D
accelerometermounted on the hip, but this feature helps to detect
the lying posture (Godfrey et al., 2011; Skotte et al., 2014).

SD in the mediolateral axis and SD of the vertical direction
discriminate appropriately in intensity estimation (Godfrey et al.,
2011; Skotte et al., 2014), for instance, to differentiate between
running and walking (Reiss and Stricker, 2011). Another feature
for intensity estimation is the average number of occurrences
of peaks, termed average peak frequency (APF), that can better
represent high-intensity activities compared to the average time
between signal peaks (Bayat et al., 2014). The inclination feature
provides a clear-cut separation to discriminate between cycling
and horizontal walking and walking stairs. As it is not sufficient
to discriminate between level walking and walking stairs, an
additional angular feature, the forward/backward angle θ of
the thigh was introduced in (Skotte et al., 2014) by using
the square root of total magnitude of acceleration and the z-
axis component (pointing horizontally forward). Generating a
ground slope as an angular feature using frontal and vertical
accelerations of a 3D accelerometer during foot-flat position
helped to differentiate stairs from uphill/downhill walking in (el
Achkar et al., 2016).

Feature Selection
As shown in Table 5, a wide variety of features can be extracted
from accelerometer data. Feature selection and dimensionality

reduction seeks to identify the most informative and best
discriminating features in extracted feature vectors, reducing
the number of features, thereby decreasing the computational
complexity of the classification process and the amount of
training data needed for parameter estimations. Two types of
techniques, clustering, and principal component analysis, were
used for this purpose in the reviewed studies.

Clustering
Clustering is a commonly used method to identify the most
informative features in feature vectors (Gyllensten and Bonomi,
2011; Spinsante et al., 2016). Relevant features can discriminate
clusters, while irrelevant features cannot; therefore clustering
can help identify relevant features, thus improving classification
efficiency and quality (Bayat et al., 2014).

To illustrate this point, consider the following: Different
device orientations may cause acceleration readings, measured
for the same activity, to vary between persons. Moreover,
different people may perform the same activity in different
ways. This variability can lead to substantial differences in
the features extracted from accelerometer data. If the feature
extraction has been performed well, features belonging to
the same activity should form clear clusters in the feature
space, while they should be clearly separated if pertaining to
different PAs (Spinsante et al., 2016). Likewise, if the clustering
algorithm produces homogeneous groups in terms of the activity
of their members, this provides a strong indication that a
classification algorithm should be successful in differentiating
between the different activities (Huynh and Schiele, 2005).
Bayat et al. (2014) evaluated different features from the point
of view of clustering. The k-means algorithm was used to
cluster different features so that the features having the best
performance in discriminating PAs could be identified in
Reiss and Stricker (2011).

Principal component analysis (PCA)
Dimensionality reduction decreases the dimensionality of the
feature space to a minimum, thus limiting the computational
complexity of the classification process and the amount of
training data needed for parameter learning, while still achieving
the desired classification performance (Spinsante et al., 2016).
PCA also reduces the dimensionality of the feature space to
find the most distinguishable features (van Hees et al., 2013).
PCA applies an orthogonal transformation converting a set
of observations of possibly correlated features into a set of
new, linearly uncorrelated features called principal components.
Thus, PCA helps to reduce the computational complexity of the
PATD process, thereby decreasing the memory and bandwidth
requirements for real-time processing on embedded systems
(Spinsante et al., 2016). In Barshan and Yuksek (2014), the
initially large number of features was reduced from 1170 to
30 through PCA. To visualize the (dis)similarities between data
collected in the laboratory and in real-life conditions, two PCA
decompositions were performed in Gyllensten and Bonomi
(2011): one using different postures and a seconds one using
motion activities. Thus, it became apparent that, as mentioned
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above, the acceleration features for common classes of activities
differ greatly in real-life vs. what is measured in the laboratory.

Physical Activity Type Detection Methods
This section summarizes the eligible studies regarding the
number and types of activities detected (Number and
type of target PAs), the characteristics of the study setting
(Characteristics of data used), as well as the classification
methods used and the performance achieved (PA classifiers and
their performance). Table S1 provides a concise and complete
summary of key parameters [PA types, study setting, classifier(s),
performance] for each eligible study.

Number and Type of Target PAs
The number of activities represented in the included studies
ranges from 2 to 19, with the most common posture and motion
activities in real-life conditions including sitting, standing, lying,
walking, stairs/non-level walking, running, and cycling, which
were introduced as simple activities in the categorization of
Spinsante et al. (2016).

Characteristics of Data Used
Participants’ home, university building, university campus,
school playground, or classroom are examples of study settings
that have been used for training data collection in the process of
PATD. There is large variation in the amount of training data
used for PA type classification, with the duration of the data
collection ranging from <1 h to 1 week.

PA Classifiers and Their Performance
The next step after preprocessing consists of the actual
application of a classifier for PATD. Different classifiers have been
utilized for PATD in the studies reviewed here, including several
types of machine learning (ML) classifiers, fuzzy logic classifiers,
rule-based/threshold-based classification, or statistical analysis
(Table S1). The degree of complexity of these classifiers varies
from simple threshold-based to more advanced algorithms, such
as ML algorithms.

Decision trees (DT), a representative of ML classifiers, are the
most popular in the included studies when only a single classifier
is used. After extracting and selecting appropriate features from
the training data the DT algorithm infers thresholds resulting
in dichotomous tree splits, based on the derived features for
the activity classification. The disadvantage of this method is
that if the features are not selected appropriately and include
high intra-class variability, the risk of overlaps between values
of different activities increases, leading to reduced classification
performance due to the relatively simply threshold inference
algorithm used (Bonomi et al., 2009). On the other hand,
the advantages of this method include low computational
requirements and simple implementation (Reiss and Stricker,
2011). As DT can be turned into a graphical representation
(i.e., a tree) of the underlying decision rules, they are simpler
to understand and interpret than other ML classification
methods. Compared to threshold/rule based classifiers (see
below), DT have the advantage that the decision structure is
inferred automatically by the algorithms and not manually.

In the studies that applied DT, an average accuracy above
80% was achieved for detecting more than four different daily
living activity types using a small training dataset (Table S1).
Activities detected by DT cover all different levels of PA
such as sedentary (sitting/standing/lying), moderate (walking),
and vigorous (jogging/running) activities (Godfrey et al., 2011;
Gyllensten and Bonomi, 2011; Adaskevicius, 2014; Skotte et al.,
2014; Garcia-Ceja and Brena, 2016).

Neural network (NN) classifiers, also called artificial neural
networks (ANN), take seconds place in the popularity among
the reviewed studies that used only a single classifier. However,
unlike with DTs, it is more complex and difficult for a user
to comprehend how exactly an NN algorithm classifies its
inputs. The NN classifiers are powerful approaches that have the
potential to be used for detecting different posture and motion
activities with high classification performance (Gyllensten and
Bonomi, 2011; Ruch et al., 2011; Barshan and Yuksek, 2014;
Bayat et al., 2014; Fergus et al., 2015; Spinsante et al., 2016).
One of the restrictions of this classifier is the high processing
time for the model development, which makes it not a very
optimal classifier for a real-time application. Comparing the
eligible studies that used this classifier when only a single
classifier is used, different architectures of NN behaved differently
depending on different numbers and types of activity as well
as different study designs (Table S1). When the number of
activities increased, the performance of ANN decreased by 14%
using two 1D accelerometers (De Vries et al., 2011), whereas
in the study of Barshan and Yuksek (2014), NN achieved
more than 99% performance in detecting 19 activity types
using five 3D IMU and half a day of real-life data. MLP, as
a particular type of NN, also gained a very high performance
in detecting four activities using unrestricted training data
(Fergus et al., 2015).

The k-nearest neighbor (k-NN) classifier is one of the simplest
ML algorithms. It assigns a test data point to the class that most of
its nearest training data points belong to (Ruch et al., 2011). The
restriction of this method is to find the best number of neighbors
(k), which is a user-defined constant. Moreover, compared to
DTs, k-NNmay be slower when a large dataset is processed due to
the distance calculation requirements. Using k-NN classification,
Adaskevicius (2014) detected daily postures and motion such
as sitting and walking at different speeds. He showed how
replacing the Euclidean distance by the correlation distance in the
acceleration feature could improve the classification performance
of k-NN, as the Euclidean distance does not perform well
when only a few features play a role in a high-dimensional
classification problem.

Fuzzy classifiers are in principle a better method for real-
life PATD than conventional approaches, as they can deal
with uncertainty in the input data (Kuncheva, 2000). However,
defining appropriate fuzzy membership functions and fuzzy rules
is challenging (Preece et al., 2009). Kwak and Lee (2012) applied
neuro-fuzzy classification, which unlike the common clustering
methods, does not consider the borders between neighboring
classes to be rigid, but assumes the transitions to be continuous,
where an object within the intersection area owns a degree
of membership in each class. Seventy Percent classification

Frontiers in Physiology | www.frontiersin.org 12 February 2019 | Volume 10 | Article 75

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Allahbakhshi et al. Real-Life PA Type Detection

accuracy was achieved for detecting different walking speeds
using accelerometer data only; adding heart rate data the
classification accuracy increased to 99.03%. None of the eligible
studies used this classifier for detecting postures.

In rule-based classifiers, also called threshold-based classifiers,
postures, and motion patterns are detected by manually applying
thresholds to the signal of the body worn sensor. The thresholds
may be derived from domain or expert-knowledge and used for
all subjects. The discrimination between more classes of activities
will require a greater number of threshold values. The results of
the eligible studies show that this approach performed well in
detecting PA using real-life datasets. Postural transition, walking
at different intensity levels, lying, sitting, standing, and stairs were
successfully distinguished with high classification performance.
Of the two studies using threshold-based rules, el Achkar et al.
(2016) used multiple sensors, whereas Godfrey et al. (2011)
applied a single chest-worn accelerometer. The first approach
achieved more than 97% performance in detecting nine different
activities using 10 h of data, while the seconds one successfully
detected four activities gaining 89% specificity. According to el
Achkar et al. (2016) the advantage of their approach is that it is
based on rules about biomechanical characteristics of movement,
which make it potentially adaptable to populations of different
ages as it is not resulting from a training/testing approach and
the method can also help in detecting the number of steps.
Comparatively, in Godfrey et al. (2011), using theminimal sensor
configuration, a reasonable performance in postural transition
was obtained.

Using discriminant function analysis, Troped et al. (2008)
found that the combination of a GPS and an accelerometer can
improve detecting activities such as walking, jogging/running,
bicycling, and driving an automobile. Adding GPS can also
provide contextual information about the place where the PA
is happening, but having only small amounts of data led to a
reduced number of detectable activities (Troped et al., 2008).

The variability in the ambulatory assessment specification
and preprocessing methods used in the eligible studies makes
the comparison between the classifiers difficult. However, our
review also covered a few studies that compared different
classification methods using same training data set. This helped
to achieve some insight regarding the performance of each
individual classifier. Spinsante et al. (2016) compared k-NN,
NN, and DT, with NN achieving a classification accuracy of
99%, outperforming the other two methods using lab-based data.
However, considering additional characteristics such as file size,
performance, interpretability and training time all together, DT
outperformed the other two. Regarding the time required to train
the models, k-NN was the fastest with sub-seconds computation,
because it is a “lazy” classifier. The DT classifier was also fast,
while the NN method was the slowest (Spinsante et al., 2016).

In the comparative study of (Barshan and Yuksek, 2014),
which detected the highest number of posture and motion
activities (nineteen) of the studies reviewed, ANN, SVM,
and Gaussian mixture models (GMM) achieved the highest
performance of above 99% using only half a day of training data.
Barshan and Yüksek showed that how using a different validation
method or a different software toolbox (PRTools or WEKA) can

affect the classification results. For example, using PRTools, it is
not possible to initialize important parameters for implementing
ANN. Therefore, the performance of ANNs implemented in
PRTools does not reflect the true potential of the classifier and
is lower compared to when implemented in WEKA. Regarding
the validation methods, ANNs and SVMs achieve better results
than GMM when applying L1O cross validation, whereas using
k-fold cross validation makes the GMM model superior to the
other classifiers. Barshan and Yüksek also pointed out that ANNs
and SVMs are less sensitive to the overfitting problem compared
to the GMMs. However, the GMMmethod had the advantage of
lower computational requirements.

Shoaib et al. (2014) compared 9 classifiers in detecting 8
activity types using different sensors, sensor placements, and
extracted features. They showed how these factors of ambulatory
assessment specification and preprocessing can play a role in
PATD. In their study, the gyroscope performed better than the
accelerometer in most cases when either DT or k-NN classifiers
were used, especially at the pocket or belt positions using
both time and frequency domain features. The results show
that the performance of the accelerometer and the gyroscope
for recognizing the activities of walking upstairs and walking
downstairs, respectively, depend on the body positions, the data
features and the classification methods being used.

One of the main challenges of supervised PATD methods
is the need for large amounts of labeled data. Garcia-Ceja and
Brena (2016), proposed a method which requires only a small
amount of labeled data for PATD. The personalized method is
based on finding activity similarities between a group of previous
users and a target user. Comparing the personalized method with
the general model and user-dependent model, the personalized
method was best when only a small amount of labeled data
was available.

Finally, combining several classifiers is a promising approach,
as a meta-classifier can achieve higher classification performance
compared to using a single classifier only. Although a
meta-classifier will invariably increase the complexity of the
classification, it can provide a superior result by combination of
simpler individual classifiers (Preece et al., 2009). As shown in
Table S1, in all the studies that applied a fusionmethod, themeta-
classifiers outperformed the individual classifiers (Gyllensten and
Bonomi, 2011; Ruch et al., 2011; Bayat et al., 2014). However,
meta-classifiers also showed weaker performance on real-life
datasets compared to using controlled data.

DISCUSSION

As becomes obvious from the above results, there is a significant
variation in the key factors involved in PATD in real-life
settings. In this section, we try to distill the insights and
lessons that can be gained from our systematic review. We
start in General observations with a set of general observations
that can be made regarding the overall domain studied. We
then continue to discuss the results more specifically regarding
two broad and crucial physical activity classes, posture and
motion. These two classes of PA not only have different
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effects on human health, particularly for healthy aging, such
as lower levels of functional health and motion activities, a
higher risk of falling, and worse cognitive function (Voss et al.,
2016), but also directly impact the entire workflow of PATD,
including data collection, preprocessing, and PATD methods.
Table 6 summarizes the activity types per PA class, as detected
by the eligible studies. Detecting Postures presents insights
specifically related to distinguishing between different postures,
while DetectingMotion Physical Activities reports the key factors
regarding differentiating between motion activities. Detecting
Posture and Motion Activities provides insights concerning
the differentiation of postures from motion activities. Finally,
Limitations and Potential Bias briefly points out the limitations
of this study.

General Observations
The vastly different use of devices, sensors, sampling rates,
and numbers and types of PAs reported in the eligible studies
points to a lack of guidelines for PA data collection. Therefore,
developing a standardized protocol, or at least a set of best
practice guidelines, for data collection in a clearly defined real-
life study setting with a concrete and transparent, predefined list
of daily living activity types is crucial for future research.

Most studies applied a supervised method for PATD. One
of the main challenges of this approach is the need for having
labeled data. In relation to the point just made above, we
suggest that one or several labeled, documented and openly
available reference data sets should be created that cover
different age groups and include meaningful types and numbers
of transparently defined daily physical activities. Only the
availability of common reference data can provide the possibility
of comparing existing methods as well as developing improved
methods for PATD in real-life settings.

Meanwhile, different validation methods have been applied
in the included studies, e.g., training classifiers with one data
set and testing with another data set, leave-one-out (L1O) cross
validation, and k-fold cross validation. Additionally, the use of
different metrics for reporting classification performance, such
as overall accuracy, F-score, sensitivity or others is a further issue
that makes the comparison between studies difficult.

Detecting Postures
Among the eligible studies, there are ones that distinguish three
postures, namely sitting, standing and lying (Bonomi et al., 2009;
Godfrey et al., 2011; Barshan and Yuksek, 2014; Skotte et al.,
2014), and ones targeting the two postures sitting and standing
(De Vries et al., 2011; Bisio et al., 2012; Shoaib et al., 2014; el
Achkar et al., 2016; Spinsante et al., 2016), respectively. There
are also studies that combine sitting and standing into one
class (sitting/standing) (Gyllensten and Bonomi, 2011; Reiss and
Stricker, 2011; Nguyen et al., 2013) or group different types of
postures as stationary (Ruch et al., 2011; van Hees et al., 2013).

In general, differentiating between different postures needs
to rely on the gravity component of the accelerometer data,
particularly gravity direction/inclination.

TABLE 6 | Physical activity types.

Physical

activity

class

Physical activity

type

Reference

Posture Sitting Troped et al., 2008; Bonomi et al., 2009; De

Vries et al., 2011; Godfrey et al., 2011; Bisio

et al., 2012; Adaskevicius, 2014; Barshan

and Yuksek, 2014; Shoaib et al., 2014;

Skotte et al., 2014; Fergus et al., 2015; el

Achkar et al., 2016; Garcia-Ceja and Brena,

2016; Spinsante et al., 2016

Standing Bonomi et al., 2009; De Vries et al., 2011;

Godfrey et al., 2011; Bisio et al., 2012;

Barshan and Yuksek, 2014; Skotte et al.,

2014; el Achkar et al., 2016; Spinsante et al.,

2016

Lying Bonomi et al., 2009; Godfrey et al., 2011;

Gyllensten and Bonomi, 2011; Reiss and

Stricker, 2011; Nguyen et al., 2013; Barshan

and Yuksek, 2014; Skotte et al., 2014

Stationary Ruch et al., 2011; van Hees et al., 2013

Motion Walking Troped et al., 2008; Bonomi et al., 2009; De

Vries et al., 2011; Godfrey et al., 2011;

Gyllensten and Bonomi, 2011; Reiss and

Stricker, 2011; Ruch et al., 2011; Bisio et al.,

2012; Kwak and Lee, 2012; Nguyen et al.,

2013; van Hees et al., 2013; Adaskevicius,

2014; Barshan and Yuksek, 2014; Bayat

et al., 2014; Shoaib et al., 2014; Skotte et al.,

2014; Fergus et al., 2015; el Achkar et al.,

2016; Garcia-Ceja and Brena, 2016;

Spinsante et al., 2016

Running/jogging Troped et al., 2008; Bonomi et al., 2009;

Gyllensten and Bonomi, 2011; Reiss and

Stricker, 2011; Ruch et al., 2011; Bisio et al.,

2012; Kwak and Lee, 2012; Nguyen et al.,

2013; Adaskevicius, 2014; Barshan and

Yuksek, 2014; Bayat et al., 2014; Shoaib

et al., 2014; Skotte et al., 2014; Fergus et al.,

2015; Garcia-Ceja and Brena, 2016;

Spinsante et al., 2016

Cycling/biking Troped et al., 2008; Bonomi et al., 2009; De

Vries et al., 2011; Gyllensten and Bonomi,

2011; Reiss and Stricker, 2011; Ruch et al.,

2011; Nguyen et al., 2013; Barshan and

Yuksek, 2014; Shoaib et al., 2014; Skotte

et al., 2014

Non-level walking

(upstair/downstair,

uphill/downhill)

De Vries et al., 2011; Reiss and Stricker,

2011; Nguyen et al., 2013; Barshan and

Yuksek, 2014; Bayat et al., 2014; Shoaib

et al., 2014; Skotte et al., 2014; el Achkar

et al., 2016; Garcia-Ceja and Brena, 2016;

Spinsante et al., 2016

Other Troped et al., 2008; Bonomi et al., 2009; De

Vries et al., 2011; Gyllensten and Bonomi,

2011; Ruch et al., 2011; Nguyen et al., 2013;

Adaskevicius, 2014; Barshan and Yuksek,

2014; Bayat et al., 2014; Fergus et al., 2015;

el Achkar et al., 2016; Garcia-Ceja and

Brena, 2016

Ambulatory Assessment Specification
As mentioned above, different types of postures such as sitting,
standing and lying can be grouped into one class called stationary
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(Ruch et al., 2011; van Hees et al., 2013; Spinsante et al., 2016).
To detect the stationary class, using one single 3D pocket-
accelerometer (20Hz) collected by smartphone (Spinsante et al.,
2016), or alternatively applying activity counts/steps from a 1D
accelerometer worn on the hip and collected by Actigraph, can
be sufficient (Ruch et al., 2011). However, to distinguish between
different sub-types of the stationary class such as sitting, standing,
and lying, other key factors such as sensor configuration and
preprocessing should be considered carefully.

In general, to detect postures, the accelerometer is a very
promising sensor as it includes the gravity component. Triaxial
accelerometers can better inform a classifier than 1D or 2D
accelerometers, and are thus recommended. Sensors such as GPS
or foot pressure sensors may be also added to further improve the
detection of postures (Nguyen et al., 2013; el Achkar et al., 2016).

A single 3D chest-mounted accelerometer provides a minimal
configuration to distinguish not only between sitting, lying and
standing but also detect the postural transitions from sitting to
standing and from standing to sitting (Godfrey et al., 2011).
Similarly, a single placement configuration including a 3D IMU
with a foot pressure sensor both embedded in a shoe was found
to be sufficient to detect postures and postural transitions (el
Achkar et al., 2016). A thigh-mounted 3D accelerometer helps
to differentiate between sitting and standing more precisely than
an accelerometer placed on the hip (Reiss and Stricker, 2011;
Skotte et al., 2014). However, the hip accelerometer data is
useful to distinguish the lying posture from sitting/standing
(Skotte et al., 2014).

While a single chest-sensor or a single-site shoe embedded
sensor configuration may suffice to distinguish the three basic
postures of sitting, standing, and lying, more sensors are required
to distinguish subtypes of postures. For example, with a five-
sensor configuration (knees, wrists, chest), 19 motion patterns
and postures including sub-types of lying (lying on the back and
on the right side) can be detected (Barshan and Yuksek, 2014).

Preprocessing
The raw accelerometer data requires preprocessing, including
filtering, signal segmentation, and feature extraction. Low-pass
filtering should be used to extract the gravity component
of accelerometer signal, which is necessary for detecting
postures. Different filters have been applied to reduce noise,
including Butterworth and FIR, with Butterworth being the most
frequently used.

Regarding features extracted, the gravitational (DC)
component of the accelerometer (i.e., signal output <0.5Hz)
allows the assessment of change in position in relation to the
gravitational axis (i.e., inclination in degrees). For example, the
orientation of the vertical direction of the body with respect
to the direction of gravity is the feature to identify lying.
The lying posture can be defined as an inclination of the hip
accelerometer above 65◦(Skotte et al., 2014). Based on the body
sensor placement, the calculated inclination can help detecting
different postures. For instance, the reason that the thigh
accelerometer is able to better detect the sitting posture than the
hip/lower-back/waist accelerometer is that the inclination of the
hip-mounted accelerometer does not differ significantly between

the standing position and upright sitting. The inclination of a
thigh accelerometer gives the angle between the vertical line and
the thigh axis, which can more precisely differentiate between
sitting and standing. The trunk tilt feature extracted from a
chest sensor can distinguish between lying and sitting/standing
(Godfrey et al., 2011). Lying can also be detected with high
performance using the peak absolute value of a chest-mounted
accelerometer, as it has a different upper body orientation
compared to other activities (Reiss and Stricker, 2011). The
cross-correlation between subsequent time intervals of the
antero-posterior lower-back acceleration can identify sitting
and standing (Bonomi et al., 2009). Similarly, the intensity of a
vertical accelerometer mounted on the waist helps distinguishing
between sitting and standing (Nguyen et al., 2013). The total
force (TF) parameter can be calculated using foot pressure
sensors embedded in a shoe by considering a person’s body
weight, which is helpful to distinguish sitting and standing and
also their transitions (el Achkar et al., 2016).

Physical Activity Type Classification Methods
Misclassification issues may be observed in differentiating
between sitting, standing and lying using real-life datasets
(Bonomi et al., 2009; De Vries et al., 2011; Gyllensten and
Bonomi, 2011; Reiss and Stricker, 2011; Skotte et al., 2014)
as, for example, a leaning posture might be more frequent in
real-life compared to the controlled condition. Also, in real-life
settings, there is significant inter-individual variability in postural
states (Gyllensten and Bonomi, 2011). Therefore, a larger
number of subjects from different age cohorts are required to
investigate these effects. Using the threshold-based approaches,
it is important to consider the precise location and fixation of
the sensors, as the sensor orientation can affect the recorded
data and alter the expected results (Adaskevicius, 2014). A chest-
mounted accelerometer or an IMU together with a foot pressure
sensor embedded in the shoe can result in high threshold-based
classification accuracy with a minimal sensor configuration for
detecting postures (Godfrey et al., 2011; el Achkar et al., 2016).

Detecting Motion Physical Activities
Among the motion activities, active modes of transport such
as walking, cycling/biking, and jogging/running contribute to
reduced risk of physical and mental health problems (Physical
Activity Guidelines Advisory Committee, 2008). Some of the
included studies detected all these active modes of transport
(Troped et al., 2008; Bonomi et al., 2009; Gyllensten and Bonomi,
2011; Reiss and Stricker, 2011; Ruch et al., 2011; Nguyen et al.,
2013; Barshan and Yuksek, 2014; Shoaib et al., 2014; Skotte et al.,
2014). Almost all the eligible studies detected the walking activity,
while some also considered different speeds of walking (Reiss
and Stricker, 2011; Kwak and Lee, 2012; Adaskevicius, 2014;
Bayat et al., 2014). Running/jogging is the second commonly
detected motion activity, followed by cycling/biking. Almost half
of the included studies detected non-level walking activities such
as walking downstairs/upstairs or walking downhill/uphill (De
Vries et al., 2011; Reiss and Stricker, 2011; Nguyen et al., 2013;
Barshan and Yuksek, 2014; Bayat et al., 2014; Shoaib et al., 2014;
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Skotte et al., 2014; el Achkar et al., 2016; Garcia-Ceja and Brena,
2016; Spinsante et al., 2016).

In general, motion activities mostly involve the movement of
the whole body. And therefore, differentiating between different
motion activities needs to make use of the body motion
component of the accelerometer data.

Ambulatory Assessment Specification
Similar to the process of posture detection, for recognizing
the active modes of transport, a multi-axis accelerometer is a
promising sensor to use. The results indicate that for detecting
walking, cycling, and running, the accelerometer performs better
than other sensors such as a gyroscope regardless of sensor
placement, the feature set, and the classifier used (Shoaib
et al., 2014). However, the gyroscope is also able to detect
these activities reasonably well. Linear acceleration (the AC
component) can also be used for detecting these motion
activities. A magnetometer also achieves reasonable performance
when direction-insensitive features such as variance, zero
crossings and root mean square values are used (Shoaib et al.,
2014). Additional sensors such as GPS (Troped et al., 2008;
Nguyen et al., 2013) and heart rate sensors (Reiss and Stricker,
2011; Kwak and Lee, 2012) can improve motion detection.
(Troped et al., 2008; Nguyen et al., 2013) are two of very few
studies using an accelerometer and GPS data in combination,
despite the high potential that GPS could have in providing
spatial contextual information that could further inform the
detection of motion PAs. However, aiming for a minimal sensor
configuration, which is preferable for real-life PA monitoring, a
single waist-mounted 3D accelerometer is sufficient for detecting
walking, running, and cycling (Bonomi et al., 2009; Gyllensten
and Bonomi, 2011). Conversely, to reliably distinguish non-
level walking, additional sensors such as a barometer (el Achkar
et al., 2016) or a 3D thigh-mounted accelerometer may be
required (Skotte et al., 2014). The target motion activities
determine the sensor placement. For instance, a sensor placed
on the wrist is preferable when trying to distinguish daily-
life activities with similar lower-body, but significantly different
upper-body movement (Reiss and Stricker, 2011). For instance,
using a hand (wrist, upper arm, hand) accelerometer, by
extracting the periodic pattern of arm swinging, motions such
as walking at different speeds and running can be detected
(Reiss and Stricker, 2011).

Preprocessing
High-pass filtering helps to isolate the body motion of the
acceleration signal (Bayat et al., 2014). Depending on the type
and placement of the sensor, different informative features
for detecting motion activities can be extracted. Representative
distinctive features for differentiating motion activities are
provided below.

The forward/backward acceleration in hand/pocket
placement can represent the periodic behaviors of walking
at different speeds, running, and non-level walking, but with
distinctive patterns (Bayat et al., 2014). Applying the same
sensor placement, the average number of occurrences of peaks
in each signal window of the accelerometer instead of average

time between peaks is also a useful feature for recognizing high-
intensity activities (Bayat et al., 2014). Using a 3D accelerometer,
the variance or SD in different axes is an indicator of different
motion activities. For example, using a lower-back mounted
accelerometer, a high value of the SD of the acceleration in the
vertical direction of the body is indicative of running, while the
SD in the antero-posterior and the vertical direction can be used
to discriminate walking and cycling (Bonomi et al., 2009). The
SD of the vertical axis of a 3D thigh-mounted accelerometer can
differentiate between running and walking, as well as between
postures and other motion activities. Using the same sensor
placement, the inclination feature can discriminate between
cycling and walking stairs. The forward/backward angle of the
thigh is distinctive for walking/running and non-level walking
(Skotte et al., 2014). Using the frontal and vertical accelerations of
a shoe-embedded 3D accelerometer can provide an informative
feature differentiating stairs from walking uphill/downhill
(el Achkar et al., 2016).

Physical Activity Type Detection Methods
The type of sensor as well as sensor parameters used can
affect the classification performance. For example, a simple
ANN model based on two 1D accelerometers may not be
successful in discriminating between two self-paced speeds of
walking and cycling using accelerometer counts (De Vries et al.,
2011). Conversely, using a sensor configuration comprising 5
IMU, an SVM classifier was able to differentiate between 19
motion activities and postures with high accuracy, followed
by an ANN using the WEKA software (Barshan and Yuksek,
2014). However, using a different software toolbox (PRTools),
the GMMmodel took the leading role applying repeated random
sub-sampling (RRSS) and k-fold cross-validation as validation
methods; applying L1O cross validation, ANNs and SVMs stayed
superior using the PRTools toolbox (Barshan and Yuksek, 2014).
These results show that even the software and validationmethods
used may have an influence on the classification performance
that can be achieved. Finally, the results of Bonomi et al. (2009)
indicate that applying the minimum sensor configuration of
a single lower-back 3D acceleration, a DT classifier is able to
successfully distinguish between different motion activities with
an accuracy of 93%.

Detecting Posture and Motion Activities
Ambulatory Assessment Specification
Most human PA routines may be described by the motion
activities of walking, cycling, running, and the postures of
sitting, standing, and lying. It is thus important to be able to
distinguish between these activities in the real-life PATD process
(Reiss and Stricker, 2011). Moreover, from the clinical point
of view, it is particularly crucial for PA behavior monitoring
in the healthy aging context to discriminate postures such
as sitting and standing from motion types such as walking
(el Achkar et al., 2016).

While a dual accelerometer position is recommended for
reliable PA distinction, particularly for postures (De Vries et al.,
2011; Gyllensten and Bonomi, 2011; Reiss and Stricker, 2011),
there is evidence asserting the validity of using a single 3D
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accelerometer with (el Achkar et al., 2016) or without (Godfrey
et al., 2011) additional sensors on a single position for accurate
activity classification of postures and transitions between them.
A 3D accelerometer provides more information compared to 1D
and 2D accelerometers. Using a 1D or 2D accelerometer will
increase the number of required sensors (Troped et al., 2008; De
Vries et al., 2011; Ruch et al., 2011; Nguyen et al., 2013; Fergus
et al., 2015) for reliable PATD. To detect all the basic postures and
motion activities in daily life, using a single-position system was
shown to be problematic (Gyllensten and Bonomi, 2011). Two
3D accelerometers mounted on the thigh and hip, respectively,
was shown to distinguish with a high classification accuracy of
more than 95% the main types of postures and motions, that is,
sitting, standing, lying, walking, cycling, running, and non-level
walking (Skotte et al., 2014).

Additional sensors such as barometer or force sensing are
helpful for detecting non-level walking and postures (Skotte et al.,
2014; el Achkar et al., 2016), while GPS and heart-rate sensors
improve the detection of motion activities (Troped et al., 2008;
Kwak and Lee, 2012; Nguyen et al., 2013). Sensors without gravity
component, such as a gyroscope, and linear acceleration perform
poorly in differentiating postures such as sitting and standing.
However, adding an accelerometer with a vertical axis can address
this classification problem (el Achkar et al., 2016). Conversely,
the classification performance of these sensors is comparable or
sometimes better than a 3D accelerometer in recognizing motion
activities (Shoaib et al., 2014).

Devices such as the Actigraph provide activity counts. Activity
counts are the sum of the accelerations measured over a selected
period (epoch time) of e.g., 1 s (Ruch et al., 2011). Usually the
activity counts are filtered and preprocessed accelerometer data.
The activity counts from 1D accelerometers may not accurately
detect activity transitions or reveal the cyclical pattern of motion
activities such as cycling. Therefore, using raw accelerometer data
with more than 20Hz sampling rate is recommended (De Vries
et al., 2011). There are also studies that applied higher sampling
rates of more than 20Hz (Bonomi et al., 2009; Gyllensten and
Bonomi, 2011; Adaskevicius, 2014; Barshan and Yuksek, 2014;
Shoaib et al., 2014; Skotte et al., 2014; Garcia-Ceja and Brena,
2016; Spinsante et al., 2016) or more than 50Hz (Reiss and
Stricker, 2011; van Hees et al., 2013; Bayat et al., 2014; Garcia-
Ceja and Brena, 2016), while (Shoaib et al., 2014) indicated that
50Hz can be a sufficient sampling rate to recognize daily PAs.

Preprocessing
The high-frequency component of the acceleration signal, the AC
component, is mostly related to the dynamic motion activities
such as walking or running, while the low-frequency component
of the acceleration signal, the DC component, is mainly tied
to the influence of gravity, which plays an important role for
postures. To extract the gravity component a low-pass filter with
a cutoff frequency in the range from 0.1 to 0.5Hz can be applied.
To obtain the AC component, the low-pass filtered data can be
subtracted from the original data (Bayat et al., 2014).

When using windowing techniques for signal segmentation
the window size should be carefully selected. In real-life settings,
activities are not happening continuously and it is common to

have many short bouts of activities. Therefore, a signal segment
may comprise several activities. Choosing a small window size
may be useful in detecting activity transitions but may lead to
a reduction of the classification accuracy. For example, using
a 20Hz 3D accelerometer, window sizes of 0.4, 0.8, 1.6, 3.2 s
achieved lower classification accuracy in discriminating motion
activities and postures compared to window sizes of 6.4 or
12.8 s (Bonomi et al., 2009). Conversely, large windows react
more slowly to activity changes but provide better protection
against misclassification (Bonomi et al., 2009; Bisio et al.,
2012). The window size should be large enough to include the
signal signature of motion activities such as walking, cycling,
and running to capture several cycles of the corresponding
acceleration data (van Hees et al., 2013; Bayat et al., 2014;
Skotte et al., 2014). Overlapping windowing can also be useful
to reduce information loss at the edges of the signal window
(Bonomi et al., 2009).

Regarding feature extraction, it is important to note that
generally, the acceleration features for postures and motion
activities differ greatly in real-life settings from those obtained in
laboratory experiments. In particular, there is a higher degree of
overlap between the empirical distributions of features generated
in real-life settings than from laboratory data (Gyllensten and
Bonomi, 2011).

Above, we already discussed features that are useful to
discriminate different posture types (Preprocessing) and different
types of motion activities (Preprocessing), respectively. If the task
is to differentiate between postures and motions, it is common to
use features that represent the variation in the acceleration signal.
For example, high values of the SD of the waist-acceleration in
the mediolateral direction are an indicator of motion activities,
whereas low values of this feature are indicative of postures
(Bonomi et al., 2009). When a subject is performing motion
activities, the acceleration signal is oscillating in a cyclical pattern,
with varying peak amplitude, but constant peak interval. The
higher the peak amplitude is, the more intense the motion
activity (Makikawa and Murakami, 1996). Conversely, when the
subject remains in a postural state, the accelerometer signal is
not oscillating. The acceleration peaks can be recognized by step
detection and help to distinguish between postures and several
motion activities. The angular velocity from a gyroscope can
be used to detect steps based on the toe off (TO) instant (el
Achkar et al., 2016). The number of steps or the GPS speed
(Troped et al., 2008; Nguyen et al., 2013) are informative features
for discriminating between postures and motion. The vertical
velocity estimated from a 3D chest-mounted accelerometer also
helps to differentiate these two classes of PA (Godfrey et al., 2011).

Physical Activity Type Detection Methods
Different classifiers were used to detect posture and motion
activities including several ML classifiers (Bonomi et al., 2009;
De Vries et al., 2011; Gyllensten and Bonomi, 2011; Reiss and
Stricker, 2011; Ruch et al., 2011; Bisio et al., 2012; Nguyen et al.,
2013; van Hees et al., 2013; Adaskevicius, 2014; Barshan and
Yuksek, 2014; Bayat et al., 2014; Shoaib et al., 2014; Skotte et al.,
2014; Fergus et al., 2015; Spinsante et al., 2016), fuzzy logic
classifiers (Kwak and Lee, 2012), rule-based/threshold-based
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classification (Godfrey et al., 2011; Shoaib et al., 2014; el Achkar
et al., 2016), or statistical analysis (Troped et al., 2008). Almost
all of the studies detected both motion activities and postures,
with the exception of two studies (Kwak and Lee, 2012; Bayat
et al., 2014), which only detected motion activities. There is
a high variation in the number, type and body placement of
the sensors, preprocessing methods used, characteristics of the
training dataset, validation methods, number and type of target
PAs, and the classification toolbox applied in the eligible studies,
all of which could alter the classification result of a particular
PATD exercise. Therefore, it is difficult to make a concrete
conclusion as to what is the best classifier for detecting postures,
motion activities, or both PA classes. For instance, in one study
DT (a rather simple classification method) was able to detect
all the motion activities and postures mentioned above with
a high accuracy using two 3D accelerometers (30Hz) on the
hip and thigh (Skotte et al., 2014). However, using a single
3D waist/lower back accelerometer (20Hz) in a different study
decreased the DT classification performance for postures such
as sitting and standing (Bonomi et al., 2009). This suggests that
the performance of the classifier used responds to the design of
the ambulatory assessment specification and the preprocessing
operations used.

In general, as explained in detail in PA classifiers and their
performance, different classifiers can have different strengths
and weaknesses, depending on the classification problem at
hand. Considering not only the classification accuracy alone,
but also additional criteria such as the amount of training
data required, computational performance, interpretability, and
required training time (Spinsante et al., 2016), all of which are
important factors for real-life PATD, the DT classifier seemed
to be the most promising approach for reliably detecting basic
classes of postures and motion activities.

Limitations and Potential Bias
To conduct the systematic literature review, only four databases
were searched, which may have kept other relevant studies
contained in other databases from being included. Based on
the inclusion criteria, only literature in English was included;
studies in other languages were not considered. The particular
focus on approaches that performed the data collection in real-
life conditions may have led to excluding potentially advanced
laboratory-trained algorithms that have not been validated with
real-life datasets so far. However, this study had two strengths:
journal articles and conference papers that were derived from
four comprehensive databases were rigorously screened based
on the eligibility criteria, and the articles included were carefully
analyzed in a standardized way.

CONCLUSION

This systematic review performed an analysis of the literature
since 1990 to present key factors regarding current methods
of physical activity type detection (PATD) using accelerometer
data collected in real-life settings. In general, the eligible studies
showed that assessing daily real-life PA has seen major advances
in the past decade due to progress in portable sensor technology,

in particular relating to accelerometry. The results of this review
were structured according to the three main stages of the PATD
process, data collection, preprocessing, and PATD methods, and
led to the following major findings:

Data Collection
Actigraph, which supports continuous tracking over several days,
was the most commonly used commercial device. Nonetheless,
smartphones have gained popularity in recent years, mainly due
to their ubiquitous use in daily life and their multiple sensors.
However, compared to dedicated devices, smartphones have a
shorter battery life and may suffer from uneven sampling rates.
In terms of sensor type, 3D accelerometers are now most often
used, typically with sampling rates (considerably) higher than
20Hz in real-life settings. For sensor placement, locations close
to the central part of the body, such as waist and hip, are most
common.Most studies used small sample sizes between 10 and 30
participants, but given the increasing availability and affordability
of mobile sensing devices, larger sample sizes are becoming
increasingly feasible.

Preprocessing
Preprocessing of the accelerometry data is crucially important
for the accuracy that can be achieved in the subsequent PA
type classification stage. The eligible studies did not show
great variation regarding signal filtering and segmentation:
Butterworth was the most commonly used filter, followed by
moving average and median filters. Low-pass filtering can
extract the gravity (DC) component, which is important for
differentiating postures, while high pass filtering is useful
to derive the body acceleration (AC component). In signal
segmentation, windowing techniques were often employed,
either using a fixed-size sliding window or an activity-based
window. In feature extraction, a great diversity of features have
been used across the various studies, both in the temporal
and in the frequency domain, with the choice of features
dependent on the PA types investigated. Some publications
made recommendations as to the discriminating qualities of
certain features. Nonethless, feature selection and dimensionality
reduction, as a final preprocessing step, are crucial to obtain an
informative feature set; clustering techniques as well as PCAwere
commonly employed for this purpose.

PATD Methods
The most typical PA types investigated were sitting, standing,
and lying from the posture PA class and walking, non-level
walking, running, and cycling from the motion PA class. There
was a large variation in the amount of training data used
for the PA type classification. A wide range of classifiers have
been employed, both as individual classifiers and as meta-
classifiers, combining different individual methods to achieve
the best possible classification result. Among the individual
classifiers, decision trees were most commonly used, followed
by neural networks. Combining classifiers to meta-classifiers was
shown to be a promising approach. Indeed, the meta-classifiers
outperformed the individual classifiers in all studies that applied
a combined method.
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Posture and Motion Physical Activities
Posture and motion activities are two important PA classes that
not only have different effects on human health, but also require
different PATD designs and workflows. The type of target PA and
whether it is from a posture ormotion class determines the design
of the data collection, the preprocessing operations required, and
eventually the classification performance that can be achieved.
The gravity component of the accelerometer data, particularly
the gravity direction/inclination, needs to be established in
order to discriminate between different postures. A single 3D
chest-mounted accelerometer provides a minimal configuration
to discriminate between the most common postures (sitting,
lying, and standing) and their transitions, but more sensors are
required to distinguish further subtypes of postures. In contrast
to postures, motion activities involve the movement of the whole
body and thus differentiating between them requires the use
of the body acceleration (AC) component of the accelerometer
data. A single waist-mounted 3D accelerometer is sufficient for
detecting the most common motion activities (walking, running,
and cycling). Again, in order to reliably distinguish more
fine-grained motion activities, additional sensors in different
placements are required.

Despite the significant progress made over the past years, it
remains difficult, if not impossible, to compare the performance
of the various proposed methods. A transparent performance
comparison would require, most importantly, an agreed set
of PA types that could be used for benchmarking; labeled,
fully documented, and openly available reference datasets

representing the selected PA types; and an agreement on a set
of performance metrics, evaluation and reporting protocols. This
would enable development of broadly applicable guidelines and
recommendations, facilitating robust progress both concerning
PA type detection methods and their application in a growing
number of application domains, including sports medicine,
healthy aging, smart homes, and ubiquitous computing. Finally,
while most work reviewed in this paper relied on dedicated
accelerometer devices, there is clearly a trend toward the
use of smartphones, as these can support a wide range
of apps on top of accelerometry. Future research should
therefore look into the work of relevant domains, in particular
pervasive computing.
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