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Abstract 

The problem of indoor-outdoor image classification using supervised learning is 

addressed in this paper. Conventional indoor-outdoor image classification 

methods, partition an image into predefined sub-blocks for feature extraction. 

However in this paper, we use a simple color segmentation stage to acquire 

meaningful regions from the image for feature extraction. The features that are 

used to describe an image are color correlated temperature, Haralick features, 

segment area and segment position. For the classification phase, an MLP was 

trained and tested using a dataset of 800 images. A classification accuracy of 94% 

compared with the result of other state of the art indoor-outdoor image 

classification methods showed the efficiency of the proposed method.  

Keywords:  Indoor-outdoor image classification, color correlated temperature, 

Haralick feature, co-occurrence matrix. 

 

 

1.  Introduction 

Scene classification is a problem domain which deals with categorization of 

images into sematic groups. Expansion of online data storage, and demands for 

better organization and accurate image retrieval from large databases requires 

scene classification tools [1]. Labelling images as indoor or outdoor, allows for 

high-level processing systems to improve performance by using approaches in 

accordance with the scene class [2]. Further, indoor-outdoor classification has 

application in the field of robotics [3], smart phones [4], and color correction 

algorithms [5]. Image labelling algorithms could also benefit highly from high-

level scene classification [6].  

Conventional approaches for indoor-outdoor image classification focus on 
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Nomenclatures 

 

b Blue color channel 

BXChn Binary mask of an image segment 

Cb Body reflectance component 

Ch Color segment 

Cs Surface reflectance component 

E Entropy 

FV Total feature vector 

Fvarea Area feature vector 

FVcct CCT feature vector 

FVh Haralick feature vector 

Fvposition Position feature vector 

g  Green color channel 

H Number of hidden neurons 

I Image 

Im Horizontal image size 

In Vertical image size 

h Hue color channel 

L Scene radiation 

Mask Image mask 

Mb Body component scale factor 

Mc Surface component scale factor 

N Number of image segments 

P Co-occurrence matrix 

r Red color channel 

s Saturation color channel 

S Size of Co-occurrence matrix 

T
opt

blue Threshold on blue channel 

T
opt

 Optimum threshold 

T
opt

green Threshold on green channel 

T
opt

red Threshold on red channel 

v  Value color channel 

  Greek symbols 

σ Standard deviation 

µ mean value 

λ Wavelength 

 

Abbreviation   

CCT Color Correlated Temperature 

DRM Dichromatic Reflection Model 

FPR False Positive Rate 

MLP Multi-Layer Perceptron 

TPR True Positive Rate 

classification of low-level features, extracted from image sub-blocks. Most 

frequent features that are considered describe the color and edge properties of 

images [7-9].  

In a pioneer study, Szummer and Picard [9] divided the input image into 

same-sized patches. They used color and texture information from each patch to 
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extract the image feature vector for indoor-outdoor classification. Ohta color 

space [10] and multi-resolution simultaneous autoregressive model (MSAR) 

was used for describing color and texture. Serrano et al. [8] replaced MSAR 

with wavelets for describing texture in order to reduce the dimensionality of the 

feature space. They used SVM for image classification as it is a well-known 

binary classifier. The confidence values resulted from the SVM was used for 

deciding on the image class. Gupta et al. [11] performed unsupervised image 

segmentation using fuzzy c-means clustering. From each segment,                  

color, texture, and shape features were extracted and Probabilistic Neural 

Network (PNN) was used for image classification. Payne and Singh [12] noted 

indoor images have a greater proportion of straight edges compared to outdoor 

images. They performed edge analysis by using multi-resolution estimates on 

edge straightness.  

Luo and Savakis [13] integrated semantic and low-level features using a 

Bayesian network. They showed that semantic features extracted from ground 

truth sky and grass regions improves the result of indoor-outdoor image 

classification. They later showed that including camera metadata such as 

exposure time, flash fired and subject distance improves the result of indoor-

outdoor image classification [14]. However, the camera metadata are not always 

available for all applications. Kim et al. [15] focused on the orientation of low-

level features. The edge and color orientation histogram (ECOH) descriptors 

were defined to represent each block efficiently. The image feature vector was 

fed into the SVM classifier for the indoor–outdoor scene classification. Since 

color has shown to be a strong feature for indoor-outdoor image classification, 

some research focused on using multiple color channels for describing color 

[16, 17]. In a recent work, Cvetkovic et al. [18] used MPEG7 descriptors for 

extracting low-level features of indoor-outdoor images. They used SVM form 

image classification. Chen et al. [19] used Expert Decision Fusion (EDF) for 

indoor-outdoor image classification. They partitioned an image into small 

patches and extract several features including color, texture, and dark channel 

information for describing indoor and outdoor images. They applied data 

grouping and decision stacking for image classification.  

Conventional indoor-outdoor detection methods have two main disadvantages. 

First, dividing images into fixed size sub-blocks will produce image partitions 

with mixed content that could affect the color feature extracted from each block. 

Secondly, simple statistical texture features do not provide information about the 

edge information relative to pixel positions in the image which could decrease the 

indoor-outdoor image classification accuracy.  

Ghomsheh and Talebpour [20] showed that the Color Correlated Temperature 

(CCT) was a distinguishing feature for classifying indoor-outdoor images. However 

other features were not considered for indoor-outdoor image classification.  

In this study, to improve the classification result of indoor-outdoor image 

detection, we propose the use of following features: simplified version of the CCT 

in order to decrease to computation complexity, area and position of each image 

segments, and Haralick texture features.  

Dichromatic Reflection Model (DRM), describes how light is radiated from 

the surface objects [21]. Using this model it can be shown that objects have 

different apparent color when scene illumination changes. Correlated color 

http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisCCT.asp
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temperature (CCT) is a measure of light source color appearance defined by the 

proximity of the light source's chromaticity coordinates to the blackbody locus 

[22]. To calculate the CCT value, a special color averaging process is conducted, 

and the average value is used to find the CCT [20]. We simplify this process to 

reduce the computation time, by limiting the CCT calculation up to the point that 

the average color value in each image segment is found. We call the average 

value the CCT since it holds the same information as the actual CCT value. 

Haralick features have shown to provide strong features for statistically 

describing textual features in an image [23] and are used to describe the image 

texture. The Haralick features are extracted from the image segment co-

occurrence matrix. For evaluation of the method, a dataset of 800 images, divided 

into two equal sets of indoor and outdoor images were collected. The 

classification stage was performed using MLP. The contribution of the paper 

could be summarized as below: 

 Color segmentation was performed to extract features from global regions 

compared to small size patches. 

 The color feature takes the apparent color of objects into account by using 

the CCT. This is an important accept as the color difference between many 

indoor-outdoor objects is the result of the light source.  

 Previous studies show that for outdoor images, texture is random and could 

not be explained with specific patterns. Thus, we propose using the Haralick 

features for describing the texture of the image statistically.  

The rest of the paper is organized as follows: Section two explains the 

proposed method for indoor outdoor image classification. Results are shown in 

section three and the paper is concluded in section four.  

 

2.  The proposed method 

This section explains the proposed method for indoor-outdoor image 

classification. The presented method is based on two observations: The color and 

texture details of objects in the scene. Objects in indoor environments usually 

have strong straight edges, while components of outdoor images consist of fine 

texture details. Area and position of color regions is also notable for indoor-

outdoor image classification. For example, large blue regions on the top region of 

the image is more likely to indicate sky.  

Figure 1 shows sample indoor and outdoor images. Simple observation reveal 

that these two classes of images are different in terms of low-level features such 

as edge information, color and lighting conditions. As the samples show, straight 

edges occur frequently in indoor images. Outdoor images show lots of fine edges 

with no specific orientation. Also the presence of green and blue regions in 

expected regions of outdoor images is notable. Such differences between low-

level features of indoor and outdoor images allows for accurate indoor-outdoor 

image classification. Precise indoor-outdoor image classification improves scene 

classification and allows such processing systems to improve the performance by 

taking different methods based on the scene class [5]. 

http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisCCT.asp
http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisCCT.asp
http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisCCT.asp


Indoor-Outdoor Image Classification using Dichromatic Reflection Model . . . . 743 

 
 
Journal of Engineering Science and Technology              March 2018, Vol. 13(3) 

 

   

    

Fig. 1. Sample indoor (top row) and outdoor (bottom row) images. 

The proposed algorithm for indoor-outdoor image classification is based on 

the following features: 

 Color is an important feature for indoor and outdoor images as shown in Fig. 

1. Further, apparent color of objects is influenced by scene illumination, 

thus, it was also considered in the presented color feature. Color is described 

based on CCT where the apparent color of an object can be described based 

on the scene illumination.  

 Co-occurrence matrix, known as a state of the art approach for describing 

texture was used to describe textual features of indoor-outdoor images.  

 Spatial features including area and position of homogenous color regions of 

the image were used to describe the spatial distribution of objects in the scene.  

Further, color segmentation was considered for detecting homogenous color 

regions. For example, if sky is present in an image, it would be segmented into a 

single region and features are extracted for the entire sky region. Previous 

methods use small size image blocks for feature extraction. If different color 

regions are present in a single block, then the feature vector holds the combined 

information of those regions and this will reduce the performance of indoor-

outdoor image classification. 

The steps for indoor-outdoor image classification presented in this paper are 

shown in Fig. 2. To extract the image feature vector, each image is segmented 

into N color channels. From each segment the following features were extracted: 

CCT, position, area, and texture data. For image classification, MLP was 

considered as it has shown to be a strong binary classifier [24]. The process of 

feature extraction is explained in the next sub-sections. 

2.1. Color segmentation 

In order to divide an image into regions that are more relevant to the image 

content, color segmentation using HSV color space was performed. HSV is a 

perceptual color space where color is presented in its Hue component, 

independent of the illumination information of the image. This characteristic of 
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the HSV color space makes it suitable for color segmentation [25]. HSV color 

space was obtained from RGB information using the following equations: 
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In this equation, r, g, and b represent the red, green, and blue color channels of 

the RGB color space. Min and Max are the minimum and maximum values of the 

r, g, and b color components for each pixel respectively.  

 

 

Fig. 2. The overall diagram of the proposed method. 

 

2.2. Calculating CCT 

The light captured from a scene is the result of scene illumination. The light radiated 

from the surface of objects can be modelled with Dichromatic Reflection Model 

(DRM). In this model, the scene radiation (L) for wavelength λ has two components:  

)()()(  scsmbccmL                 (2) 

cb is the body reflected component and cs is the surface reflected component. ms 

and mb are scale factors depending on illumination, view direction and surface 

orientation. These components are shown in Fig. 3.  

By inspecting Eq. (1) it can be implied that the light entering the camera is 

dependent on the power spectrum of the light source. Therefore, for the same 

object, different apparent color is perceived under different illuminations. The 

perceived color can be represented by CCT. In order to calculate the CCT, the 

black body locus has to be found. Having the black body locus or the Planckian, it 

is possible to find a color temperature for each chromaticity pair which results in 

a unique CCT value. The CCT value does not hold additional information when 

compared with the chromaticity value and CCT calculation was limited up to the 

point where the chromaticity value has been found.  

The algorithm used for calculation CCT for each color channel has the 

following steps: first, using v, discard pixels that their value is smaller than 10% of 
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maximum range of v for each ch, and then, take average of the remaining pixels in 

RGB color space to discard surface reflectance through an iterative process.  

 

 
Fig. 3. Surface and Body reflectance components. 

The dark pixels are discarded because they either do not reflect any light, or 

light does not reach them. In the second stage, an adaptive step is applied to find the 

average chromaticity value for each color channel. In this step, the bright pixels are 

discarded through an adaptive averaging step, since their information mostly 

reflects the properties of the illuminant, not the color of an object. The aim of 

averaging each channel is to discard pixels that have been exposed to direct light, or 

where the reflection from object’s surface is in line with camera lenses. The value 

of such pixels may vary with respect to the surface reflectance and lighting 

condition. The flow chart to implement the proposed algorithm is shown in Fig. 4. 

 

 

Fig. 4. Extracting the body reflectance chromaticity value. 

In this process, the average value and the standard deviation for each color 

channel are calculated. If the difference of the mean values in two successive 

iterations is less than a predefined threshold, the current mean value is considered 
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as the body color of the channel being processed. The pixels that their difference 

with the mean value is less than σT2 or greater than σT3 are discarded from the 

averaging process. Discarding the pixels is done by updating the binary mask of 

each color channel, represented with Maskn in each iteration and then discard 

unwanted pixels by performing the point by point product between the mask 

image and the original image. In order to decide which pixels take part in the 

averaging process in each iteration, thresholds T1, T2, and T3 should be 

determined. The threshold matrix was adopted from [20]: 


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and T
opt

 is the set of best thresholds for the red, green and blue channels of the 

RGB color space respectively. After calculating the average chromaticity value μ, 

it is possible to find the CCT of each Chn. To calculate the CCT of a chromaticity 

value μ(x,y), it is transformed into Luv color space [25], where pixel μ is 

represented by coordinates (u,v). These values will be stored as the body 

chromaticity feature. After extraction of the color channels, a total of N×2 

features are added to the feature space. Detailed explanation of CCT calculation is 

given in [20]. The CCT color feature is represented as FVCCT with two values for 

each color channel.  

 

2.3.  Co-occurrence matrix and Harlick features 

A simple way to describe texture is to use statistical moments of the grey level 

histogram of an image. The use of raw information alone will only lead to 

measure of texture that has information about the distribution of intensity. Hence, 

no information about the relative position of pixels with respect to each other is 

obtained. Co-occurrence matrix provides valuable information about the intensity 

of a grey image considering the relative position of pixels in an image. Give an 

image I, of size In×Im, the co-occurrence, matrix P can be defined as: 
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 (Δx, Δy) represents the offset specifying the distance between the pixel being 

processed and its neighbours. With this notation the co-occurrence matrix is shift 

variant and for different choices of (Δx, Δy) different outcome is achieved. This problem 

will be neglected by using a set of offsets sweeping through 180 degrees at the same 

distance parameter Δ to achieve a degree of rotational invariance (i.e., [0 Δ] for 0◦ 

: PH horizontal, [-Δ, Δ] for 45◦ : PR right diagonal, [-Δ 0] for 90◦ : PV vertical, and 

[-Δ -Δ] for 135◦ : PL left diagonal). An illustration of the process of obtaining co-

occurrence matrix for PH and PV is shown in Fig. 5.  

In order to find the Haralick features, represented with Fh, the following 

notation can be considered: let P(i,j) be the (i,j)
th

 entry in the normalized co-
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occurrence matrix and S represent the dimension of the square co-occurrence 

matrix. The marginal probabilities Px(i,j) and Py(i,j) will be defined as:  





S

i
x jiPjiP

1

),(),(                  (6) 
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



S

i
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µ and σ represent the mean and standard deviation values respectively. Entropy of 

Px, Ex is defined as: 
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 and entropy of Py, Ey is defined as: 
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By these definitions the Haralick features can be formulated as shown in 

Appendix1. These 14 features are extracted for each co-occurrence vector and 

placed in the final feature vector adding 52 elements to the feature space.  
 

 
Input image 

 

1 2 3 4 

1 0 33 43 6 

2 6 17 33 43 

3 0 33 6 17 

4 6 17 0 33 

Intensity matrix 

 

1 2 3 4 5 

1 0 1 0 3 0 

2 1 0 3 1 0 

3 0 3 0 1 1 

4 3 1 1 0 2 

5 0 0 1 2 0 

PH 

 

1 2 3 4 5 

1 0 0 4 0 0 

2 0 0 0 4 1 

3 4 0 0 1 1 

4 0 4 1 0 1 

5 0 1 1 1 0 

PV 

Fig. 5. Co-occurrence matrix for PH and PV. 

 

2.4.  Area and position features 

Area and position of color channels can be effective for classification of indoor-

outdoor images. For example, a large blue region positioned on top region of an 

image can be an indication of sky, or large green areas in the bottom part of an 
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image can indicate the presence of trees. For extraction of area and position 

features, the binary mask of each color channel was used. The area feature 

(FVarea) is simply defined as: 
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image, pos[posx(chn), posy(chn)] is calculated as: 
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This formulation is used to find the center of gravity for each color channel 

using the binary mask (BXChn) of that channel. For an image partitioned into N 

color channels a total of N×2 features are added to the image feature vector. The 

final feature vector of the image, FV is denoted as: 

FV = [FVCCT, FVh, FVarea, FVpos]              (13( 

In this study we use the MLP network for classification of indoor-outdoor 

images. MLPs represent a prominent class of ANNs in classification, implementing 

a feed forward, supervised and hetero-associative paradigm. MLPs consist of 

several layers of nodes, interconnected through weighted cyclic arcs from each 

preceding layer to the next, without cross or feedback connections. By choosing 

sufficient number of hidden neurons, an MLP can approximate any complex 

decision boundary to separate the input training data into distinguished regions.  

3. Experimental results 

In order to evaluate the performance of the proposed method we use an image set 

consisting of 400 indoor and 400 outdoor images. 40% of the images were used 

for the training phase and 60% were used in the test stage. The data set was 

created using the WWW and can be downloaded from the following DOI: 

https://dx.doi.org/10.6084/m9.figshare.4595323.v1. 

Image classification was tested for N = 4, 8, 16 and H =5, 10, 15, 20, where, H 

is the number of the hidden neurons in the MLP. Quantitative comparisons were 

maid based on Recursive Operative Curves (ROC). Each ROC curve is illustrated 

using True Positive Rate (TPR) and False Positive Rate (FPR). TPR is defined as 

the rate of classification for images that were correctly selected as indoor or 

outdoor and FPR is defined as the rate of images that were incorrectly detected as 

indoor or outdoor.  

For the case of N = 4 the ROC curves are shown in Fig. 6. In this figure, TPR 

and FPR are normalized. Hence, a TPR of one is equivalent to 100. The resulted 

ROC curves illustrate that regardless of the number of neurons chosen, the ROC 

curves do not provide sufficient classification rates as the ROC curves deviate 

from the TPR axis as TPR approaches 100%. For quantitative analysis of the 
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result, Table 1 shows the FPR values for each test case when TPR is 90% and 

95% respectively. As shown in the table the best classification rate is 91 %.  

 
Fig. 6. Classification ROC curves with N=4. 

 

Table 1. FPR values for TPR = 90 % and FPR = 95% with N = 4. 

Number of neurons TPR (%) FPR (%) Accuracy (%) 

5 90 12 89.0 

95 15 90.0 

10 90 17 86.5 

95 19 88.0 

15 90 07 91.5 

95 22 86.5 

20 90 08 91.0 

95 13 91.0 

For the case were each image was divided into 8 color channels, the ROC curves 

shown in Fig. 7 were obtained. In this setup, the ROC curves show much better 

classification results as they keep near the TPR axis even for large TPR values. In 

these experiments, the MLP with 15 and 20 hidden layers show to be more efficient in 

image classification. Table 2 shows numerical results obtained from ROC curves of 

Fig. 7. As the table shows using 20 neurons in the hidden layer of the MLP, an 

accuracy 94% percent with TPR = 95% and FPR = 7% was obtained. When H=15 

was used for training the MLP, the resulted accuracy was 93%.  

The classification ROC curves for the case of N = 16 are shown in Fig. 8. In 

this case, the ROC curves also showed a good performance of the MLP for 

indoor-outdoor image classification. Table 3 shows the numerical results obtained 

from ROC curves of Fig. 7. For N = 16 and H= 20 the accuracy of classification 

was 94% when TPR = 95%. The results of classification for N = 8 and N = 16 are 

nearly very similar. However when N = 8 less calculation is required and this 

choice is more desirable. 

Top row in Fig. 9 shows some sample images that were correctly classified as 

indoor or outdoor. The bottom row of this figure shows some false positive 

classification results.  
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Fig. 7. Classification ROC curves with N = 8. 

 

Table 2. FPR values for TPR = 90 % and FPR = 95% with N = 8. 

Number of neurons TPR (%) FPR (%) Accuracy 

5 
90 12 89.0 

95 23 86.0 

10 
90 05 92.5 

95 12 91.5 

15 
90 04 93.0 

95 11 92.0 

20 
90 03 93.5 

95 07 94.0 

 

 

Fig. 8. Classification ROC curves with N = 8. 
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Table 3. FPR values foe TPR = 90 % and FPR = 95% with N = 8. 

Number of neurons TPR (%) FPR (%) Accuracy (%) 

5 
90 06 92.0 

95 22 86.5 

10 
90 05 92.5 

95 15 90.0 

15 
90 05 92.5 

95 18 88.5 

20 
90 04 93.0 

95 07 94.0 

 

 

 

Fig. 9. Indoor-outdoor images correctly classified (Top row).  

Sample images, incorrectly classified (Bottom row). 

The comparison between the result of classification using the proposed 

method and methods of Szummer and Picard [9], Kim et al. [15], and [20] are 

shown in Table 4. In this table Precisionx, x = 90 and 95 is the precision obtained 

for the cases of TPR = 90 and 95% respectively. Based on result of this table, 

adding Haralick features along with area and position features enhanced the 

classification rate of [20] by 10%, for H = 20 and TPR = 95%. This shows that 

adding texture and spatial features, improved indoor-outdoor image classification 

in comparison to [20] work. Compared with the work of [15], the presented 

method showed an improvement of 6% in classification precision for TPR = 95% 

and H = 20. The results of [9] showed that partitioning an image into small size 

blocks is not much effective for indoor-outdoor image classification. The best 

precision obtained by this method on the tested dataset was 0.78. 

Table 4. Comparison of results between the  

proposed method and methods of [9, 15, 20]. 

H TPR [20] [15] [9] 
Proposed 

method 

10 
90 0.85 0.90 0.78 0.94 

95 0.80 0.85 0.74 0.88 

15 
90 0.88 0.91 0.77 0.95 

95 0.82 0.84 0.75 0.89 

20 
90 0.89 0.90 0.78 0.96 

95 0.84 0.87 0.78 0.93 
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5. Conclusion 

This paper presented a new method for indoor-outdoor image classification. The 

overall process included a color image segmentation step where Haralick features, 

CCT, and color and area features were extracted for image description. For the 

classification phase an MLP was used for training and test purposes. The 

experimental results of the presented method showed that adding texture along 

with area and position features for each color segment increases the accuracy of 

indoor-outdoor image classification rate when compared with [20] Further in 

comparison with the work of [15] and [9], the proposed method showed an 

improvement of 3.25% and 10.5% percent respectively. High classification rate of 

the presented method makes it suitable for applications that require to 

distinguishing between indoor and outdoor images.  
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Appendix A 

Definition of Harlick features 

Feature name Definition 
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*where x and y are the coordinates of entry in the co-occurrence matrix and px+y(i) 

is the probability of the co-occurrence matrix coordinates summing to x+y 

** where 
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