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Olga Bourachnikova (France), Thierry Burger-Helmchen (France) 

Investor’s behavior and the relevance of asymmetric risk measures 

Abstract 

Numerous articles use the Markowitz mean-variance approach for computing the capital asset pricing model (CAPM) 

and to determine the best set of assets an investor should hold. But using a symmetric risk measure is not necessarily 

straightforward in the mind of many investors. Many other approaches to determine a portfolio composition, e.g. faith 

or other behavioral determinants, appear more natural. Especially an asymmetric downside risk approach is more ap-

pealing to many investors. This work investigates the differences between portfolios based on a symmetric and on an 

asymmetric risk measure. Based on the Behavioral Portfolio Theory (BTP) model by Shefrin and Statman and the 

Markowitz classical portfolio approach the authors compare portfolios composed by stocks of the French SBR 120 

market over a period of 6 years. Simulation of 100,000 virtual portfolios over the study period shows that there are 

only minor differences between portfolios obtained by downside or symmetric risk. Therefore, the results leave room 

for taking into consideration other choice criteria to complete the approach, such as the computing power if an investor 

wants to use much more demanding downside risk methodology or faith bases selection criteria to pick the assets.  

Keywords: portfolio selection, behavioral finance, symmetric risk, downside risk.

JEL Classification: G02, G11, G17. 
 

Introduction  

The definition of risk, its measure and the implica-
tion it has on the investor’s behavior have been at 
the core of managerial finance from the very begin-
ning. Early research efforts on how investors facing 
risk allocated their capital across different assets 
culminated in two groundbreaking papers on the 
definition and measure of risk in portfolio analysis, 
Markowitz (1952) and Roy (1952), which marked 
the emergence of finance as a separate discipline. 
The former suggested that variance is used as a 
proxy for risk while the latter recognized the impor-
tance of downside risk in the investor’s decision 
making. Mainly because of its computational con-
venience, variance, along with standard deviation, 
quickly became widely accepted as a measure of 
risk in the mainstream of finance literature. More 
recently the behavioral finance approach pinpointed 
the fact that the use of such a measure is not 
straightforward for all investors. As defined by De 
Bondt et al. (2008) behavioral finance is about the 
study of how the psychology of investors influences 
their financial decisions whether this specific psy-
chology is influenced by the environment, personal 
factors, culture, faith or any other factors. Thereby 
the psychology of the investor can influence the se-
lection of the risk measure (asymmetric of symme-
tric) leading to the building of a portfolio. This point 
can be problematic when the use of one risk measure 
leads to a different portfolio selection than the other. 

As a matter of fact variance minimization is coun-

ter-intuitive as it entails punishment both for low 

and high returns equally. The more intuitive down-

side risk measure did not take off for a few decades 

due to its computational complexity. With the ad-

vancement of computing technology and the exten-
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sive growth of the financial derivatives industry the 

appeal of using downside risk measures has gained 

ground. The increase in computation power makes 

the question of the selection of assets for a portfolio 

depending on the two risk definition relevant and 

answerable. If the two approaches deliver the same 

result there is, on the one hand, no reason to employ 

the more costly method (from a computational point 

of view) nor, on the other hand, any reason to force 

investors to make their choices based on counterin-

tuitive risk modelling which can lead to a non ra-

tional behavior. Surprisingly, empirical investiga-

tion of this issue has so far received very little atten-

tion in the literature. This paper aims to contribute 

to the literature by offering a comparative analysis 

of portfolio choices under the two risk concepts. 

Since efficient frontier plays a critical role in the 

selection of optimal portfolios in this study we spe-

cifically focus on the implications of two risk meas-

ures on the efficient market frontier. 

Using the data from the French stock market, we 
compare optimal portfolios of two different inves-
tors that use the downside and symmetric risk meas-
ures. While for a symmetric risk investor we employ 
the seminal mean-variance model of Markowitz 
(1952), for a downside risk investor we rely on the 
model of Shefrin and Statman (2000). Those authors 
developed a Behavioral Portfolio Theory (BPT) 
where an investor seeks to maximize his expected 
return subject to the probability of ruin being no 
greater than a given critical level. Shefrin and Stat-
man (2000) claim that in contrast to the capital asset 
pricing model (CAPM), that uses symmetric va-
riance to account for risk, in equilibrium investors 
hold a portfolio that resembles a combination of 
bonds and a lottery ticket. Thus, according to BPT, 
investors deviate from the optimal portfolio diversi-
fication of Markowitz, and consider their portfolios 
as a pyramid of assets with riskless instruments in 
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the bottom layer and risky equity in the top layer 
(this idea was earlier articulated by Fisher and Stat-
man (1997) among others). 

Our paper is related to a small set of empirical pa-

pers that compare portfolio choices under downside 

and symmetric risk frameworks. Harlow (1991) and 

Alexander and Baptista (2002) demonstrate that if 

return distributions are normal, the difference be-

tween the optimal portfolio choices of a symmetric-

risk and downside-risk investors will be small. Jar-

row and Zhao (2006) show that when asset returns 

are almost normally distributed investors using va-

riance and lower partial moment to measure risk 

choose similar portfolios (Galagedera, 2007) for an 

extensive review of portfolio selection models and 

CAPM). When asset returns are non-normal with 

large left tails they obtain the opposite result. How-

ever, numerous empirical studies carried out for 

different markets and for different periods confirm 

that the real returns are not normal (Mandelbrot, 

1963; Brenner, 1974; Jorion, 1988). In line with 

these empirical studies, our simulations are insensi-

tive to return distributions. 

By simulating portfolio choices under two risk con-

cepts we find that the optimal portfolio constructed 

by a downside risk-averse investor belongs to the 

mean-variance efficient frontier. This specific portfo-

lio has been constructed under constraints that can be 

seen as the willingness for an investor under limited 

rationality to choose a limited number of assets or to 

pick up the assets following different criteria (includ-

ing the downside risk, but not limited to this aspect).  

The rest of the paper is structured as follows. The 

next section discusses the portfolio theory of the 

downside risk investor in the context of the BPT in 

contrast to the symmetric risk investor in mean-

variance framework. Then the dataset used, the me-

thodology and the results are exposed. The final 

section concludes the paper. 

1. The model 

To model the portfolio choice of a downside risk 

investor we rely on Shefrin and Statman (2000). To 

define risk Shefrin and Statman (2000) draw on 

Roy’s (1952) concept of safety first approach. Ac-

cording to this concept an investor is characterized 

by a subsistence level of wealth. The investor is 

considered “ruined” if his terminal wealth falls be-

low this exogenously given level. Thus, the investor 

seeks to minimize the probability of failure. Telser 

(1955) goes one step further and introduces an ac-

ceptable level for the ruin probability such that the 

portfolio is considered “safe” if the probability of 

failure does not exceed this specified level. Arzac 

and Bawa (1977) extend Telser’s model by consi-

dering an investor whose objective function depends 

on the expected terminal wealth under this ruin 

probability. These older results serve as the basis for 

Shefrin and Statman’s (2000) Behavioral Portfolio 

Theory a simplified exposition of which we present 

in the following section. 

In this model there are n states of nature, w 

represents the wealth of the investor, w1,... wn each 

occurring with the probability pi, i = 1,...,n respec-

tively. The payoff from an asset is 1 if wi occurs and 

0 otherwise. The price of each asset is known and 

denoted by i. We suppose that states are ordered so 

that state prices per unit probability i./pi are mono-

tonically decreasing in i. At date zero, the investor 

chooses a portfolio composed of the contingent 

claims that maximize his expected terminal wealth 

subject to his budget constraint. A mean-variance 

investor with a quadratic utility function thus solves 

the following program where b is a constant: 

2

02
max . . .b

i i i i i
p W W s t W W      (1) 

The solution to this portfolio problem has the fol-

lowing form:  

0
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i
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b p p
     (2) 

A behavioral investor at date 1 maximizes is ex-

pected terminal wealth subject to the safety-first 

constraint in addition to the budget constraint, so the 

optimization program of a BPT investor is defined as: 

0max . . and ,i iE W s t P W A W W    (3) 

where A is the aspiration level and  is the maxi-

mum probability of failure. Both A and  are private 

characteristics of the investor, also called security 

parameters. Thus, the agent seeks to maximize the 

expected wealth in a particular set of portfolios that 

meet the security constraint. W
~  denotes the future 

wealth distribution and takes the value Wi, i = 1,...,n, 

if wi occurs. An analytical solution to the maximiza-

tion program of the BPT investor may not exist. 

However, we can show the portfolio choice of a 

BPT investor with a simple numerical example fol-

lowing Shefrin and Statman (2000). To do so, let us 

consider an economy with 8 states of nature, the 

arbitrary prices of which are given in Table 1. 

Table 1. An example of state price 

 1 2 3 4 5 6 7 8 

i / pi 0.37 0.19 0.12 0.09 0.07 0.06 0.05 0.04 

For the sake of simplicity let us suppose that the 

probability is uniformly distributed: p1 = p2 = ... = 

p8. The distribution for the optimal portfolio as a 

function of the realized state at date 1 given W0 = 1 

(the agent invests 1 at date 0) is shown in Figure 1 
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both for Markowitz and Shefrin-Statman investors. 

In this example, both have the same expected return 

on their portfolios, but the latter is also characte-

rized with  = 0,25 and A = 2. We observe that a 

Markowitz investor invests in each individual asset 

to lower its risk while the Shefrin-Statman does not. 

In the Shefrin-Statman case, this payoff pattern can 

be described as the combination of payoffs from a 

portfolio consisting of a bond and a lottery ticket 

that payoff only in state 8. 

0
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Shefrin and Statman

Fig. 1. Optimal portfolios payoff 

Shefrin and Statman (2000) show that efficient solu-
tions of the behavioral portfolio problem are typical-
ly non mean-variance efficient. The idea is that an 
investor who perceives risk as the downside devia-
tion from the expectation makes two distinct in-
vestment decisions. First, the investor seeks to 
create a portfolio satisfying the safety-first criteria 
for his level of capital at the lowest possible level of 
required investment, i.e. at the cheapest price. 
Second, if the budget constraint is not satiated he 
allocates the remaining investment capital to the 
asset with the highest expected payoff. In the exam-
ple above, for his initial wealth W0 = 1 the investor 
proceeds in two simultaneous steps. He starts out by 
investing in the assets with the lowest ratio ( i./pi ) 
in order to ensure terminal value of the portfolio at 
date 1 at the level A = 2 in 75% of states of nature. In 
our example, he invests in the 6 cheapest assets. This 
strategy enables him to meet the security constraint 
with the lowest cost. This is why the payoffs in states 
1 and 2 are zero. Then, he invests all the rest of the 
initial wealth in the cheapest available asset. 

Thus, the composition of the resulting optimal port-

folio of a downside risk investor differs from that of 

a mean-variance investor who simply allocates all the 

capital to the portfolio with a minimum level of va-

riance for a given level of expected return. This hypo-

thesis is the object of our tests in the following section.  

2. Data 

To collect the data, we consider stocks that composed 
the SBF120 French Index over the period from June 
2001 to June 2007. Stock price observations were 
obtained from the database maintained by Fininfo, a 
French financial market data provider. At the begin-
ning of that period the index included 119 assets (as of 

June 1, 2001). To preserve continuity, of these 119 
assets we eliminated the ones with incomplete data. 
Incompleteness of the data resulted from the exclusion 
of some individual stocks from the index over the 
period under consideration. Incomplete data were also 
observed for assets with missing observations and 
such assets were also eliminated. As a result we were 
left with 71 assets in the final sample, as opposed to 
the initial 119, with daily observations over 1535 days.  

Using these 71 stocks we computed 1534 daily stock 
returns. The main descriptive statistics are given in 
Table 2. To test for normality we resorted to the Jar-
que-Bera test which reveals departure from normality. 
The Markowitz model was initially built for normality 
satisfying distribution of returns. However several 
works underlined the practical and empirical relev-
ance of employing non normal distribution. Galage-
dera (2007) reviews these situations when researchers 
pay more attention to third and fourth moments 
(skewness and kurtosis). This author reports that 
investors often compensate the higher risk of such a 
distribution by expecting higher returns and that 
skewness and kurtosis cannot be satisfyingly diversi-
fied by increasing the size of the portfolio. Therefore 
part of our later results could be explained by the type 
of distribution, but do not make the use of the CAPM 
model unfounded. 

Table 2. Descriptive statistics 

 Mean St. dev. Skewness Kurtosis 

Max 1.9735 26.5 10.78 298.24 

Min -1.4493 13.3 -2.56 5.55 

Average 0.1896 21.8 0.05 16.22 

Several works in the behavioral finance literature 

question the practical relevance of an efficient port-

folio composed of a huge number of assets. Asking 
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the question of the number of different assets an 

investor could add to a portfolio is especially rele-

vant for a comparison of a mean variance portfolio 

and a behavioral built portfolio. The philosophy of 

the latter implies that the portfolio should be com-

posed of assets selected by the investor on the basis 

of several criteria making the mean variance not the 

sole indicator of choice. As recalled by De Bondt et 

al. (2008, p. 9) “Behavioral finance is based on three 

main building blocks, namely sentiment, behavioral 

preferences, and limits to arbitrage”. Consequently 

such additional criteria could include naturally 

downside risk, but also other principles like the eth-

ical nature of the firms, sin portfolios and faith- 

based stocks selection and so on. Liston and Soy-

demir (2010), Lin and Vanderlinden (2006) high-

light the influence that religious and ethical prin-

ciples can have on the behavior of investors. Porter 

and Steen (2006) show different ways of integrating 

faith in stock investing. Vieira (2011) and Beaumont et 

al. (2008) show that the sentiment of the investor can 

lead to strong variations in the investment behavior. 

Therefore, we choose to compare portfolios with a 

limited number of assets and not all the available 

assets. This would partially constrain the mean va-

riance approach and in contrast give more relevance 

to a behavioral approach. Nevertheless the number 

of assets in the portfolio must be sufficient to make 

diversification suitable and the portfolio approach 

still relevant. For this we try to construct well diver-

sified portfolios with a sufficient small size to allow 

a theoretical stock picking behavior from a small 

investor. We define a well-diversified portfolio as 

one which generates at least 90% reduction of the 

variance relative to that of the least-diversified port-

folio, i.e. the 2-asset case. This definition is consis-

tent with the one used in the research literature 

(Statman, 2004). Thus, for robustness reasons, fol-

lowing the methodology of Campbell et al. (2001) 

we determine whether a reasonably good diversifi- 
 

cation can be achieved with a small number of 

stocks. We denote the number of assets in a portfo-

lio by n = 2, 3,..., 71. The assets are chosen random-

ly and enter the portfolio with equal weights. For 

each value of n we compute the average variance of 

10,000 randomly constructed portfolios composed 

of n assets. We obtain that in the market under con-

sideration (71 assets) a portfolio composed of 15 

assets can reach a sufficiently high diversification 

level. Figure 2 depicts the decrease in variance 

when the number of assets in the portfolio increases. 

In practice the number of assets in the composition 

of a well-diversified portfolio varies depending on 

the market and the time period under consideration. 

It is 20 for Bloomfield et al. (1977), 30 for Statman 

(1987), 120 for Statman (2003).  

 

Fig. 2. Diversification effect 

Naturally the difference in variance of the portfolio 

falls when the number of assets in the portfolio in-

creases. Table 3 reveals the numerical expression of 

this effect: 52% of variance is reduced when the 

number of assets in the portfolio goes from 2 to 4. If 

the portfolio contains 15 assets the variance is re-

duced by over 90% in comparison with the least-

diversification scenario. 

Table 3. Diversification effects 

Number of assets  2 4 6 8 10 12 15 20 30 50 71 

Reduction of variance* 0 0.52 0.69 0.78 0.83 0.86 0.91 0.94 0.96 0.98 0.99 

Note: *Proportion by which the variance is reduced. 
 

3. Methodology 

To run portfolio simulations we construct optimal 
portfolios of Markowitz and of Shefrin-Statman. We 
proceed in the following two steps. First, we esti-
mate expected annual returns using the bootstrap 
method. Second, we construct the portfolios using 
the state space from the first step. 

Step 1. From among the 71 stocks in our sample we 
randomly choose 15 assets. We also select a random 
interval within the period from June 1, 2001 to June 

1, 2007 of 250 consecutive days. Thus, we construct 
the following matrix of daily returns, where Ai de-
notes an individual asset, each element ri,j denotes a 
daily return of the asset i at the date j: 

1 2 15

1,1 2 ,1 15 ,1

1, 2 2 , 2 15 , 2

1,1534 2 ,1534 15 ,1534

...

...

... .

...

daily

A A A

r r r

r r rR

r r r

     (4)
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We resort to the historical simulation method (Hull 

and White, 1998) to compute the expected annual 

returns. Namely, to simulate the expected returns at 

a future date, in a one year period after the date of the 

stock price observations for 15 random assets, we 

randomly select a 250-day period in our sample. In 

France a year is made, on average, of 250 trading 

days. By selecting a string of 250 days we choose a 

one year moving windows with random start. For 

each of these random windows we compute the daily 

returns for each stock. In line with the general prin-

ciples of the Hull and White (1998) method we take 

the future uncertainty to be represented by 1,000 

states of nature. For that, we repeat the bootstrap 

procedure 1,000 times to simulate 1,000 lines of fu-

ture annual returns for 15 assets.  

Step 2. To compute the optimal portfolios of 15 as-

sets we need to solve the following optimization 

problems: minimization of portfolio’s variance giv-

en the expected returns for Markowitz portfolio and 

maximization of the portfolio’s expected return 

given the probability  of earning below a threshold 

value r* for Shefrin-Statman portfolio.  

In the Markowitz (1952) problem the program is to 

minimize the variance of the portfolio returns given 

the expected return E (r) or to maximize the expected 

return subject to an acceptable level of variance of 

returns (Var). This problem is well known to have a 

closed form solution. In the Shefrin-Statman problem 

given the expected return E(r) and probability P(r < 

r*) of earning less than r* the program writes: 

max . . * .E r s t P r r     (5) 

Due to the absence of analytical solutions, the solu-

tion to this problem requires numerical methods. We 

consider 12 different cases for the Shefrin-Statman 

problem following their own numerical examples: r* 

{0; 0.05; 0.1} and   {0; 0.1; 0.2; 0.3}. With 

these 12 scenarios we construct the state-space matrix 

from the previous step 140 times (the choice of 140 

repetitions is somewhat arbitrary, we stopped the 

trials sufficiently long after the results started show-

ing identical values). Thus, we repeated the matrix 

simulation 1680 times. For each matrix we construct 

the Markowitz (1952) portfolio frontier and the port-

folio optimal for a downside risk investor who makes 

her choice within the Shefrin-Statman framework. 

We presume that the part of the initial wealth in 
 

vested in a single asset is equal to k/15, k = 0, 1,..., 15 

and we consider a sample of 100,000 portfolios. It 

can be shown that the total number of different port-

folios is about 77 million. For each of the 100,000 

portfolios we verify if the security constraint is met. 

The set of portfolios that meet the security constraint 

is called the security set. According to the Shefrin-

Statman problem the optimal downside risk portfolio 

is the one that belongs to the security set and that 

allows us to reach the maximum expected value of 

returns. Whenever such a portfolio exists, i.e. meets 

the regularity conditions, we compute its standard 

deviation and expected return. These two values for 

each portfolio enable us to locate the portfolio in the 

traditional risk-return space. In each case we compare 

the two portfolios to identify if the downside risk 

portfolio is superior to the symmetric risk portfolio in 

the weak Pareto sense, that is, provides a higher ex-

pected return with the same level of standard devia-

tion or reduces standard deviation without affecting 

the expected return. 

4. Results 

Out of 1680 we obtain 651 cases where no optimal 

downside risk portfolio exists as none of those 

100,000 portfolios under consideration meets the 

security constraint. The results of our calculations are 

shown in Table 4. We denote NS the number of the 

optimal downside risk portfolios constructed for each 

couple (r*, ). The more demanding the investor in 

terms of the individual asset characteristics, the fewer 

the elements his set of security contains. For exam-

ple, we observe that when the admissible probability 

of failure  increases (and subsistence level r* re-

mains the same) the number of portfolios that meet 

the security constraint increases. Similarly, if r* in-

creases (and  remains unchanged), the security set 

becomes smaller. When  = 0, the investor seeks 

insurance in all states of nature and, if r* = 0, he re-

covers his initial investment in all states of nature. In 

this case there are only 30 cases in which the investor 

could reach his goal. When  = 0 and r* = 0,05 the 

investor seeks to reach at least a 5% return regardless 

of the state of nature. This scenario is even more 

difficult: there are only 20 situations when it is possi-

ble. Finally, if  = 0 and r* = 0,1 the investor will be 

satisfied only if he earns 10% without any possibility 

of failure. The number of portfolios meeting this 

constraint is limited to 14 only. 

Table 4. Results 

3 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 

 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 

Ns 30 102 114 117 20 102 113 120 14 82 99 116 

Ns/140 0.21 0.73 0.81 0.84 0.14 0.73 0.81 0.86 0.1 0.59 0.71 0.83 

NM 6 0 0 0 0 0 0 0 1 0 0 7 
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We denote NM the number of cases, where a Mar-

kowitz investor selects an optimal portfolio different 

from the optimal downside risk portfolio. We realize 

that there are only 7 cases out of the 1029 (only 0,68 

%) in which the choice of a Markowitz investor 

does not coincide with that of a downside investor. 

Let us take a closer look at such a case. We illustrate 

a common case where NM = 0, which implies that 

the downside investor chooses a portfolio on the 

Markowitz frontier. Figure 3 depicts all 100 000 

portfolios that are characterized by their standard 

deviation (on the horizontal axis) and their expected 

return (on the vertical axis). Each grey point 

represents one portfolio of 15 individual assets. 

 

Fig. 3. Set of all 100,000 portfolios 

In Figure 4, we depict the previously obtained tradi-
tional umbrella shape of the portfolio and take a dee-
per look at how the assets in this portfolio are influ-
enced when the r* and  parameters are modified. 

Fig. 4. Evolution of the portfolio under different assumptions 

Thereby we can depict on the same drawing the 

result obtained for various levels of aspiration and 

admissible failure. Let us imagine an investor, who 

is more risk-averse. Naturally, his security set will 

contain fewer portfolios. Let us consider the follow-

ing values of  = 20, 10 and 0 percent. These cases 

are represented in Figure 4. Zone i identifies portfo-

lios that allow the investor to recover his initial in-

vestment in any state of nature, i.e. that create a 

perfect insurance against any loss. The set of portfo-

lios (zone ii), which includes the previous set (zone 

i) allows the investor to recover his initial invest-

ment in 90% of cases; the lower set (zone iii) is for 

an investor whose  equals 80% and so on. We find 

the same result when r* increases and  remains at 

the same level. Each zone encompasses the previous 

one for the same level of confidence. 

Thus, we can conclude that for any level of  and r* 

the security set will always contain a part of the 

efficient Markowitz frontier. This is what is meant 

when we suggest that the optimal downside risk 

portfolios coincide with those of a Markowitz inves-

tor. In Figure 4, the letter B represents the optimal 

portfolio for a BPT investor characterized by an 

aspiration level equal to the initial investment and 

an  of 90%. At the same time, B is optimal in the 

Markowitz (1952) sense for an investor who re-

quires the level of risk which corresponds to 0,18 of 

standard deviation. The same reasoning applies to 

the portfolio represented by the letter A. This port-

folio is optimal under BPT (  = 0; r* = 0) and also 

in the Markowitz sense. 

We notice two interesting points. The first one con-

cerns the measures of risk. In both cases, the Mar-

kowitz approach and the BPT, we note that the more 

risk-averse the investor, the less risky his optimal 

portfolio. Indeed, under BPT, an investor who re-

quires more security will build up a less risky port-

folio (less risky not only in terms of downside risk 

measure but also in the Markowitz framework). The 

optimal portfolio of an investor who requires more 

security is on the left of the Markowitz efficient 

frontier. Both portfolio A and B are on the efficient 

Markowitz frontier. 

The second interesting point concerns a specific 

case when  is equal to 0. Here, loss is not possible: 

in all cases the investor is able to recover his initial 

investment. Thus, the risk measured by variance or 

standard deviation measures uncertainty associated 

with random but positive returns. Out of these port-

folios the BPT investor chooses the one with the 

highest return. At the same time, an investor follow-

ing the Markowitz approach chooses the portfolio 

with the a priori fixed standard deviation. By reduc-

ing the level of risk this investor denies himself the 

chance of getting very high returns by ensuring that 

he cannot lose money. This is the underlying idea 

behind the criticism of symmetric risk measures 

such as variance and standard deviation. 
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Conclusion 

Our results show that the Markowitz (1952) portfo-

lio selection model can be a viable and cost effec-

tive tool for investors despite the fact that the sym-

metry of risk with respect to the expectation is non-

intuitive. We used historical stock price observa-

tions with 71 assets over 1535 days to run portfolio 

simulations of two different kinds of investors. One 

investor in our simulations used symmetric risk 

measure and chose its optimal portfolio by mean-

variance analysis. The other one considered down-

side risk measure following the BPT. We find that 

the portfolio choices of the two are very similar. 

Our research into security constraints and security 

sets offers empirical evidence that despite the intui-

tive clumsiness of the symmetric risk measures the 

mean-variance framework produces outcomes that 

coincide with the alternative portfolio theories based 

on safety-first principle and downside risk. The 

value of this study rests in part with the fact that em-

pirical studies on downside vs. symmetric risk are 

very limited. We show that mean-variance portfolio 

optimization and minimum downside risk portfolio 

choice produce very similar outcomes. The im-

plycation is that computationally complex portfolio 

choice via downside risk minimization is not a cost-

effective avenue to pursue for portfolio managers. 

Thereby our results do not reject the assertions of a 

number of papers (Roy, 1952; Fishburn, 1977; Bertsi-

mas et al., 2004) that claim that investors perceive risk 

to be the downside deviations from the objective levels 

of returns rather than any deviation by offering the 

possibility for investors to select a small number of 

assets to build a portfolio based on their own principles 

rather that just mean variance analysis. 

One limitation is that in this simplified version of 

the Shefrin-Statman model we use true probabilities 

and not distorted ones. Therefore it does not incor-

porate a large variety of extreme behavior of the 

investors. A possible development of this work 

would be to allow for more extreme points of view 

and behavior of the investors. For example Das 

(2010) transcribed Markowitz’s mean-variance port-

folio theory and Shefrin and Statman’s BPT into a 

mental accounting (MA) framework. They show 

that attitudes toward risk vary for each mental ac-

count and that this behavioral approach gives mean-

variance efficient portfolios under a range of specif-

ic conditions. These generalizations of MVT and BPT 

via a unified MA framework result in a fruitful con-

nection between investor consumption goals and port-

folio production. Chiang et al. (2006) show the exist-

ing different groups of investors, with such different 

goals, who perceive the market differently and act 

differently accordingly to their perceptions.  

A promising next step would also be to consider 

new data in the light of the ongoing financial crisis 

and credit crunch. CAPM has shown limitations in 

troubled economic times or with unclear informa-

tion, as reported on recently in a study on the Greek 

stock market (Theriou et al., 2005). As investors 

become more prudent with lack of attractive oppor-

tunities perhaps the behavioral portfolio theory be-

comes more likely to hold. 
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