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Children are becoming increasingly inactive, unfit, and overweight, yet there is relatively

little causal evidence regarding the effects of physical activity on brain health during

childhood. The present study examined the effects of an after-school physical activity

program (FITKids2) on the microstructure of white matter tracts in 7- to 9-year-old

children. We measured the microstructural properties of white matter via diffusion tensor

imaging in 143 children before and after random assignment to either a 9-month

after-school physical activity program (N = 76, mean age = 8.7 years) or a wait

list control group (N = 67, mean age = 8.7 years). Our results demonstrate that

children who participated in the physical activity program showed increased white

matter microstructure in the genu of the corpus callosum, with no changes in white

matter microstructure in the wait list control group which reflects typical development.

Specifically, children in the physical activity program showed increases in fractional

anisotropy (FA) and decreases in radial diffusivity (RD) in the genu from pre- to post-test,

thereby suggesting more tightly bundled and structurally compact fibers (FA) and

increased myelination (RD), with no changes in estimates of axonal fiber diameter (axial

diffusivity, AD). The corpus callosum integrates cognitive, motor, and sensory information

between the left and right hemispheres of the brain, and the white matter tract plays a

role in cognition and behavior. Our findings reinforce the importance of physical activity

for brain health during child development.

Keywords: brain deve, children, physical activity, diffusion tensor imaging, white matter

INTRODUCTION

Children are becoming increasingly inactive, unfit, and overweight. Exercise has decreased in
school-aged youth, with only one-quarter of children participating in the recommended 60min
or more of moderate-to-vigorous physical activity per day (National Physical Activity Plan
Alliance, 2016). Schools, which reach ∼55.5 million children between the ages of 5 and 17 years
(National Center for Education Statistics, U.S. Department of Education, 2017), have contributed
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to the declining health of youth through the implementation
of policies aimed at minimizing physical activity opportunities
during the school day in an effort to improve academic
performance (Institute of Medicine, 2013). However, such
policies are not supported by empirical evidence. In fact, a
growing number of studies demonstrate that an active and fit
lifestyle is beneficial for cognitive and brain health across the
lifespan (see Chaddock et al., 2012; Kramer and Colcombe, 2018
for reviews). Participation in physical activity and higher levels of
aerobic fitness are positively related to scholastic performance,
cognitive function, and brain health. Specifically, physically
active and higher fit children outperform less active and lower
fit children in and out of the classroom, and these performance
differences are paralleled by differences in the structure and
function of the brain (see Chaddock-Heyman et al., 2014b for
review and Donnelly et al., 2016 for review).

To date, most research using magnetic resonance imaging
(MRI) in children offers correlational evidence, with significant
associations among aerobic fitness, cognition, and brain structure
and function (Chaddock et al., 2010a,b; Chaddock-Heyman et al.,
2013, 2014a, 2015; Esteban-Cornejo et al., 2014; Ortega et al.,
2017). There is less causal evidence showing that participation in
physical activity modifies the brain, with only a small number of
randomized controlled trials that include neuroimaging methods
(Davis et al., 2011; Kamijo et al., 2011; Chaddock-Heyman et al.,
2013; Hillman et al., 2014; Krafft et al., 2014; Drollette et al., 2018).
That is, few studies have manipulated physical activity behaviors
to investigate whether physical activity improves brain health
at a critical period of development. Consequently, the effects of
physical activity on brain development are not well-understood.
This is an important limitation given that children are becoming
increasingly sedentary and overweight, and the developmental
years are among the most sensitive periods for brain growth and
development (Giedd et al., 1999; Casey et al., 2008).

The present study examined the effects of an after-school
physical activity program on the microstructure of white
matter tracts in children. Maturation of white matter tracts
is an important element of development, as microstructural
integrity of white matter is required for efficient transmission
of information between gray matter as well as the integration
of brain areas into structural networks to support cognitive
function (Schmithorst and Yuan, 2010). During childhood
and pre-adolescence, many white matter tracts throughout
the brain increase in estimates of microstructure, in parallel
with improvements in cognition (Barnea-Goraly et al., 2005;
Muetzel et al., 2008; see Schmithorst and Yuan, 2010, for a
review). Diffusion tensor imaging (DTI) allows scientists to
indirectly quantify the microstructural components of white
matter, including myelination and axonal organization. In
general, developmental studies using diffusion weighted imaging
techniques demonstrate age-related increases in fractional
anisotropy (FA) coupled with decreases in diffusivity (radial
diffusivity [RD] and axial diffusivity [AD]) in most white matter
regions (Lebel et al., 2008; Schmithorst and Yuan, 2010; Peters
et al., 2012; Tamnes et al., 2012), thereby suggesting increased
axon caliber and myelin content as well as changes in fiber
packing density with development (Beaulieu, 2002; Paus, 2010;

Simmonds et al., 2014). Specifically, FA is a general index of
white matter microstructure, hypothesized to be higher in tightly
bundled, structurally compact fibers with high integrity (Basser,
1995; Beaulieu, 2002; Sen and Basser, 2005; Rykhlevskaia et al.,
2008). RD is often used as a marker of myelination (Song
et al., 2002, 2003, 2005; Nair et al., 2005; Budde et al., 2007;
Rykhlevskaia et al., 2008), and AD is known to be sensitive
to changes in axonal fibers including axonal diameter, loss or
damage (Song et al., 2003; Budde et al., 2007). By exploring effects
of physical activity on multiple measures of diffusivity (FA, RD,
AD), we can investigate microstructural white matter properties
influenced by physical activity during child development.

A few studies to date suggest that aerobic fitness and
participation in physical activity play a role in white matter
microstructure during childhood (Chaddock-Heyman et al.,
2014a; Krafft et al., 2014; Schaeffer et al., 2014). For example,
higher aerobic fitness levels relate to greater FA in 9- and 10-
year old children in a diffuse set of tracts (Chaddock-Heyman
et al., 2014a) including the corpus callosum, corona radiata,
and superior longitudinal fasciculus. The associations with FA
were primarily characterized by differences in RD (and not AD),
raising the possibility that estimates of myelination may vary as
a function of individual differences in fitness during childhood.
In addition, two studies from a randomized controlled trial
explored the effects of an after-school aerobic exercise program
(40 min/day for 8 months; instructor-led aerobic activities,
e.g., tag and jump rope) on white matter microstructure of
two fiber tracts in a small sample of unfit, overweight 8-
to 11-year-old children (N = 10 Exercise, N = 8 Control,
BMI>85th percentile, 94% African American) (Krafft et al., 2014;
Schaeffer et al., 2014). Neither study demonstrated Group ×

Time interactions for white matter structure. However, one of the
studies suggested that greater attendance in the aerobic exercise
program was associated with increased estimates of white matter
microstructure (FA, RD) in a frontal-parietal white matter
tract, the superior longitudinal fasciculus, with no relationship
observed in the inactive control group that participated in art
and board games (Krafft et al., 2014). The second study from the
same randomized controlled trial demonstrated that the exercise
group showed greater change in the microstructure (FA, RD)
of a frontal-temporal white matter tract, the uncinate fasciculus
(Schaeffer et al., 2014), compared to the change scores of the
control group. Clearly, although these three studies provide a
basis for associations among aerobic fitness, physical activity, and
white matter microstructure, additional research is needed with
larger and more diverse samples.

Here, we go beyond prior reports by investigating the effects of
a 9-month randomized controlled physical activity trial on white
matter microstructure in tracts throughout the brain during
child development. We measured aerobic fitness (VO2max) and
the microstructural properties (FA, RD, AD) of white matter
in 7–9-year-old children before and after randomization into
a 9-month physical activity intervention or a wait list control
group (which reflects typical development over that period of
time). By examining the effects of physical activity on multiple
measures of diffusivity (FA, RD, AD), we were able to test
the influence of physical activity on specific microstructural
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white matter properties during childhood. In particular, we
examined the effects of physical activity on the microstructure
of the following tracts identified in previous work (Chaddock-
Heyman et al., 2014a; Krafft et al., 2014; Schaeffer et al., 2014):
the corpus callosum which connects the left and right cerebral
hemispheres and facilitates interhemispheric communication
and the exchange of cognitive, motor, and sensory integration
between the hemispheres, the corona radiata with ascending
and descending fibers from the cerebral cortex, the superior
longitudinal fasciculus, which provides bidirectional information
transfer between the frontal and parietal cortex (Krafft et al.,
2014), the posterior thalamic radiation, which connects the
thalamus and caudate nucleus with the cerebral cortex, and
the uncinate fasciculus which connects frontal and temporal
regions. We hypothesized that, relative to the control condition,
the FITKids2 physical activity intervention would result in
increases in FA and reductions in RD estimates of white matter
microstructure, with no changes in AD.

METHODS

Participants
Children were recruited from schools in East-Central Illinois.
Eligible participants were required to (1) be 7- to 9-years-old,
(2) have an absence of school-related learning disabilities (i.e.,
individual education plan related to learning), adverse health
conditions, physical incapacities, or neurological disorders, (3)
qualify as prepubescent (Tanner pubertal timing score ≤2)
(Taylor et al., 2001), (4) report no use of medications that
influence central nervous system function, (5) demonstrate
right handedness (as measured by the Edinburgh Handedness
Questionnaire) (Oldfield, 1971), (6) successfully complete amock
MRI session to screen for claustrophobia, and (7) sign an
informed assent approved by the Institutional Review Board
of the University of Illinois at Urbana-Champaign. A legal
guardian also provided written informed consent in accordance
with the Institutional Review Board of the University of Illinois
at Urbana-Champaign. The guardian was asked to provide
information regarding participants’ socioeconomic status (SES),
as determined by: (1) participation in free or reduced-price
lunch program at school, (2) the highest level of education
obtained by the mother and father, and (3) number of parents
who worked full-time (Birnbaum et al., 2002). Participants also
completed the Woodcock Johnson III paper and pencil task of
General Intellectual Ability to obtain an intelligence quotient
(IQ) (Woodcock, 1997).

Protocol
All children were asked to complete demographic assessments, a
VO2max test to assess aerobic fitness, and a magnetic resonance
imaging (MRI) session, which included a DTI scan at pre-
test (before randomization of group assignment) and post-test
(after the completion of the intervention, ∼9 months later).
Randomization was performed by a staff member who was not
involved in data collection, and group allocation was concealed
from the research team until the completion of the trial. Blinding
of staff and students involved in data collection and analysis

was successful as there were no reported breaches of blinding
throughout the course of the study. The study was carried out
in accordance with the recommendations of the Institutional
Review Board of the University of Illinois at Urbana-Champaign,
and our protocol was approved by the Institutional Review
Board.

Intention-to-Treat
See Figure 1 for a flow diagram of the FITKids2 DTI
participants. Intention-to-treat analyses were performed for all
children who completed the pre-test DTI assessment (N =

156) and were randomly assigned. Missing data at post-test
were resolved via imputation with mean replacement (N =

23; 10 in the physical activity condition, 13 in the wait list
control condition). Thirteen children (5 in the physical activity
condition, 8 in the wait list control condition) were excluded
from analysis due to visible motion on the reconstructed DTI
data and/or lack of whole-brain coverage during acquisition.
The intention-to-treat sample consisted of 143 children (N
= 76 in the physical activity condition, 67 in the wait list
control condition). We also conducted a sensitivity analysis by
performing the analysis on only the children who completed
both the pre-test DTI assessment and post-test DTI assessment
(N = 119; 66 in the physical activity condition, 54 in
the wait list control condition). The results were identical,
so we only report the results from the intention-to-treat
approach.

Aerobic Fitness Testing
Children completed a VO2max test to assess aerobic fitness. The
aerobic fitness of each child was measured as maximal oxygen
consumption (VO2max) during a graded exercise test (GXT). The
GXT employed a modified Balke Protocol and was administered
on a LifeFitness 92T motor-driven treadmill (LifeFitness, Schiller
Park, IL) with expired gases analyzed using a TrueOne2400
Metabolic Measurement System (ParvoMedics, Sandy, Utah).
Children walked and/or ran on a treadmill at a constant speed
with increasing grade increments of 2.5% every 2min until
volitional exhaustion occurred.

Oxygen consumption was measured using a computerized
indirect calorimetry system (ParvoMedics True Max 2400) with
averages for VO2 and respiratory exchange ratio (RER) assessed
every 20 s. A polar heart rate (HR) monitor (Polar WearLink+
31; Polar Electro, Finland) was used to measure HR throughout
the test, and ratings of perceived exertion (RPE) were assessed
every 2min using the children’s OMNI scale (Utter et al., 2002).
Maximal oxygen consumption was expressed in mL/kg/min and
VO2max was based upon maximal effort as evidenced by (1) a
plateau in oxygen consumption corresponding to an increase of
<2 mL/kg/min despite an increase in workload; (2) a peak HR
≥ 185 beats per minute (American College of Sports Medicine,
2006) and a HR plateau (Freedson and Goodman, 1993); (3)
RER ≥ 1.0 (Bar-Or, 1983); and/or (4) a score on the children’s
OMNI ratings of perceived exertion (RPE) scale ≥ 8 (Utter et al.,
2002).
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FIGURE 1 | Flow diagram of the FITKids2 DTI participants.
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Physical Activity Training Intervention and
Wait List Control Group
The physical activity intervention occurred for 2 h after each
school day from September until May for 150 days of the 170-day
school year. The program, Fitness Improves Thinking in Kids 2
(FITKids2) (https://clinicaltrials.gov/ct2/show/NCT01619826?
term=hillman&age=0&fund=0&rank=1) (NICHD grant
HD069381, ClinicalTrials.gov, Identifier: NCT01619826) was
based on the Child and Adolescent Trial for Cardiovascular
Health (CATCH) curriculum (McKenzie et al., 1994) and
aimed at improving aerobic fitness through engagement in a
variety of developmentally appropriate physical activities. The
environment was non-competitive and integrated activities such
as fitness activities, motor skill practice, and low organized games
similar to tag (Castelli et al., 2011).

Within a daily lesson, children participated in moderate
to vigorous physical activity (recorded by E600 Polar heart
rate monitors; Polar Electro, Finland, and Accusplit Eagle 170
pedometers, San Jose CA) for 30–35 sustained minutes and then
intermittently up to 90min, thus exceeding the national physical
activity guideline of 60min of moderate to vigorous physical
activity per day (Centers for Disease Control and Prevention,
2012). Overall, children spent ∼50% during the intervention
engaged in moderate to vigorous physical activity (i.e., > 70% of
heart rate max, based on pre-test VO2 maximal heart rate).

Each lesson began with the children completing stations
that focused on a specific health-related fitness component
(e.g., cardiorespiratory endurance, muscular strength). The
activities were aerobically demanding and designed to encourage
children to improve on previous performances by gradually
increasing the number of repetitions or amount of resistance
at a station. Although the stations were organized by health-
related fitness components, each activity also required a motor
or manipulative skill (e.g., dribbling a basketball around cones
for 30-s, performing a sit-up, throwing a ball over head).
After the sustained participation and active rest rotations, the
children consumed a healthy snack and were introduced to
a themed educational component related to health promotion
(e.g., goal setting, self-management). Each lesson concluded
with the children participating in non-elimination, small group
games and activities such as dance or sport activities with
modified rules selected from the CATCH curriculum. On the
weekends, the children were encouraged to continue their
participation in physical activity with their families, and physical
activity worksheets were utilized during school holidays to log
continued engagement. Average attendance across the 9-month
intervention was 84.16% (SD= 12.28%).

The wait list control group completed all facets of the pre-test
and post-test similar to those children who were randomized into
the after-school physical activity program. As incentive to stay in
the study, children in the wait list control group were afforded the
opportunity to participate in the physical activity program during
the following school year.

MRI Acquisition
Diffusion weighted images were acquired using a single-shot
diffusion-weighted EPI sequence in each research participant

with the following parameters: TR = 7,300ms; TE= 97ms;
FOV= 240mm; slice thickness= 2.0mm; acquisition matrix=
128 × 128). Thirty diffusion weighted images were acquired
along 30 non-collinear directions with a b-value of 1,000 s/mm2
along with 2 images with b = 0 s/mm2. The scan time was 4min
and 17 s.

Diffusion information can be represented mathematically
as a diffusion tensor / diffusion ellipsoid. FA is calculated
from the three eigenvalues (λ1, λ2, λ3) of the diffusion
tensor and represents anisotropic (directionally dependent)
diffusion (Basser, 1995; Beaulieu, 2002; Sen and Basser, 2005),
independently of the rate of diffusion. FA ranges from 0
to 1, with higher values reflecting increased directionality of
diffusion (i.e., water traveling more parallel to a tract compared
to perpendicularly). In a region with free diffusion, the FA
value is 0 and the diffusion is isotropic. If the diffusion
is more in one direction, i.e., anisotropic diffusion, the FA
value approaches 1. FA is a general index of white matter
microstructure, hypothesized to be higher in tightly bundled,
structurally compact fibers with high integrity (Basser, 1995;
Beaulieu, 2002; Sen and Basser, 2005; Rykhlevskaia et al., 2008).

We also explored specific patterns of diffusivity [radial
diffusivity (RD) and axial diffusivity (AD)], hypothesized
to reflect potential biological properties of white matter
microstructure (Basser, 1995; Pierpaoli and Basser, 1996;
Pierpaoli et al., 1996; Song et al., 2002). For example, a reduction
in RD is observed in the presence of remyelination, causing RD to
be often used as a marker of myelination (Song et al., 2002, 2003,
2005; Nair et al., 2005; Budde et al., 2007; Rykhlevskaia et al.,
2008). RD is the average of the second and third eigenvectors
(λ2, λ3), reflective of diffusivity perpendicular to the major axis
of the tensor. RD reflects the rate of radial diffusion, with lower
values reflecting less diffusion, and thus, increased estimates of
myelination (Basser, 1995; Pierpaoli and Basser, 1996; Pierpaoli
et al., 1996; Song et al., 2002).

AD is the diffusion along the principal diffusion eigenvalue
(λ1) of the ellipsoid. AD is said to be sensitive to changes in
axonal fibers including axonal diameter, loss or damage (Song
et al., 2003; Budde et al., 2007).

Diffusion Data Analysis
Image analyses and tensor calculations were performed using
FSL 5.0.1 (FMRIB Software Library). First, each participant’s
data were passed through a pipeline consisting of (1) motion
and eddy current correction, (2) removal of non-brain tissue
using the Brain Extraction Tool (Smith, 2002), and (3) local
fitting of the diffusion tensor model at each voxel using FMRIB’s
Diffusion Toolbox v2.0 (FDT: http://www.fmrib.ox.ac.uk/fsl/fdt).
The products of the multi-step pipeline included FA and AD
images. RD maps were calculated as the mean of the second and
third eigenvectors (Song et al., 2002).

Next, diffusion data were processed using TBSS v1.2 (Tract-
Based Spatial Statistics, Smith et al., 2006). Each participant’s FA
data were aligned into the 1 × 1 × 1 mm3 standard Montreal
Neurological Institute (MNI152) space via the FMRIB58_FA
template using the FMRIB’s Non-linear Registration Tool
(Andersson et al., 2007a,b), and a mean diffusion image was
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created. The mean FA image was then thinned to create an
average skeleton representing the centers of the tracts shared by
all participants, and the skeleton was thresholded at FA>0.20.
Each participant’s aligned FA data were projected onto the
skeleton, taking on the FA value from the local center of the
nearest relevant tract. RD and AD skeletons for each participant
were formed in a similarmanner by projecting the analogous data
onto the mean skeleton.

Region-of-Interest Analysis
Diffusion values (FA, RD, AD) were calculated for each
participant within bilateral a priori regions of interest (ROIs),
created from the JHU ICBM-DTI-81 white matter labels atlas
(http://www.fmrib.ox.ac.uk/fsl/data/atlas-descriptions.html#
wm [Mori et al., 2005; Wakana et al., 2007; Hua et al., 2008]).
Tract ROIs were created in the corpus callosum, corona radiata,
superior longitudinal fasciculus, posterior thalamic radiation,
and uncinate fasciculus. An FSL command, fslmaths, was used to
create each ROI (e.g., fslmaths JHUAtlas –uthr –thr). An average
diffusion value across left and right hemispheres was computed
for each ROI for each diffusion measure for each participant.

Statistical Analysis
Analyses were conducted via a 2 (group: intervention, wait list
control) × 2 (time: pre-test, post-test) multivariate repeated
measures analysis of variance (ANOVA). We explored the effects
of the physical activity intervention on aerobic fitness (VO2max),
and estimates of white matter microstructure (FA) in pre-
specified ROIs. If the interaction was significant, we conducted
paired t-tests and independent t-tests to further explore group
differences in white matter structural changes from pre-test to

post-test. For those tracts showing significant changes in FA (p
< 0.05), we conducted secondary analyses on RD and AD to
better understand the underlying biological properties of overall
FA changes in white matter microstructure.

RESULTS

Participant Demographics and Aerobic
Fitness
Group demographic and aerobic fitness data at pre-test and post-
test are provided in Table 1. The variables of age, sex, race, IQ,
SES, pubertal timing, VO2max, and BMI did not differ between
the physical activity and control groups (all t < 1.0, p > 0.05).

There were no significant effects of the intervention
on aerobic fitness (p>0.05), indicating that the physical
activity dose provided in the intervention did not significantly
modulate aerobic fitness levels. Descriptively, the physical activity
intervention group exhibited a non-significant gain in VO2max

percentile of 1.53% as a function of their daily exposure to
physical activity, compared to a 1.62% decrease in VO2max

percentile in the wait-list control group over the same period.

White Matter Microstructure
DTI estimates of white matter microstructure at pre-test and
post-test are provided inTable 1. Consistent with our hypotheses,
there was a significant Group × Time interaction for FA in the
genu of the corpus callosum (F (1, 141) = 3.973, p = 0.048), with
the physical activity group showing significant increases in FA
from pre-test to post-test (t (75) = 2.551, p = 0.013), and no
changes in FA for the control group (p= 0.686) (Figure 2). There
were no group differences in FA at pre-test or post-test.

TABLE 1 | Mean (SD) for physical activity and wait list control groups at pre-test and post-test.

Physical activity Control

Pre-test Post-test Pre-test Post-test

Age (years) 8.7 (0.57) 9.5 (0.61) 8.7 (0.5) 9.4 (0.51)

Gender 39 girls, 37 boys 34 girls, 33 boys

IQ 110.4 (16.9) 111.7 (12.0)

Pubertal timing 1.39 (0.47) 1.37 (0.45)

SES 1.91 (0.79) 1.90 (0.76)

VO2 max (mL/kg/min) 42.26 (7.9) 42.86 (7.8) 42.96 (6.9) 42.95 (6.1)

VO2 max percentile 34.80 (31.2) 36.33 (31.1) 38.69 (29.4) 37.1 (26.9)

BMI (kg/cm2) 19.0 (3.7) 19.2 (3.68) 18.7 (4.06) 19.4 (4.52)

FA genu of corpus callosum 0.750 (0.022)* 0.755 (0.021)* 0.754 (0.021) 0.754 (0.022)

RD Genu (mm2/s) 0.00032 (0.00003)* 0.00030 (0.00004)* 0.00031 (0.00003) 0.00031 (0.00003)

AD Genu (mm2/s) 0.00148 (0.00006) 0.00148 (0.00005) 0.00149 (0.00005) 0.00149 (0.00007)

FA body of corpus callosum 0.694 (0.034) 0.703 (0.025) 0.696 (0.034) 0.700 (0.025)

FA splenium of corpus callosum 0.789 (0.022) 0.797 (0.022) 0.795 (0.022) 0.798 (0.014)

FA corona radiata 0.506 (0.023) 0.514 (0.030) 0.505 (0.023) 0.509 (0.022)

FA superior longitudinal fasciculus 0.514 (0.028) 0.520 (0.033) 0.517 (0.025) 0.520 (0.025)

FA posterior thalamic radiation 0.618 (0.032) 0.622 (0.029) 0.623 (0.032) 0.622 (0.030)

FA uncinate fasciculus 0.533 (0.056) 0.540 (0.042) 0.549 (0.052) 0.541 (0.045)

IQ, woodcock johnson III paper and pencil task of general intellectual ability (Woodcock, 1997); SES, socioeconomic status (Low: < 2; Moderate: 2-3; High, >3). *p < 0.05.
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FIGURE 2 | Illustration of the significant Group × Time interaction for FA in the

genu of the corpus callosum, with the physical activity group showing

significant increases in FA from pre-test to post-test, and no changes in FA for

the control group. The result suggests increased estimates of white matter

microstructure and fiber integrity with physical activity participation.

A secondary analysis showed a Group × Time interaction
for RD in the genu of the corpus callosum (F (1, 141) =

5.467, p = 0.021), with the physical activity group showing
significant decreases in RD from pre-test to post-test (t

(75) = 2.705, p = 0.008), with no changes in RD for
the control group (p = 0.663) (Figure 3). There were no
group differences in RD at pre-test or post-test. There were
no effects for AD in the genu of the corpus callosum
(p > 0.05).

No Group × Time interactions reached significance for FA
of the corona radiata, superior longitudinal fasciculus, posterior
thalamic radiation, or uncinate fasciculus.

FIGURE 3 | Illustration of the significant Group × Time interaction for RD in

the genu of the corpus callosum, with the physical activity group showing

significant decreases in RD from pre-test to post-test, with no changes in RD

for the control group (p = 0.592). The result suggests increased estimates of

white matter myelination with physical activity participation.

DISCUSSION

The present study demonstrates that 7- to 9-year-old children
who participated in an after-school physical activity program
showed increased white matter microstructure in the genu of the
corpus callosum, with no changes in white matter microstructure
in the wait list control group. The results were specific to the
anterior corpus callosum, with physical activity participation
leading to greater increases in FA, greater decreases in RD,
and no changes in AD from pre- to post-test. There were
no group differences in white matter microstructure at pre-
test or post-test. The findings suggest that physical activity
may lead to more tightly bundled and structurally compact
fibers (FA) and increased myelination (RD), with no changes in
estimates of axonal fiber diameter (AD). We did not demonstrate
effects of physical activity participation on the structure of
the corona radiata, superior longitudinal fasciculus, posterior
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thalamic radiation, or uncinate fasciculus. In general, these
results demonstrate that 7- to 9-year-old children who participate
in moderate to vigorous physical activity, 5 days per week, for
9 months, experience changes in the microstructural properties
of the anterior corpus callosum. This effect was not realized in a
wait list control group that was not involved in an after-school
physical activity program and reflects typical development.

Our results have broad implications. The corpus callosum
integrates cognitive, motor, and sensory information between
the left and right hemispheres of the brain, and the white
matter tract plays a role in cognition and behavior (Banich and
Brown, 2000). As this tract is undergoing developmental changes
during pre-adolescence, our results raise the possibility that
incorporating physical activity into a child’s day may enhance the
development of these white matter fibers. Moreover, the corpus
callosum is associated with a broad array of clinical syndromes.
Abnormal structural development of the corpus callosum has
been found to relate to cognitive and behavioral deficits in
children with neurodevelopmental disorders including attention-
deficit hyperactivity disorder, autism, and schizophrenia (Swayze
et al., 1990; Hynd et al., 1991; Barnea-Goraly et al., 2004). Thus,
the corpus callosum plays a key role in efficient transmission
of information between brain hemispheres to support cognitive
function.

In fact, physical activity may capitalize on the structure
of white matter fibers in the anterior corpus callosum. The
specificity of our physical activity results to the corpus callosum
are consistent with the effects of a 6-month aerobic exercise
intervention in older adults, in which physically active older
adults showed greater increases in white matter volume of the
anterior corpus callosum relative to a stretching and toning
control group (Colcombe et al., 2006). Note that a volumetric
approach to assess white matter (Colcombe et al., 2006) differs
from DTI techniques, which explore microstructural properties
of brain tissue. In addition, a case study of Olga Kotelko, a world-
famous non-agenarian track-and-field athlete with over 30 world
records in her age category (90–95 years), only showed higher
FA in the genu of the corpus callosum compared to a reference
sample of low active women (age 60–78 years) (Burzynska et al.,
2015). The present results also address the larger debate about the
capability for plasticity in white matter structure (Sexton et al.,
2016). To date, there is scant evidence that interventions can
reliably alter white matter structure (Sexton et al., 2016). But, the
results we describe here provide evidence that a physical activity
intervention is capable of modifying white matter structure in
children.

The analysis of different diffusion properties (FA, RD, AD)
allowed us to speculate about the specific effects of physical
activity on changes in properties and biological mechanisms
of white matter microstructure in preadolescent children. Our
results suggest that physical activity during childhood may
influence fiber structural integrity and fiber alignment (FA) in
tracts, perhaps via increased myelination (RD), and distinct from
axonal properties (AD) (Song et al., 2003, 2005; Sun et al., 2006,
2008). Indeed, aerobic exercise leads to many molecular and
cellular changes in the brain that may influence white matter.
For example, exercise has been found to improve cerebrovascular

health and cerebral perfusion, which may benefit white matter
via improved oxygen and nutrient delivery (Black et al., 1990;
McDonnell et al., 2013; Chaddock-Heyman et al., 2016). In non-
human animal models, exercise benefits the vascular system
via increased capillary density (Black et al., 1990; Isaacs et al.,
1992; Neeper et al., 1995; Carro et al., 2001; Swain et al.,
2003; Ding et al., 2006; Clark et al., 2009). In younger and
older humans, regular aerobic exercise has been associated with
a healthier vascular profile involving blood pressure, vascular
resistance, and arterial elasticity (McDonnell et al., 2013). In
children, higher levels of aerobic fitness have been found to relate
to greater perfusion in the hippocampus, suggesting improved
microcirculation and cerebral vasculature (Chaddock-Heyman
et al., 2016). Thus, it is possible that benefits to the vascular
system, via improved oxygen and nutrient delivery, mediate some
of the effects of physical activity on white matter structure during
childhood.

Aerobic exercise also leads to increased production of growth
factors. In particular, brain-derived neurotrophic factor (BDNF)
is known to play a role in neuron growth and survival, synaptic
plasticity, and axonal pruning and regeneration (Mamounas
et al., 2000; Cao et al., 2007; Singh et al., 2008). In older adults,
increased BDNF expression has been associated with physical
activity-related changes in hippocampal volume and improved
functional connectivity (Voss et al., 2010; Erickson et al., 2011).
Exercise also upregulates IGF-1, a neurotrophic factor involved
in proliferation of oligodendrocytes which help allow for axonal
myelination (Krityakiarana et al., 2010; Matsumoto et al., 2011).
Thus, an upregulation of neurotrophic and growth factors with
participation in physical activity may also play a role in changes
in white matter microstructure in children.

Our results also raise the possibility that physical activity and
aerobic fitness may relate differently to white matter health. We
do not demonstrate effects of the physical activity intervention
in the same tracts that differ in microstructure in higher fit
(>70th percentile VO2max) and lower fit (<30th percentile
VO2max) children (Chaddock-Heyman et al., 2014a). It is possible
that different biological mechanisms drive associations between
physical activity and white matter structure, vs. aerobic fitness
and white matter structure. Our cross-sectional comparison of
higher fit and lower fit children (Chaddock-Heyman et al.,
2014a) compared estimates of white matter microstructure in
extreme aerobic fitness groups, whereas the present randomized
controlled trial specifically enrolled lower fit participants that
remained lower fit even after the completion of the intervention
(i.e., average VO2max percentile of 36% at pre-test and post-test,
across groups). In addition, the children in the physical activity
program only showed a 1.5% increase in VO2max, thereby
moving from a lower fit classification to a slightly less lower fit
classification. Hence, if a threshold for aerobic fitness is necessary
to engender differences in white matter structure, it was likely
not achieved with the daily dose of physical activity administered
via the FITKids2 program. This result suggests that changes in
aerobic fitness might not be the primarymediator for the physical
activity-related changes in white after microstructure. Finally, as
our results do not replicate the effects of physical activity on
white matter structure in the superior longitudinal fasciculus
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or uncinate fasciculus in a small sample of overweight children
(Krafft et al., 2014; Schaeffer et al., 2014), future research may
explore the role of interactions among physical activity, aerobic
fitness, and adiposity in brain development during childhood.

The present study provides an additional step in identifying
the relationship between physical activity and white matter
microstructure during typical child development, but we make
conclusions in the context of the limitations to our study. The use
of a wait list control group makes it difficult to conclude that our
reported group differences are entirely based on daily physical
activity participation; however, others (Krafft et al., 2014) have
shown DTI findings following a physical activity intervention
relative to an active control group. Here we interpret the wait
list control group as a group of typically developing children
across a period of 9 months. Furthermore, it is possible that
other aspects of our multimodal after-school program, which
included aerobic, motor, and social activities as well as a brief
educational component, may have contributed to the results,
such that an enriched after-school program benefits brain health
in children. Finally, it is important for future research to link the
reported associations between physical activity and white matter
structure to cognition and scholastic performance. It is possible
that changes in structural connectivity with physical activity may
account for some differences in cognitive performance. In fact,
the corpus callosum has been found to play a role in attention,
memory, and processing speed across the lifespan (Madden et al.,
2012). Also, we note that because DTI does not measure tissue
parameters (e.g., fiber integrity, myelination) directly, but rather,
measures the displacement of water molecules, the underlying
microstructural properties of white matter can only be inferred
from this displacement.

In conclusion, a 9-month randomized controlled physical
activity intervention significantly improved estimates of
structural integrity and myelination of the genu of the corpus
callosum. Given that no significant changes were observed

for children assigned to the wait list control group, the key
implication from this study is that participating in an after-
school physical activity program enhances the microstructure of
the anterior corpus callosum, which may suggest faster neural
conduction between brain hemispheres. These results arrive at
an important time, as children become increasingly unfit and
sedentary, and educators reduce or eliminate opportunities for
physical activity during the school day in favor of academic
topics (Centers for Disease Control and Prevention, 2010).
Hopefully these findings will reinforce the importance of
physical activity during development and drive public health
change in promoting physical activity opportunities for children.
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