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Early de-oxygenation (initial dip) is an indicator of the primal cortical activity source

in functional neuro-imaging. In this study, initial dip’s existence and its estimation in

relation to the differential pathlength factor (DPF) and data drift were investigated in

detail. An efficient algorithm for estimation of drift in fNIRS data is proposed. The

results favor the shifting of the fNIRS signal to a transformed coordinate system to

infer correct information. Additionally, in this study, the effect of the DPF on initial dip

was comprehensively analyzed. Four different cases of initial dip existence were treated,

and the resultant characteristics of the hemodynamic response function (HRF) for DPF

variation corresponding to particular near-infrared (NIR) wavelengths were summarized.

A unique neuro-activation model and its iterative optimization solution that can estimate

drift in fNIRS data and determine the best possible fit of HRF with free parameters were

developed and herein proposed. The results were verified on simulated data sets. The

algorithm is applied to free available datasets in addition to six healthy subjects those

were experimented using fNIRS and observations and analysis regarding shape of HRF

were summarized as well. A comparison with standard GLM is also discussed and effects

of activity strength parameters have also been analyzed.

Keywords: functional near-infrared spectroscopy, initial dip, hemodynamic response, optimal cortical model,

optical neuro-imaging

INTRODUCTION

Near-infrared spectroscopy (NIRS) is an emerging non-invasive neuro-imaging methodology that
measures the cortical activity based on blood chromophores (Noori et al., 2017; Khan et al., 2018).
It is well-known fact that regional blood flow and neural activities are tightly coupled in time
and space (Lindauer et al., 2001; Salvador et al., 2010; Whiteman et al., 2017). Functional near-
infrared spectroscopy (fNIRS), therefore, measures cerebral blood volume and blood oxygenation
changes as indicators of neural activity (Talukdar et al., 2013). Continuous-wave near-infrared
spectroscopy (CW-NIRS) determines the concentration changes of oxy-hemoglobin (1HbO) and
deoxy-hemoglobin (1HbR) by shining, through the scalp, near-infrared (NIR) light of different
wavelengths (∼ 630–920 nm) into cortical tissue (Scholkmann and Wolf, 2013). The absorption
and scattering of NIR light are characterizing features that formulates an estimate of HbO and HbR
concentration change (Prakash et al., 2007; Kamran et al., 2015). The cortical information received
by fNIRS relates to the local hemodynamic response, unlike electroencephalography, which can
quantify electric brain activity in the field. The simultaneous recording from multiple locations on
surface of scalp could result in improved accuracy and reliability. fNIRS has several advantages over
other currently existing neuro-imaging modalities, which also measure hemodynamic response
function (HRF) characteristics. Those includes reasonable spatial resolution and high temporal
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resolution suitable for brain-computer-interface (BCI)
applications (Jasdzewski et al., 2003). The details on the
advantages, limitations, and challenges in the field of fNIRS can
be found in Kamran et al. (2015).

Initiating the neuronal activity cause oozing of HbO in
blood flow (Buxton, 2001). Glucose, oxygen and other nutrients
are major components in the blood to maintain healthy brain
functioning (Buxton et al., 2004). For this, cerebral blood flow
(CBF) increase is essential. Additionally, the CBF increase is
required to carry out carbon dioxide and other waste from
particular activated region (Buxton, 2001). The initial oxygen
requirement or deoxygenating increase in a localized brain region
is defined in the literature as the “initial dip” (Kamran et al.,
2016). The existence of the initial dip is still a controversial issue
but it could be incremental feature for effective BCI applications.
The immediate detection/estimation of brain commanding signal
is crucial step for such efficient, effective and fast BCI systems.
One possibility is to achieve this by analyzing metabolic signal
instead of blood volume related indication (Hong and Naseer,
2016). Therefore, initial dip has strong attraction to research
community due to its metabolic relation. Some of the previous
fMRI studies have reported the existence of early de-oxygenation
prior to the initiation of oxy-hemoglobin rise (Menon et al.,
1995; Yacoub and Hu, 2001). Similarly, fNIRS studies have
reported the existence of an initial dip in some cases and
experiments. Jasdzewski et al. (2003) observed that the initial
dip exists as a part of the HRF and is caused by early de-
oxygenation after presentation of brief stimuli. Menon et al.
(1995) recorded an initial negative change in measured signals
after onset of photic stimulation. Later, Hu et al. (1997) concluded
that the early response could be selectively and reliably mapped
in individual subjects. Additionally, to this, they observed that
the characteristics of the early response’s signal change were
independent of stimulus duration for stimuli longer than 3 s.
Mayhew et al. (2000) investigated the stimulation effects of the
barrel cortex in anesthetized rats using NIR light spectroscopy.
Their observations suggest the existence of HbR increase before
HbO increase, though it was not as large as the main response.
The evidence of initial dip against electrical vibrissae stimulation
were presented in Jones et al. (2001). Moreover, several studies
related to fNIRS have discussed and analyzed the detection and
existence of initial dip in general case/BCI applications (Akiyama
et al., 2006; Prakash et al., 2007; Yoshino and Kato, 2012; Hong
and Naseer, 2016). Therefore, it is a paramount to dig out factors
that can affect the existence/appearance of initial dip.

The radiant NIR light ravine through tissues, capillaries, and
blood before a part of it is received by detector. The scattering
behavior of human tissue cause extra traveling of NIR light
photons than source-detector separation on scalp. A parameter,
namely the differential path length factor (DPF), is multiplied by
the actual distance to account for the additional distance traveled
by NIR light. The DPF value varies for different wavelengths
of NIRS light and as well as for subject’s age (Duncan et al.,
1995; Kohl et al., 1998). Initially, it was common practice to use
DPF values between three to six (Delpy et al., 1988; Duncan
et al., 1995). The DPF can vary for different tissue properties and
structures as well (Kamran et al., 2016). Jasdzewski et al. (2003)

analyzed the effects of DPF onHRF characteristics for a particular
set of values ranging from three to twelve. Comprehensive
analysis, however, is still required in this field. In addition to
scattering behavior, the signal drift in fNIRS data has strong
relation with HRF features (Shah and Seghouane, 2014; Metz
et al., 2015). As the depth of initial dip is very small as compared
to main peak, thus even if small drift is present in the data,
the initial dip could not be found and in case where initial dip
features are selected for BCI algorithm, the false decision could
be expected and possible. A typical methodology for correction
of drift is de-trending (Herrera-Vega et al., 2017). High-pass
filtering is another fruitful way of removing low frequency drift
in HbO signal (Cui et al., 2010). NIRS-SPM, a freely available
fNIRS-analysis software package developed by Ye et al. (2009),
has proposed wavelet-based de-trending algorithms to abrogate
baseline drift. The high computation cost of wavelet-based de-
trending algorithms could possibly be abate by utilizing linear
de-trending filters (Yin et al., 2015).

In this study, early de-oxygenation of the fNIRS signal
was investigated in detail. To that end, the initial dip’s
existence, estimation, and appearance according to DPF
variation and data drift were explored. Based on the results,
a scheme for drift estimation was developed and is herein
proposed. Additionally, a neuro-activation model and iterative-
optimization-based solution were developed, the results for
which were evaluated and summarized on the basis of a
comprehensive analysis. Additionally, verification analyses for
simulated data is performed. Later, real human brain signals
were acquired from six healthy subjects and their experiment-
related-HRF were estimated using proposed algorithm. A generic
overview of the study is presented in Figure 1.

THEORY

Instrumentation
The experiments were performed with continuous wave NIRS
system (DYNOT: Dynamic Near-Infrared Optical Tomography
developed by NIRx Medical Technologies, Brookly, NewYork).
The sampling rate of the instrument was 1.81Hz. The data was
re-sampled at 100Hz (MATLAB built-in-command resample) for
further processing and analysis. It has 32optodes that can be
utilized as source or detectors depending upon configuration.
The study was approved by local review board of Pusan National
University.

NIRS Data Pre-processing
Concentration changes of HbO and HbR are directly related
to the CBF in a particular brain region. These chromophores
in blood hemoglobin can be estimated through the relation
between incident and attenuated NIR light intensity that is
described in the modified Beer-Lambert law (MBBL). The
resultant mathematical expressions are described in Delpy et al.
(1988), Maikala (2010), and Kamran and Hong (2014). Assuming
two wavelengths λ1 andλ2, the expressions for HbO and HbR
concentration changes according to the MBLL can be written as
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FIGURE 1 | Schematic of algorithm.
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where 1HbOi(k) and 1HbRi(k)are the relative concentration
changes of HbO and HbR, respectively, k is the step time,

i represents the ith-channel of the source-detector set, ε
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,
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indicate the extinction coefficients (referring
to the measure of absorption of light) of HbO and HbR
at two different wavelengths, respectively, 1ODλj (k) is the
optical density variation at the kth-sample time and particular
wavelength (j = 1, 2), liis the source-detector separation,
and DPFλj is the differential path length factor at a particular
wavelength (j= 1, 2).

Hemodynamic Response Function
Activation detection from cortical imaging data is nothing but the
mapping of a recorded time-series to a function that practically
endorses the phenomena of a neural process. A canonical HRF
(cHRF) composed of two Gamma functions has frequently been
used as an indicator of cortical activity (Friston et al., 1994,
1998). The first Gamma function represents the main response,
while the second is responsible for post-stimulus undershoot
(Abdelnour and Huppert, 2009). It is evident from previous
studies (Menon et al., 1995; Hu et al., 1997; Buxton, 2001; Buxton
et al., 2004; Hu and Yacoub, 2012; Yoshino and Kato, 2012) that
early deoxygenation is a component of neural activation. Thus,
a third Gamma function is required in order to mathematically
represent the initial dip in the cHRF model, as

h(k) =

[
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e−β1k
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−
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2
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(3)

HRF(k) = a0 + a1
{

h(k) ∗ u(k)
}

(4)

whereuis a function describing the onset of stimulus and rest
sessions, h is the cHRF, α1is the delay of the response, α2is the
delay of the undershoot, α3is the delay of the initial dip, β1is the
dispersion of the response, β2is the dispersion of the undershoot,
β3is the dispersion of the initial dip, andŴ represents the Gamma
distribution.

Rotation of Axis
Let us consider two coordinate systems, ky-axis and KY-axis.
Consider a point p(k1,y1) on the ky-axis, its representation on the
KY-axis being P(K1,Y1), as shown in Figure 2. Further suppose
that the rotation angle between the ky-axis and the KY-axis isθ .
The relationship between the two coordinate systems can easily
be derived as Anton et al. (2010).

k = K cos(θ)− Y sin(θ) (5)

y = K sin(θ)+ Y cos(θ) (6)

K = k cos(θ)+ y sin(θ) (7)

Y = −k sin(θ)+ y cos(θ) (8)

Activation Model
The optical signal measured by fNIRS is an amalgam of different
signals. These amalgams mainly consist of neuronal-activity-
related signal depending upon stimulation and other rhythms
responsible for different cortical activities related to the healthy
functionality of the human body. The neuronal activity signal
is the HRF, and other signals include the respiratory signal, the
heart-rate signal, Mayer waves, and noise (Prince et al., 2003;
Abdelnour and Huppert, 2009). Thus, the simplest optical brain
model can be mathematically represented as

yi
HbO

(k) = HRF(k)+ εi(k) (9)
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FIGURE 2 | Transformation from one coordinate system to new coordinate

system.

where yi
HbO

(k) is the measured HbO concentration change and

εi(k) is the noise term at the kth-sample time.
Let us suppose that the measured data has a drift of angleθ ;

using equations (7) and (8), re-evaluating equation (9), we obtain

K = k cos(θ)+ yiHbO(k) sin(θ) (10)

Y i
HbO(k) = −k sin(θ)+ yiHbO(k) cos(θ) (11)

Now let us define a cost function that formulates the above
problem into an optimization problem as follows:

J1 =
∥

∥HRF(k)− (−K sin(θ)+ yiHbO(k) cos(θ))
∥

∥

2
.

min J1(θ ,α1,α2,α3,β1,β2,β3, ao, a1) (12)

The proposed activation model could be estimated
by solving equation (12) for the free parameters
inmin J1(θ ,α1,α2,α3,β1,β2,β3, ao, a1) . Thus, the optimal
values of free parameters (θ∗,α∗

1 ,α
∗
2 ,α

∗
3 ,β

∗
1 ,β

∗
2 ,β

∗
3 , a

∗
0 , a

∗
1) are

estimated using an improved version of a simplex algorithm
[Nelder-Mead Simplex (NMSM)]. The NMSM is an iterative
optimization method for complex problems. It has three main
steps for searching optimal solutions: ordering, centroid, and
transformation. Details on the NMSM are available in the
literature (Lagarias et al., 1998; Luersen and Le Riche, 2004;
Haftka and Gürdal, 2012; Kamran et al., 2015). The most
important step to evaluate the upper bound vertex of the
cost function is achieved through four sub steps those are
reflection, expansion, contraction, and shrinkage (Lagarias et al.,
1998; Kamran et al., 2015). The mathematical formulation for
Reflection:xr = x̄+ δ1(xh − x̄),

Expansion:xe = x̄ + δ2(xr − x̄), Contraction:xc = x̄ +

δ3(xh − x̄), and Shrinkage:xe = x̄ + δ4(xl − xi); i =

0, 1, . . . , n, whereδ1,δ2 ,δ3 , and δ4are coefficients of reflection,
expansion, contraction and shrinkage, respectively. The typical
values of these coefficients have been chosen as 1, 2, 0.5, and
0.5, respectively (Lagarias et al., 1998 and Luersen and Le Riche,
2004).

Experimental Procedure and Paradigm
The present experiment was performed on six healthy human
subjects of 28± 7 years mean age. The experiment was conducted
in accordance with the latest version of the Declaration of
Helsinki. None of the subjects had a history of any neuronal
disorder. All the subjects were university students and were
briefed on the experimental procedure. The written consent
of each participant was collected before experimentation. The
experiment was performed in a shielded room. The subjects were
advised to avoid un-necessary movements to reduce artifacts in
the measured signal. The subjects were seated on a comfortable
chair with load of fNIRS fibers on a hook provided with DYNOT-
232 instrument. The experiment included an initial rest of 5 s and
a finger-tapping task of 1 s followed by an additional 29 s of rest
session. The data recorded for initial rest session was truncated
before further processing. The task and rest session instructions
were delivered via a monitor placed 100 cm from the subject.
The source-detector separation was∼3 cm. Figure 3 presents the
source-detector localization scheme with reference position (C3
on 10–20 system) is marked as black triangle.

Effect of DPF on Initial-Dip
It is mathematically evident in equations (1)- (2) that the DPF has
a strong relation to the HRF while optical densities are converted
into HbO and HbR concentration changes. A change in the DPF
value can alter HRF shape and features. The magnitude of an
initial dips’ peak is much shorter than the peak of the main
response. Therefore, a change in peak value could be a possible
factor leading to doubt of the existence of the initial dip. Thus, it
is crucial to determine the impact of DPF variation on initial dip.
To that end, simulated data sets with different characteristics of
HRF were generated. The main peak, post-stimulus undershoot
and initial dip of each data set has been shown in Figure 5. Later,
physiological noises and Gaussian noise were added to the data
according to the methodology introduced in Prince et al. (2003)
and Kamran et al. (2015). The simulated data sets were fed into
equation (1) with known values of DPFλ1 and DPFλ2 as well as
extinction coefficients and source-detector separation to define
the cost function as

J2 =

N
∑

k=1

{yiS,HbO(k)− 0.03751ODλ1 (k)+ 0.016441ODλ2 (k)}
2
, (13)

where yi
S,HbO

(k) represents the ith simulated data set at the
kth sample time. The above equation was solved for optical
densities 1ODλ1and1ODλ2 to minimize J2. It has infinitely
many solutions for 1ODλ1and1ODλ2 . Therefore, for further
analysis, the solutions were categorized into four different classes:
(1):1ODλ1 > 0,1ODλ2 > 0, (2):1ODλ1 > 0,1ODλ2 <

0,(3):1ODλ1 < 0,1ODλ2 > 0, and (4):1ODλ1 < 0,1ODλ2 <

0. One solution of equation (13) in each case was fed into the
equation below to regenerate the actual signal and verify the
obtained solution:

yiS,HbO(k) = 0.2170
1ODλ2(k)

DPFλ2
− 0.1015

1ODλ1(k)

DPFλ1
. (14)
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FIGURE 3 | Source-detector localization.

In the first step, the values of DPFλ1 and DPFλ2 that had been
selected during the iterative optimization of J2 were used. Later,
different values of DPFλ1 and DPFλ2were used to analyze the
effects of those factors on initial dip. The proposed algorithm
has two stopping criterions, either could stop the iteration which
fulfilled first. The first one is the absolute error in estimated and
actual data sets in each iteration and if it is less than a user defined
value the iteration stops and consider this as optimal solution.
The second one is if the value of solution repeats at succeeding
iterations.

RESULTS

Figure 1 provides a schematic of the proposed algorithm. It
has two main parts separated by dotted blocks. The upper
larger block shows the analysis and verification on synthetic
data sets. It displays the generated HRF with different features,
DPF in four different solution categories and estimation of
drift in the data. The smaller block represents the optimal-
neuro-activation model and its solution by using proposed
methodology. Figure 2 displays the concept of coordinate-
system transformation. Figure 3 provides the source-detector
localization scheme. Figure 4 shows the concept and estimation
of drift in the data. The upper plot of Figure 4 shows HRF and

middle plot displays a drifted version of it with new coordinate
system estimated through proposed algorithm. The bottom plot
of Figure 4 presents the visualization of HRF in new coordinate
system. Figure 5 displays the simulated data sets with their
different characteristics of main peak, post-stimulus undershoot
and initial dip.

Several studies in the literature have determined that the DPF
is a possible cause of misleading results (Duncan et al., 1995,
1996; Jasdzewski et al., 2003). Therefore, comprehensive analysis
of the effects ofDPFλ1 andDPFλ2on initial dip is essential. In this
study, several simulated data sets were generated with different
shapes and properties/features of HRF. Then, the cost function J2
wasminimized. The solutions were categorized into four cases. In
each case, first, the value ofDPFλ1was fixed and that ofDPFλ2 was
varied. Conversely, in the next step, the value ofDPFλ2was fixed
and that of DPFλ1 was varied. Case 1: Both optical densities were
constrained to be positive. In this case, as DPFλ1was changed
from a lower value, 3, to a higher value, 10, a gradual decrease
in initial dip was observed, and negligible initial-dip change
was observed as DPFλ2was varied. Case 2: Both optical densities
were constrained to be negative. This case showed a very small
change in initial dip as DPFλ1was varied, whereas the initial dip
decreased with variation ofDPFλ2 . Case 3: The optical density
related to wavelength λ1 was constrained to be positive while the
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one related to wavelength λ2 was constrained to be negative. In
this case, there was negligible change in initial dip as DPFλ1was
increased, and the initial dip decreased asDPFλ2was varied. Case

FIGURE 4 | Concept of axis re-shift: actual HRF with standard coordinate

system (top plot), data drift and new estimated coordinate system (middle

plot), data view in new estimated coordinate system (bottom plot).

4: The optical density related to wavelengthλ1was constrained
to be negative while the one related to wavelength λ2 was
constrained to be positive. In this case, no effect on initial dip
was observed for either the DPFλ1or DPFλ2variations. One of
the main reasons for the result in this case was that negative
output was not possible. Figure 6 depicts the effects of variation
of DPFλ1 for four different cases. Figure 7 depicts the effects
of variation ofDPFλ2 on for four different solution categories.
Figure 8 plots the drift in real data sets freely available with fNIRS
software packages [NIRS-SPM developed by Ye et al. (2009),
Cui et al. (2010)] with their respective drifts. Figure 9 plots the
estimation of drift in real data sets with best possible fitting of
the free HRF to the fNIRS measured signal. Figure 10 shows the
HbO signals measured by DYNOT-232 from six healthy subjects
and corresponding HRFs estimated through proposed algorithm.
Figure 11 depicts the estimation of corresponding HRF among
subjects using GLM-methodology with designed HRF shown
in bottom plot of Figure 11. The concept of drift in GLM is
presented in Figure 12. Figure 13 shows the results of proposed
scheme related to event-related task.

DISCUSSION

Optical spectroscopy is an emerging technique that measures
spectral distributions of light energy to infer NIR light interaction
with human skin, scalp, tissues, and blood hemoglobin, among
others. Neuro-activation-dependent oxygen demand causes
changes in the concentration of HbO and HbR in a particular
brain area responsible for specific task (Yacoub and Hu, 2001;
Yoshino and Kato, 2012). This neuronal activity accompanies
early de-oxygenation i.e., HbR increase before increase in
oxygenated hemoglobin (Hu and Yacoub, 2012). The CBF
increases much more than cerebral metabolic rate and hence
oxygen extraction fraction (E) decreases with activation (Buxton
et al., 2004). The ability to measure the spectroscopic information
with NIRS allows one to characterize changes in HbO and HbR
separately which results in less ambiguous analysis of activity

FIGURE 5 | Simulated HRFs and their corresponding main peaks, initial dips and post-stimulus undershoots.
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FIGURE 6 | Results for variation ofDPFλ1 : Case 1 (top left), Case 2 (top right), Case 3 (bottom left), and Case 4 (bottom right) for four different solution categories,

respectively.

induced volume andmetabolic changes than Blood Oxygen Level
Dependent (BOLD) in fMRI (Jasdzewski et al., 2003). On the
other hand, the information observed via fNIRS measurement
can be affected by several factors, leading thereby to misleading
results. Several studies in the field of fNIRS have documented
the existence of the initial dip (Jasdzewski et al., 2003; Buxton
et al., 2004; Akiyama et al., 2006; Hu and Yacoub, 2012; Yoshino
and Kato, 2012), though such dip remains a controversial issue.
Therefore, it is necessary to uncover any factor that can affect the
existence of initial dip.

The first and most basic factor is the slow drift in HbO signals
within fNIRS data. It is important to mention here that drift does
not exist in every channel and in every experiment of fNIRS. But
it is observed in some of channels during experiments. Figure 8

displays the drift in fNIRS time-series observed in freely available
online data sets of fNIRS software packages, [NIRS-SPM (Ye
et al., 2009) and (Cui et al., 2010)]. It is evident that if a new
coordinate system is defined at a particular angle (shown in
Figure 8) estimated with the proposed algorithm, the data can be
visualized in that system for correct analysis and overall ease of
approach. The drift in the data can affect the existence/estimation
of the initial dip. Therefore, the proposed estimation model
determines, in the same computations, not only the drift but also
the best fit of free HRF.

It is common practice to apply low pass filter and de-trending
algorithms to get rid of physiological noises and drift in observed
optical data (Abdelnour and Huppert, 2009; Ye et al., 2009; Cui
et al., 2010; Shah and Seghouane, 2014;Metz et al., 2015; Yin et al.,
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FIGURE 7 | Results for variation ofDPFλ2 : Case 1 (top left), Case 2 (top right), Case 3 (bottom left), and Case 4 (bottom right) for four different solution categories,

respectively.

2015; Herrera-Vega et al., 2017). As for as physiological noises
are concerned, most frequently used filtering range is with cut-
off frequency of 0.5Hz low pass filter and 0.01 for high pass filter
to remove these unnecessary signals. In contrast with existing
methodologies, the proposed algorithm estimates the drift in the
data with best possible fit (if exist) applying node optimization.
This is very important point because a slight error in mismatch
of particular trend can cause existence/disappearance of initial
dip. The drift is found and estimated in single trial and multi-
session experimental paradigms using proposed methodology.
The authors did not observe mix/multi-trending behavior in
fNIRS signal. However, a running correlation is found at each
sample time between measured data and its fit. If the running
correlation is less than (say 90% of the peak value), the remaining

signal could be re-optimized using proposed methodology to
predict another trend in the same dataset.

Biological tissues are highly scattered medium of NIR light
and consequently Beer-Lambert law expression does not hold
as path length of the light is much more longer than physical
separation between NIR light source and receiver (Kohl et al.,
1998). Thus, it was common practice in past to introduce DPF
value between three and six for compensation of additional
distance traveled by NIR light (Delpy et al., 1988; Duncan et al.,
1995). Jasdzewski et al. (2003) reported the differences in HR
to motor and visual paradigms using fNIRS. They additionally
analyzed the effects of the variation of DPF upon HRF. Three set
of combinations ofDPFλ1 andDPFλ2were chosen for analysis i.e.,
3 and 6, 6 and 6, and 12 and 6. In contrast to available literature,
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FIGURE 8 | NIRS data drift in freely available data sets: NIRS-SPM, OXYMON (right) and Hitachi ETG-400 (left).

FIGURE 9 | Estimation of best HRF fit and drift using proposed algorithm.
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FIGURE 10 | NIRS data sets and corresponding HRF fits using proposed minimization algorithm.

FIGURE 11 | Results using GLM methodology: estimated HRF in NIRS signal of six subjects (top plot) and predicted HRF (bottom plot).

the DPF is varied between three and ten with increment of unity.
It is found that DPF can affect the features of initial dip and at
worst it could be a possible factor of initial dip disappearance
as described by existing literature (Jasdzewski et al., 2003). In
addition to this, it is observed that the combination of polarity of
optical densities has major role to variate initial dip dependence
upon DPF. Therefore, four different cases are presented here
analyzing a particular example of data set. The results show that
the variation in DPF can affect the peak value of initial dip, post-
stimulus undershoot and main response. Scholkmann and Wolf
(2013) summarized an important factor that actually cause the

variation of DPF among other factors i.e., age of subject. They
developed a useful equation that can be used to determine DPF
value for a subject of particular age. The authors opinion is that
not only age, different brain areas of same age could have different
scattering patterns that can cause light photons to travel an extra
distance which needs to be catered. But still there is no such
algorithm.

The general linear model (GLM) was frequently applied
methodology for the analysis of fMRI time series measured
by characterizing diamagnetic and paramagnetic behavior of
hemoglobin chromophores (Ye et al., 2009). It was developed
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by Prof. C. J. Friston and is part of statistical parameter
mapping tool (Friston et al., 1994) and has also been applied to
fNIRS signal analysis using block and event related paradigms
(Abdelnour and Huppert, 2009; Ye et al., 2009; Kamran and
Hong, 2014). The application of GLM to fNIRS data has shown

FIGURE 12 | Concept of drift in GLM: slope variation on straight line (top plot),

and activity strength variation on HRF (bottom plot).

enlightening results, but still it has certain limitations. The
crux of GLM is to split and represent measured time series
as a linear combination of predicted hemodynamic response
function (pHRF) and a base line, usually known as basis set
(Çiftçi et al., 2008; Ye et al., 2009; Kamran and Hong, 2014).
The weights of regressors can be estimated by applying least
square fit and mismatch error is considered as noise (Zhang
et al., 2013). However, in case of fNIRS, it entails an additional
challenge due to various factors causing variability in the
measured optical time series. Physiological noises (cardiac beat,
respiratory rhythm, and low frequency Mayer waves among
others) are major contributor that formulate a mixture with
neuronal related concentration changes of HBO and HbR in
optical data (Prince et al., 2003; Abdelnour and Huppert, 2009;
Kamran and Hong, 2014). The variants of GLM are mostly
focused for filtering the data from physiological noises e.g.,
(Hu et al., 2010) proposed GLM by adding three regressors of
cosine series to estimate particular sinusoidal signal. Similarly,
(Kamran and Hong, 2014) have proposed ARAM model with
exogenous input to explore existence of respiratory rhythm,
hear beat related signal, and Mayer waves. In addition to this,
Trial-to-trial variability in fNIRS data has been reported under
various experimental paradigms (Holper et al., 2012). Thus, a
non-linear optimization modeling algorithm can estimate the
neuro-activation-dependent hemoglobin concentration changes
more efficiently and accurately. Let us suppose a neuro-activation
model consist of a basis set of GLM formulation as follows,

yobs = β1ypHRF + β2 (15)

FIGURE 13 | Event-related experimental paradigm’s results: actual data and its best possible fit using proposed scheme (top plot), estimation of new coordinate

system corresponding to evaluated drift value (middle plot), and data view in new coordinate system (bottom plot).
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Where yobsis the observed HbO concentration change, β1is
activity strength parameter and β2 is a baseline correction. In
this model β1 can be regarded as slope of a line represented
mathematically in equation (15). The increase in β1 is responsible
for drifting the line from one position as shown in Figure 12

(upper plot). Similarly increase in β1 constitute scaling of cHRF
(or HRF) as shown in Figure 12 (bottom plot). This parameter is
regarded as indirect measure of neuro-activation (Friston et al.,
1994; Abdelnour and Huppert, 2009; Ye et al., 2009; Kamran
and Hong, 2014). Another limitation of GLM, in case of fNIRS,
is the dependency of output upon the cHRF designed and
convolved with experimental paradigm, called pHRF. Whatever
ypHRF is designed based upon two/three Gamma functions, the
activity strength parameter is the only factor that characterize the
existence and shape of neuro-activation. In literature however,
different methodologies were proposed to constraint GLM
environment that can improve the accuracy and variability
(different characteristics and features) in estimation of predicted
HRF (pHRF) features for fNIRS (Woolrich et al., 2004; Çiftçi
et al., 2008). In proposed methodology, the shape of neuro-
activation waveform is free and highly dependent upon observed
time series, in contrast with standard GLM.

CONCLUSION

In this paper, existence of the initial dip and its appearance as
a function of data drift and DPF is explored comprehensively.
In addition to this, a novel neuro-activation model that can

estimate drift in fNIRS data and determines the best fit of

HRF was developed. In contrast with existing methodologies,
where predicted HRF fed as a part of estimation model, the
HRF shape and features were supposed to be free parameters.
Furthermore, drift in fNIRS data could be main factor whose
slight estimation error could result in disappearance of initial
dip. It is also concluded that DPF can affect the shape of initial
dip. Additionally, the effects of activity strength parameters in
standard GLM is analyzed.
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