
70 Informatica Economică vol. 22, no. 4/2018

DOI: 10.12948/issn14531305/22.4.2018.06

Real Time Agile Metrics for Measuring Team Performance

Eduard Nicolae BUDACU, Paul POCATILU

The Bucharest University of Economic Studies, Romania

eduard.budacu@csie.ase.ro, ppaul@ase.ro

In order to track the improvements of agile teams, a system of metrics and indicators is very

important to be implemented. Agile Software Development (ASD) promotes working software

as the primary way of measuring progress. The current set of metrics are more output oriented

rather than using lines of code to estimate productivity. This paper presents the results of a

background research in order to identify the most important metrics, indicators, measures and

tools software development teams use in relation with agile-based methodologies. The paper

also presents a case study based on data gathered in a software outsourcing company. The

paper proposes an architecture of an automated system used to provide real-time metrics for

measuring agile team performance.

Keywords: Agile Development, Metrics, Indicators, Measurements, Velocity, Lead Time, Cycle

Time

Introduction

Software industry has adopted a wide

range of Agile Software Development meth-

ods to improve productivity [13], [18]. Met-

rics and measures are required for planning

and tracking projects, measuring quality and

assessing team performance [10]. This paper

aims to review the usage of metrics in indus-

trial software development where agile prac-

tices are applied. It also proposes an architec-

ture of a system that provides real-time met-

rics based on data provided by project and

process management software. A case study is

conducted in a Romanian software company

providing custom software development ser-

vices using an outsourcing model.

This paper is structured as follows. The first

part defines the problem of using metrics in

software development. In the second part a

background research is performed to identify

what kind of metrics and tools software devel-

opment teams use in relation with agile and

lean methodologies. The third part presents

the case study, research method, results and

presentation of the proposed system. The last

part is reserved for discussion, conclusions

and future research directions.

Use of metrics in software development has a

great importance in both traditional and agile

software development methods. The metrics

are described in software development stand-

ards like [14], [15] and [16]. Software devel-

opment metrics relay heavily on output ori-

ented measures. Software is analyzed based

on lines of code written (LOC), function or

class complexity, like cyclomatic complexity

[11], documentation coverage, etc. Project

management is orientated to evaluate the ac-

complishment of plans based on what is done

on time and within budget so the main way of

measuring is tracing project plan completion.

Agile promotes working software as the pri-

mary measure of progress, but the definition

of “working” is vague and can lead to differ-

ent interpretation based on roles and individ-

ual background [1]. In this study we consider

the definition of working software as new

functionalities that bring value to the business

or satisfies a user request. Three key agile

metrics are used to assess the ability of deliv-

ering working software.

2 Background research

In this section a background research related

to the agile software development and soft-

ware measurements is performed to introduce

the key metrics used in the case study. Several

articles and books are analyzed to identify

what are the best practices in using agile met-

rics.

A systematic literature review identifies that

reasons for using metrics are focused on plan-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201322757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Informatica Economică vol. 24, no. 4/2018 71

DOI: 10.12948/issn14531305/22.4.2018.06

ning, progress tracking, understand and im-

prove quality, fixing software process prob-

lems, and motivating people [2]. The metrics

are also used in estimating the software pro-

ject duration [12]. Metrics are categorized in

each of the primary studies analyzed. It is

shown that the same metric can be used in dif-

ferent contexts. For example, defect count as

an external measure of customer satisfaction

or as an internal measure of software testing.

The study concludes that the most influential

metrics in the primary studies are Velocity

and Effort estimate in Scrum and Extreme

Programming methods and Lead/Cycle time

in Kanban method. Key agile metrics are de-

fined in Table 1.

Table 1. Key agile metrics

Metric Methods Definition

Velocity Scrum, XP The amount of working software

delivered in a sprint/iteration.

Lead time Kanban The amount of time that passed

from a request to fulfilling the re-

quest.

Cycle time Kanban The amount of time that passed

from when work actually started to

fulfilling the request.

Graphically, the cycle time and lead-time are

presented in Figure 1.

Fig. 1. Lead-time and cycle time

In [3] the author argues that metrics can be

dangerous if it’s only used a way to set unre-

alistic targets and manage the work by num-

bers (e.g. management establishes a target

over a period of time that is communicated

without a goal so people do everything just to

fill a quota). This will eventually lead to un-

wanted behaviors that derail from the initial

intent. In this regard is recommended to al-

ways link metrics to goals, use short tracking

periods, favor tracking trends rather than pre-

cise numbers and stop using a metric when it

no longer drives change. In previous research

([4]) the state of agile practices in Romanian

software community was evaluated. Accord-

ing to this, Scrum and Kanban are the most

used method but only 50% of respondents use

Velocity tracking.

Scrum [5] and Extreme Programming (XP)

[6], [19], [20], the most used agile methods,

have an iterative and incremental approach to

delivering software. Work is planned in a time

box called sprint or iteration that spreads for

two to four weeks. The team aims to go

through all development phases in an iteration

so that it delivers an improved working ver-

sion of the product. Velocity is calculated for

every iteration based on the count of user sce-

narios implemented, sum of complexity esti-

mate points or effort estimate points.

Kanban method relies on workflow visualiza-

tion and limiting work in progress to improve

the continuous delivery of software while

avoiding overburdening the development

team. Rather than batching the work in

sprints, items are pulled from the backlog in a

continuous flow. Assuming that the items are

Time

Cycle time

Lead-time

Request Request fulfilled

Request work starting

72 Informatica Economică vol. 22, no. 4/2018

DOI: 10.12948/issn14531305/22.4.2018.06

prioritized by the added value in a que is im-

portant to measure the total wait time of an

item and the processing time. In practice,

Scrum and Kanban methods are used together

in what is called an Agile/Lean methodology

[7], [17]. Software tools used by agile teams

allows accurate activity tracking [8]. This al-

lows issue tracking, direct communication be-

tween team members and provides built in re-

porting. In order to make better use of data

gathered most of the tools allow direct access

to the databases for custom analysis. Better

understanding of team dynamics based on the

traces left in information systems are leading

to area of research called workforce analytics

[9].

3 Research method
Key agile metrics are calculated in relation

with a case study in a software company that

provides outsourced custom development.

Project started in March 2017 when the com-

pany took over the development an existing

codebase with the goal of going live for two

customers. In September 2017 is established a

role of Scrum Master with the responsibilities

improve the overall collaboration between

product management and development team,

to facilitate Scrum events, identify blockers,

communicate release notes, provide visibility

on the process to all parties involved, and or-

ganize workshops.

This paper has the following research objec-

tives:

O1: Describe how the team organized in rela-

tion with agile practices;

O2: Present the results for the key agile met-

rics;

O3: Discuss the factors that influence the abil-

ity to deliver working software;

O4: Describe a proposed architecture of a sys-

tem that provides real-time agile metrics.

Observations regarded with team structure,

organization and team dynamics are gathered

by direct implication in the team for 6 months.

In this period were facilitated all Scrum meet-

ings and helped Product Managers to coordi-

nate with the development team. Data used to

calculate metrics was exported form JIRA At-

lassian software and was processed using

spreadsheets together with built in reports in

JIRA.

4 Case Study

At the beginning of the engagement an assess-

ment was performed that consisted in one on

one interviews with all the team members.

The main characteristics of the team and pro-

cess are:

 Team members were distributed between

United Kingdom, Romania and The Re-

public of Moldova;

 Average sprint length was two weeks (10

working days);

 Total team capacity: 3 x Product Manage-

ment (Customer Project Manager, Product

Owner, Proxy Product Owner), 4 x Qual-

ity Assurance (Manual testing, Automa-

tion testing), 1 x Technical Lead, 6 x

Backend Developer, 4 x Frontend Devel-

oper, 1 x DEVOPS, 1 x Scrum Master.

Product Managers worked day by day with the

software developers, were available in all the

Scrum meetings and available on Skype for

task clarifications. The Technical Lead acted

as the main contact point for the development

team allocating tasks based on his knowledge

about individual abilities. Product Owners

complained about the lack of visibility regard-

ing the development process. Development

team had no awareness about the product

roadmap and immediate deadlines were not

communicated.

A big pain in the process was not having some

clear way of measuring progress. Sprint Goals

were introduce as a way to create more focus,

shift from task allocation to team commitment

and set priorities. In order to create more visi-

bility a product roadmap was created with es-

timates made by the development team. At the

end of each sprint a demo meeting was per-

formed by the development team to customers

and product owners. Every three sprints we

produced reports to track velocity and review

the progress.

Progress is tracked by using a 5 steps work-

flow on an electronic Kanban board as de-

scribed in Figure 2.

Informatica Economică vol. 24, no. 4/2018 73

DOI: 10.12948/issn14531305/22.4.2018.06

Fig. 2. Development workflow

The first go live was mid-October when the

back office component was delivered. A sup-

port board was created after the release and

customer support representative were allo-

cated to answer user requests. Two swim lanes

are used on the support board, one for high

priority tickets that are blockers in the client

activity and the second for regular tickets. Pri-

ority regarding support tickets was decided

with the client and were included in the scope

of the sprint.

The data set consisted in 1388 tickets distrib-

uted as following:

 800 Bugs (58%);

 429 User Stories (428);

 159 Task (11%).

A total of 24 sprints were tracked with an av-

erage duration of 15.2 days, min 11 days and

maximum 29 days.

The evolution of development capacity is pre-

sented in Table 2.

Table 2. Development team capacity

Sprint Development capacity Total team members

Sprint 1 – Sprint 2 1 x DEVOPS, 1 x BE, 1 x

FE, 1 x QA

4

Sprint 3 – Sprint 4 1 x DEVOPS, 2 x BE, 1 x

FE, 2 x QA

6

Sprint 5 – Sprint 7 1 x DEVOPS, 3 x BE, 2 x

FE, 2 x QA

8

Sprint 8 – Sprint 10 1 x DEVOPS, 5 x BE, 3 x

FE, 4 x QA

13

Sprint 11 – Sprint 24 1 x DEVOPS, 6 x BE, 4 x

FE, 4 x QA

15

Velocity chart based on Stories / Bugs com-

pleted in a sprint is presented in Figure 3.

TO DO

IN PROGRESS

REVIEW

TESTING

READY FOR RELEASE

74 Informatica Economică vol. 22, no. 4/2018

DOI: 10.12948/issn14531305/22.4.2018.06

Fig. 3. Sprint velocity

In order to assess the predictability planned vs

resolved issues were tracked. Unplanned

worked consisted in 447 (24%) tickets that

was caused by support tickets (63%) and is-

sues that were completed without proper

tracking in a sprint (27%). Out of 941 issues

planned in sprints 486 (52%) were completed

by the end of the sprint and 455 (48%) were

dragged in future sprints. Most of the issues

were completed in the immediate next sprint

(45%) and only 30% of the issues were

dragged more than 3 sprints. It’s more likely

for a bug than a story to be completed in the

sprint that was planned.

Lead-time and Cycle time is calculated in Ta-

ble 3. Because no information was available

of when each specific issue has started the day

when the sprint started was considered start

time.

Table 3. Lead time and Cycle time

Issue Type AVG Lead time

(days)

AVG Cycle time

(days)

AVG Cycle time

(working days)

User Stories 44 25 19

Bugs 22 14 12

Task 23 17 14

Support Bugs 12 11 9

Further story point estimates are correlated with average cycle time in Table 4.

Table 4. Story Point Estimate vs Cycle time

Story Point Estimate User Stories

Count

AVG Cycle time

(working days)

1 36 12.5

3 43 22.39

5 34 22.32

8 25 28.76

13 8 48

Not estimated 283 17.74

In order to gain more accurate figures each ac-

tivity could have been tracked with the time

management feature. This brings a big over-

head of reporting so for the purpose of having

a better sense of progress we considered this

Informatica Economică vol. 24, no. 4/2018 75

DOI: 10.12948/issn14531305/22.4.2018.06

approximation enough.

The velocity chart showed highs and lows that

are typical in an agile environment consider-

ing the complexity of the product, ambiguity

regarding system requirement and real life

constraints. The main goal of the team was to

go live with a complex product that was

handed over by a previous company. In order

to achieve this four stages are observed that

relate with the ability to deliver working soft-

ware. Each phase showed a short term im-

provement of velocity and then a drop that led

the team in a new stage of development.

 Forming the team (Sprint 1 - Sprint 5);

 Building development capacity (Sprint 6 -

Sprint 10);

 Norming the development process (Sprint

11 - Sprint 15);

 Go live and maintenance (Sprint 16 –

Sprint 24).

The first important factor to deliver working

software is forming a team with strong tech-

nical knowledge and good understanding of

the business domain. This process the team

took several months because it required find-

ing highly skilled individuals. In this phase the

focus was on gaining knowledge regarding the

system and proving the ability to setup a

proper development environment. The second

factor that influences the ability to deliver

working software is building team capacity.

This is not expressed only in terms of allocat-

ing specific resources to the project, but creat-

ing an environment that fosters collaboration.

In this phase the focus was on gaining

knowledge regarding the business domain and

getting the system to a stable state of function-

ality. Norming the development process is the

third factor that influences the ability to de-

liver software. In this phase workshops were

organized to align team members to the same

goals and working practices. A product

roadmap was put in place by the product man-

agers and estimated by the development team

using t-shirt sizing techniques that had led to

an increase in ownership. Introducing Sprint

Goals as a way of focusing activities on the

team level rather than individual task alloca-

tion had a positive impact in collaboration.

Going live in Sprint 16 had a great influence

on the team dynamics. Because real life feed-

back started to come from the users the team

had to change its way of working to assure

both delivery of new features and mainte-

nance. Support has increased the amount of

unplanned work and a system of continuous

delivery to release hotfixes. Performance is-

sues prevailed new functionality and feedback

from the users became the most important fac-

tor that influenced what was delivered. In this

phase the most important factor was adapta-

bility.

Because lead-time and cycle time are metrics

taken from production systems, they are use-

ful when what is produced remains the same,

like a specific product or item. When consid-

ering knowledge work, the output is complex

and may vary a lot. Data analysis showed a

great variance on each type of issue tracked.

The types of problems in software develop-

ment are complex and unique so norming

work is a difficult task. While these metrics

can create an overview of performance, track-

ing them should take in consideration that

with new features or modules is expected for

the team to have a low predictability in the be-

ginning. Kanban metrics tend to be more use-

ful in support and maintenance activities.

5 The proposed architecture

In order to automate the process of data gath-

ering and metric calculation, we propose a

system that will collect data from several

sources. These sources include project man-

agement and issue tracking software. A dedi-

cated module will interrogate the software and

will export data in several formats. These files

will be processed by the metrics generator and

it will generate calculated data in requested

formats (XML, JSON etc.). The system also

provides a reporting module that presents the

benchmarking results. Figure 4 depicts the ar-

chitecture of the proposed system.

76 Informatica Economică vol. 22, no. 4/2018

DOI: 10.12948/issn14531305/22.4.2018.06

Fig. 4. A real-time agile metric system

The proposed system, depicted in Figure 4, in-

cludes the following interconnected compo-

nents:

 Agile project and process management

software and issues tracker software;

 The metrics generator;

 Database and a corresponding access

module;

 Import/Export modules;

 Reporting module.

The project and process management soft-

ware and/or issues tracker software represent

the essential tools for agile software project

management and they provide the required

data for metrics calculation. Examples of agile

project management tools include JIRA, Ver-

sionOne, Trello, Pivotal Tracker, Bugzilla etc.

Data provided by the project management

software is collected using the Import/Export

modules. The modules access the project man-

agement and issue tracking software and ex-

port the required data in the specified format.

The import module will access the project and

process management software using several

ways:

 through provided API, if available;

 directly accessing the database;

 using a GUI automation sequence to select

and export the required data.

After data is imported it is aggregated and nor-

malized.

These modules replace the manual processing

of data based on Excel or other spreadsheet

software.

The metrics generator is the main component

of this system. It includes the logic to calcu-

late the metrics and indicators required for ag-

ile project benchmarking. As example of met-

rics we mention velocity, lead-time and cycle

time. The input of this module is represented

by files generated from project management

software using the export/import modules.

This module should allow to design the rela-

tions between data in order to define new met-

rics.

The processed data (metrics, indicators) is ex-

ported in the specified format using the im-

port/export modules. The system allows using

several formats like XML, JSON and CSV.

The metrics generator could be connected

with other modules that provide metrics that

are not collected by the project and process

management software, at a source code level

(KLOC, cyclomatic-complexity, Halstead

complexity, the number of classes, the number

of functions etc.).

JIRA/Bugzilla/etc.

Metrics

Generator

.xml

.csv

PM

Software

.xml

.json

.csv

Reporting

Informatica Economică vol. 24, no. 4/2018 77

DOI: 10.12948/issn14531305/22.4.2018.06

All data is stored in a database in order to as-

sure its persistence and to allow benchmark-

ing with older projects. A database access

module is required to access and manipulate

the stored data.

The reporting module helps to display data in

a tabular or graphical format (bar charts, pie

charts, spider charts etc.), depending on user

selection. The data can selected directly from

the database, or could be loaded from the ex-

ported files.

6 Discussion

Using a system that provides real-time agile

metrics for measuring team performance has

several advantages like:

 less work required to select, export and

process data from agile project and pro-

cess management software;

 integration with all major agile project and

process management software;

 improved benchmarking performance,

having historic data;

 team members, project and process man-

agers could better focus on other activi-

ties;

 uses a modular architecture that allows to

add new feature without changing other

components.

The system has to be implemented open

enough to allow addition of new modules and

updates.

The disadvantages of this type of system are:

 it requires additional work.

 it has to take into account the main project

and process management software;

 new versions of project and process man-

agement software could require changes

in importing modules.

The disadvantages can be avoided through a

good design process.

The case study presented is section 4 is based

manually processed data. Using an automated

system like the one we propose, these reports

will be generated in no time.

7 Conclusion and future work

Agile software development has produced a

shift in the mindset of measuring progress by

focusing on working software. In this paper

three key agile metrics were analyzed in order

to quantify the performance a development

team in an outsourcing company. The ability

to deliver working software is influenced by

team capacity, having a normed development

process and adaptability to changing require-

ments. Recommendation when using agile

metrics is take in consideration the specific

phase of team development (forming, storm-

ing, norming, performing). Metrics should al-

ways be a reason for conversation in seeking

improvement. In this specific case metrics

provided a basis for discussion and increased

transparency. Velocity, lead-time and cycle

time are considered to be internal measures of

productivity.

Future research will focus on external

measures like customer satisfaction, per-

ceived quality and product revenue in order to

correlate them with internal metrics.

We also plan to implement the proposed sys-

tem in order to provide real-time agile metrics

and to compare with previous results in a real

development environment.

Acknowledgement

Parts of this research have been published in

the Proceedings of the 17th International Con-

ference on Informatics in Economy, IE 2018

[21].

References

[1] C. W. H. Davis, Agile Metrics in Action:

Measuring and Enhancing the Perfor-

mance of Agile Teams, Manning Publica-

tions, ISBN 978-1617292484, July 2015,

p 272

[2] E. Kupiainen, M. V. Mäntylä, J. Itkonen,

“Using metrics in Agile and Lean Soft-

ware Development – A systematic litera-

ture review of industrial studies,” Infor-

mation and Software Technology, vol. 62,

pp. 143–163, 2015

[3] P. Kua, “An Appropriate Use of Metrics,”

Internet: https://martinfowler.com/arti-

cles/useOfMetrics.html, February 2013,

[Mar. 30, 2018]

[4] E. N. Budacu, Development of Agile Prac-

tices in Romanian Software Community,

Informatica Economică vol.21, no.2, pp.

78 Informatica Economică vol. 22, no. 4/2018

DOI: 10.12948/issn14531305/22.4.2018.06

92-102,2017

[5] K. Schwaber, J. Sutherland, “The Scrum

Guide,” http://scrumguides.org/scrum-

guide.html, 2017, [Mar. 30, 2018]

[6] K. Beck, Extreme Programming Ex-

plained: Embrace Change, Addison-Wes-

ley Professional, ISBN 978-0201616415,

October 1999, p 224

[7] M. Stoica, B. Ghilic-Micu, M. Mircea, C.

Uscatu, “Analyzing Agile Development –

from Waterfall Style to Scrumban,” Infor-

matica Economică vol. 20, no. 4, pp. 5-14,

2016

[8] A. Mihalache, “Project Management

Tools for Agile Teams,” Informatica Eco-

nomică, vol. 21, no. 4, pp. 85-93, 2017

[9] D. McIvera, M. L. Lengnick-Hallb, C. A.

Lengnick-Hallb, A strategic approach to

workforce analytics: Integrating science

and agility, Business Horizons, 2018

[10] I. Ivan and C. Boja, Metode statistice în

analiza software, Bucharest: ASE

Publishing House, 2004.

[11] J. T. McCabe, "A Complexity Measure,"

IEEE Transaction on Software

Engineering, Vols. SE-2, no. No. 4, pp.

308-320, 1976.

[12] M. Vetrici, "Software Project Duration

Estimation Using Metrix Model,"

Informatica Economica , vol. XII, no. 47,

pp. 87-91, 2008.

[13] S. Pressman, Software Engineering: A

Practitioner’s Approach. 8th edition, New

York: McGraw-Hill, 2014.

[14] ISO/IEC/IEEE, ISO/IEC/IEEE

12207:2017 - Systems and software engi-

neering - Software life cycle processes,

Geneva, 2017.

[15] IEEE, IEEE 1012:2012, Standard for

System and Software Verification and

Validation, New York, 2012.

[16] ISO/IEC/IEEE, ISO/IEC/IEEE 29119-3

Software and systems engineering -

Software testing, Geneva, 2013.

[17] M. Al-Zewairi, M. Biltawi, W. Etaiwi și

A. Shaout, „Agile Software Development

Methodologies: Survey of Surveys,”

Journal of Computer and

Communications, vol. 5, nr. 5, pp. 74-97,

2017

[18] I. Sommerville, Software Engineering.

9th edition, Boston: Addison-Wesley,

2011

[19] VersionOne, „The 11th annual STATE of

AGILE Report,” 2017.

[20] K. Aguanno, Managing Agile Projects,

Multi-Media Publications Inc., 2004.

[21] E. N. Budacu, “Agile Metrics in a Soft-

ware Outsourcing Company,” in Proc. of

the 17th International Conference on in-

formatics in Economy (IE 2018), Educa-

tion, Research & Business Technologies,

Iasi, Romania, 17 – 20 May 2018, pp. 393-

398.

Eduard Nicolae BUDACU has graduated the Faculty of Cybernetics, Statis-

tics and Economic Informatics from the Bucharest University of Economic

Studies in 2010. He has graduated the SIMPRE - ERP oriented Master's Pro-

gram from the Bucharest Academy of Economic Studies in 2012. He is cur-

rently a PHD Student at the Economic Informatics PHD School. His main field

of interest is agile software development. He is an agile coach and helps soft-

ware development teams produce positive change in order to achieve high per-

formance using agile principles and practices. He works with companies to define learning and

development strategies for agile transformation.

Informatica Economică vol. 24, no. 4/2018 79

DOI: 10.12948/issn14531305/22.4.2018.06

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and Eco-

nomic Informatics in 1998. He achieved the PhD in Economics in 2003 with

thesis on Software Testing Cost Assessment Models. He has published as au-

thor and co-author over 45 articles in journals and over 40 articles on national

and international conferences. He is author and co-author of 10 books, (Mo-

bile Devices Programming and Software Testing Costs are two of them). He

is professor at the Department of Economic Informatics and Cybernetics

within the Bucharest University of Economic Studies, Bucharest. He teaches courses, seminars

and laboratories on Mobile Devices Programming, Economic Informatics, Computer Program-

ming and Project Management to graduate and postgraduate students. His current research areas

are software testing, software quality, project management, and mobile application develop-

ment.

