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ABSTRACT
Natural and anthropogenic changes (e.g., land use change, pollution) will alter many
environmental factors in the coming years, including the amount of solar radiation
reaching the earth’s surface. Alterations in solar radiation exposure is likely to impact
the ecologies of many living organisms, including invertebrates that inhabit aquatic
habitats. In this study, we assessed the effect of UV-B radiation on the metabolic rates
and fitness (survival, development time, body size) ofAedes albopictus andCulex pipiens
mosquitoes and the activity of their microbial food resources in experimental aquatic
microcosms. We exposed single-species cohorts of newly hatched Ae. albopictus and
Cx. pipiens larvae and a control treatment with no larvae to three UV-B conditions that
mimicked those in full-sun and shade in the field and to a control condition with no
UV-B radiation. Our results indicated that UV-B radiation affected the metabolic rates
of both Ae. albopictus and Cx. pipiens larvae, with significantly higher rates found in
full-sun compared to shade and no-UV conditions, 8 and 15 days after exposure began.
Ae. albopictus and Cx. pipiens survival was also affected by UV-B radiation condition,
with significantly lower survival in full-sun compared to shade and noUV-B conditions.
Microbial metabolic rates were consistently significantly lower in full-sun compared to
shade and no-UV conditions, especially at 8 days of exposure. These results show that
UV-B radiation at levels found in open spaces showed strong and important impacts
on the metabolic rates and survival of Ae. albopictus and Cx. pipiens larvae. Decreased
survival of Ae. albopictus and Cx. pipiens with higher UV-B radiation levels may be
caused by both direct exposure to radiation as well as the indirect effects of reduced
microbial food, resulting in greater metabolic demands and stress. Negative impacts
of UV-B radiation on the survival of Ae. albopictus and Cx. pipiens are likely to have
important implications for the distribution and abundance of these mosquitoes, and
the transmission of pathogens that these two broadly distributed mosquitoes vector.
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INTRODUCTION
Environmental changes (e.g., global warming, climate change) will trigger major changes
in environmental factors (e.g., temperature, precipitation) in coming years (Macnaghten
& Szerszynski, 2013; Bornman et al., 2015). These changes are likely to have profound
impacts on insect ecology and physiology, including survival, development time, and
underlying metabolic processes (Helbling & Zagarese, 2003; Shuman, 2011; Gray, 2013).
Much of the literature on global change biology has so far focused on temperature,
precipitation, and humidity due to their well-characterized effects on arthropods (Pedrosa
de Almeida et al., 2010; Jaworski & Hilszczanski, 2013; Schulte, 2015; Sinclair et al., 2016).
Other environmental changes, including increased exposure to ultraviolet radiation (UVR)
from climate change (e.g., cloud thickness) and anthropogenic activities (e.g., land use
change, pollution), may have subtler yet important effects that have so far been poorly
studied.

UVR is part of the electromagnetic spectrum emitted by the sun, with a wavelength range
between 100 and 400 nm (Andrady et al., 1998). UVR is subdivided into three subtypes
by the length of the waves: UV-A, 315–400 nm; UV-B, 280–315 nm; UV-C, 100–280
nm. Only UV-A and UV-B radiation reach the earth’s surface (IARC, 2012), and UV-B
radiation is considerablymore harmful to living organisms thanUV-A because of its shorter
wavelength and consequently higher energy levels (Andrady et al., 1998). Although there is
considerable variation in exposure to UV-B radiation throughout the landscape because of
varying shade conditions, relatively few studies have examined the effects of UV-B radiation
on insect behavior, physiology, and ecology (e.g., Johansen et al., 2011; Tuncbilek, Ercan &
Canpolat, 2012; Shimoda & Honda, 2013; Sliney, Gilbert II & Lyon, 2016).

Most mosquito species feed on vertebrates for blood protein, and some species are
medically important because they transmit pathogenic agents (e.g., parasites, viruses) that
can cause disease (Darsie & Ward, 2016). Aedes albopictus (Skuse) (Diptera: Culicidae) and
Culex pipiens (L.) (Diptera: Culicidae) are among the most common urban mosquitoes in
the northeastern United States (Leisnham & Slaney, 2009; Costanzo, Mormann & Juliano,
2005). Ae. albopictus is an important vector for the transmission of many arthropod
viruses, including yellow fever, dengue, and Chikungunya (Lambrechts, Scott & Gubler,
2010). Ae. albopictus is also capable of hosting the Zika virus, and it is therefore considered
a potential vector in the field (Wong et al., 2013). Cx. pipiens is an important vector for the
transmission of West Nile virus and Japanese encephalitis (Gerhardt et al., 2001; Kim et al.,
2005; Molaei et al., 2006). Ae. albopictus and Cx. pipiens are also capable of transmitting
dog heartworm (Dirofilaria immitis), which affects dogs, cats, foxes, coyotes, and other
animals (Cancrini et al., 2007).

Mosquitoes oviposit eggs in aquatic habitats where the larvae and pupae typically
develop within several weeks and then emerge into terrestrial adults (Clements, 1992).
Mosquito larvae primarily feed on microbial organisms that colonize plant and animal
detritus (Walker et al., 1991;Merritt, Dadd & Walker, 1992). Larval physiology and ecology
affect the distribution and abundance of adults by moderating survival and adult fitness
parameters, including such as body size, which can affect adult survival, biting rate, and
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ultimately the ability to vector and transmit pathogens (Terblanche & Chown, 2007). There
is little information on the effect of UV-B radiation on the metabolic rates and survival of
mosquitoes or on the microbial food resources on which they feed. To our knowledge only
one study has rigorously assessed the effects of UVR on mosquitoes (MacGregor, 1932),
which demonstrated clear negative effects of increasing UVR on larvae and pupae of Ae.
aegypti (L.) and Cx. pipiens. However, a significant limitation of the study is that the UVR
levels used in the study were not comparable to field conditions.

Other studies have demonstrated effects of UV-B radiation on microbial communities
(e.g., Pancotto et al., 2003), but none have examined how these effectsmay impactmosquito
populations. Future changes in UV-B radiation exposure from climate change and other
anthropogenic activities (e.g., land use change, pollution) may have as important effects
on microbial productivity as the underlying detritus on which the microbial organisms
colonize (Ballare et al., 2011). The goal of this study is to test the effect of field-relevant
UV-B radiation on the metabolic rates and fitness (survival, development time, and body
size) of Ae. albopictus and Cx. pipiens, and on the production of the microbial communities
on which they feed.

MATERIALS AND METHODS
Collection and maintenance of mosquitoes
Ae. albopictus and Cx. pipiens larvae were collected from multiple locations in College
Park, Baltimore, and Towson, Maryland (USA). Neither Ae. albopictus or Cx. pipiens are
endangered and collection sites were either on publicly accessible lands or on private lands
where consent for collections was granted at the time of collection; thus, no field permits
were required to collect them. Field collected Ae. albopictus and Cx. pipiens larvae were
reared to adulthood at 25 ◦C at 16:8 (L:D) h photoperiod and then released into 1-m2

single-species cages. Adults were kept in an insectary at 25 ◦C, >85% RH, and 16:8 (L:D) h
photoperiod. Both colonies were supplied 20% sugar solution. Females from both colonies
were fed horse or rooster blood once a week via an artificial feeder (Hemotek, Accrington,
UK) to ensure egg production and experimental larvae. Ae. albopictus females oviposited
on seed paper in 500 ml black cups covered filled with 200 ml of deionized (DI) water. Eggs
were collected over multiple weeks and stored at >80% RH and 16:8 h (L:D) photoperiod
until hatching for the experiment. Cx. pipiens oviposited egg rafts into a 500 ml black bowl
filled with 400 ml of DI water. Cx. pipiens eggs cannot be held without hatching; thus, egg
rafts were collected within 24 h of oviposition, hatched in a lactalbumin:yeast solution,
and larvae were transferred into the experiment after being rinsed. Ae. albopictus eggs that
had been stored were also hatched in a lactalbumin:yeast solution and transferred into the
experiment after being rinsed and within 24 h of hatching. Experimental larvae of both
species were F1–3 generation.

Experiment set up
The experimental design was a split plot-randomized complete block design (RCBD) with
UV-B radiation condition (full-sun, 7.66 kJ m−2 d−1; shade, 4.26 kJ m−2 d−1; no-UVR
control group, 0 kJ m−2 d−1) as the main plot and species treatment (Ae. albopictus, Cx.
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pipiens, no larvae) as the sub-plots. Within each sub-plot there were five sub-samples
consisting of 20 ml vials with 17 ml DI water and single-species mosquito cohorts of 10
newly-hatched Ae. albopictus or Cx. pipiens larvae, or no larvae. Each vial was inoculated
with 1 ml of homogenized water from discarded field tires to allow microbial communities
to establish. We ran three temporal replicates as random blocks. In each block, there were
15 vials of each species treatment to give 45 total vials per block, and 5 vials of each species
treatment (15 total) were randomly allotted to one of three environmental chambers
(Model I-36 VL; Percival Scientific Inc., Perry, IA, USA). Each chamber was assigned one
of the three UV-B radiation conditions that mimicked levels of UV-B radiation typically
measured in full-sun and shade conditions in the field, as well as a control condition with
no UV-B radiation (Rinnan et al., 2005).

To achieveUV-B radiation levels for the full-sun and shade conditions, cellulose diacetate
filters were applied to four UV-B-313 lamps (Q Panel Lab Products, Cleveland, OH, USA)
in each chamber and vials were placed 5 cm and 20 cm from the lamps, respectively. For the
no UV-B radiation treatment group, four regular 32-watt bulbs (Model 205047, Phillips,
Eindhoven, Netherlands) were used to simulate a visible range of sunlight (400–700 nm).
To assure accurate and uniform exposure to UV-B radiation, vials were rotated daily. A
different UV-B radiation condition was applied to each chamber for each temporal block
to minimize any confounding effects between chamber and UV-B radiation treatment.
Each chamber was kept at 25 ◦C, 16:8 (L: D), and 80–90% RH to mimic typical summer
conditions in the northeastern USA (Day et al., 1993; Li et al., 2006). Vials were checked
daily and pupae collected into individual vessels until adult emergence. Adults were killed
by drying (>24 h, 50 ◦C), and their wing lengths measured using a dissecting microscope
and the image analysis system Image Pro Plus 6.0 (Media Cybernetics, Rockville, MD,
USA). The experiment continued until all individuals had either died or emerged in all
vials. Dead larvae were left in vials to mimic field conditions. For each vial, proportion
survivorship to adulthood, mean development time, andmean wing length were calculated.

Measurement of metabolic rates
Metabolic rates of both mosquito larvae and microbial communities were measured as the
rate of heat production (µwatts/ml) by a heat conduction multicell differential scanning
calorimeter (MC-DSC model 4100, Calorimetry Sciences Corp., Lindon, UT, USA) in
isothermal mode and at 25 ◦C ± 0.05, using sterile techniques and following procedures
of past studies (Lighton, 2008; Zhang et al., 2009; Braissant et al., 2010). Measurements
were made on days 1, 8, and 15, after adding larvae. On each measurement day, five live
larvae were randomly sampled from each of the 30 vials containing mosquitoes, washed
in sterilized water, and placed inside one of the two 1 cm3 testing ampoules with 1 ml
of deionized water. Heat production was monitored for 60 min to allow for temporal
equilibration and consistency of a final reading (Zhang et al., 2009; Braissant et al., 2010).
To control for variation among individual ampoules, a baseline blank sample (deionized
water only) was run immediately prior to every experimental sample. Its heat production
was subtracted from that of the experimental sample from the same ampoule to yield a
final metabolic rate value in µwatts/ml (Zhang et al., 2009). After each run, larvae were
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returned to their experimental vial. Ampoules were washed in sterilized water and ethanol
between each run to avoid contamination (Gustafsson, 1991; Zhang et al., 2009; Braissant
et al., 2010). Microbial metabolic rate was also measured from all 45 experimental vials
by sampling 1 ml of vial water only and comparing it to a blank sample using the same
procedure as described with larvae.

Analyses
Metabolic rates of Ae. albopictus, Cx. pipiens, and microbial communities were analyzed
as repeated measures three-way blocked analysis of variance (ANOVA). UV-B radiation
condition, species treatment, and sampling day were treated as fixed effects, and chamber
as a random block effect. Sampling day was a repeated factor within UV-B radiation
condition, species treatment, and block. Mosquito fitness parameters were analyzed as
two-way ANOVA, with UV-B radiation condition and species as fixed effects and chamber
as a random block effect. To account for assumptions of normality and homogeneity
of variances, metabolic rates and fitness parameters were log 10(y) and log 10(y+ 1)
transformed, respectively. All analyses were done using the PROC MIXED procedure,
SAS 9.4 software (SAS Institute Inc., 2013). Multiple pairwise comparisons were conducted
using the LSMEANS statement with Tukey adjustment. For all analyses, experiment-wise
α= 0.05.

RESULTS
Metabolic rates
There was an effect on mosquito metabolic rates related to interactions between UV-B
radiation condition and sample day (Table 1, Fig. 1A). The metabolic rates of both species
increased over time to a peak on day 15 under full-sun and shade conditions but not
under the no-UV condition (Fig. 1A). There was also an interaction between species and
sample day, indicating differences in the metabolic rates of Ae. albopictus and Cx. pipiens
depending on time (Table 1, Fig. 1B). On day 15, metabolic rates of Cx. pipiens were higher
than for Ae. albopictus whereas this was not seen on days 1 and 8 (Fig. 1B). Main effects of
UV-B radiation condition, species, and sample day were also detected (Table 1). Metabolic
rates of both Ae. albopictus and Cx. pipiens were significantly higher under the full-sun
condition compared to the no-UV condition and on days 8 and 15 compared to day 1 (Fig.
1C). Across all days and UV-B conditions, metabolic rates of Cx. pipiens were on average
higher than Ae. albopictus (Figs. 1B and 1C).

For microbial metabolic rates, there was an interaction between UV-B radiation
condition and sample day (Table 2), with decreasing metabolic rates from day 1 to 8
under the full-sun condition only (Fig. 2A). This decrease appeared to drive the significant
main effects of sample day and UV-B radiation condition (Table 2). Microbial metabolic
rates were lower on day 8 compared to days 1 and 15 (Fig. 2A), and lower under the full-sun
conditions compared to shade and no-UV conditions (Fig. 2B). Microbial metabolic rates
did not vary between vials with Ae. albopictus, Cx. pipiens, or no larvae.
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Table 1 Analysis of variance of the effects of UV-B radiation conditions and species onmosquito
larvae metabolic rates. Three-way ANOVA of the effects of UV-B conditions (full-sun, shade, and
no-UV) and species (Ae. albopictus and Cx. pipiens) at three different times (days 1,8, and 15) on the
larvae metabolic rate of Ae. albopictus and Cx. pipiensmosquitoes.

Variable Larval metabolic rate

dfs F P

UV-B conditions 2,10 5.50 0.0245
Species 2,10 6.08 0.0333
UV-B conditions× species 2,10 0.58 0.5799
Sample day 2,24 350.85 <0.0001
UV-B conditions× sample day 2,24 13.96 <0.0001
Species× sample day 2,24 14.79 <0.0001
UV-B conditions× species× sample day 2,24 0.87 0.4975

Mosquito fitness
UV-B radiation conditions affected the survival of Ae. albopictus and Cx. pipiens larvae
similarly (Table 3), with significantly lower survival of both species under the full-sun
condition compared to shade and no-UV conditions (Figs. 3A and 3B). There was also a
main effect of species on female body size, with Cx. pipiens being on average larger than
Ae. albopictus (Figs. 3E and 3F). There were no effects of UV-B radiation conditions or
species on the development times of either Ae. albopictus of Cx. pipiens, or an interaction
effect between UV-B radiation conditions and species on any fitness parameter (Table 3,
Fig. 3).

DISCUSSION
Ultraviolet radiation (UVR), especially UV-B radiation, could have important effects on
the distribution and abundance of pathogen-transmitting species. This is the first study
that has rigorously tested the effects of UV-B radiation on the metabolic rates and fitness
of medically important mosquitoes and the activity of their microbial food resources. Our
results showed that UV-B radiation increased the metabolic rates of both Ae. albopictus
and Cx. pipiens larvae, with significantly higher rates in full-sun conditions compared to
shade conditions and a no-UV control after 8 and 15 days of exposure. In field conditions,
metabolic rate increased in mosquito larvae between emergence and day 4–5 (Gray &
Bradley, 2003). Microbial metabolic rates were also lower in full-sun conditions after 8
days of exposure compared to shade and no-UV conditions. These results suggest that
UV-B radiation at levels typically found in open spaces in the field is likely have strong
and important impacts on the ecologies of Ae. albopictus and Cx. pipiens mosquitoes and
potential disease transmission.

Higher metabolic rates for mosquito larvae under full-sun conditions, especially
with increasing time of exposure, are likely to indicate increased energy expenditure to
accomplish basic biologic processes, including feeding, development, and immunological
functioning. Given that we saw commensurable decreases in larval survival and microbial
activity, it is likely that larvae need to expendmore energy to utilize declining food resources
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Figure 1 Metabolic rate of mosquitoes in response to UV-B radiation conditions and sample day. Least
squares means (±SE) for metabolic rate expressed as heat production (µW/ml) of larvae of Ae. albopictus
and Cx. pipiens in response to (A) interaction of sample day (days 1, 8, and 15) and UV-B conditions: no-
UV (NUV), shade (S), and full-sun (FS), (B) day of metabolic rate measurement (days 1, 8, and 15), and
(C) UV-B conditions (NUV, S, FS). Data were statistically tested using ANOVA. Significant pairwise com-
parisons among treatment levels for main effects of (A) sample day, (B) sample day, and (C) UV-B con-
ditions are indicated by capitalized letters, and interaction effects of (A) sample day and UV-B conditions
and (B) sample day and species are indicated by lowercase letters.

Full-size DOI: 10.7717/peerj.6133/fig-1
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Table 2 Analysis of variance of the effects of UV-B conditions, species inhabiting vials, and time on
the metabolic rates of microbial communities. Three-way ANOVA of the effects of UV-B conditions
(full-sun, shade, and no-UV) and the species that inhabit the vials where microbial samples come from
(Ae. albopictus, Cx. pipiens, and no larvae) at three diferent times (days 1, 8, and 15) in the metabolic rate
of microbial community.

Variable Microbial metabolic rate

dfs F P

UV-B conditions 2,16 10.74 0.0011
Species 2,16 1.13 0.3483
UV-B conditions× species 4,16 0.79 0.5502
Sample day 2,36 5.69 0.0071
UV-B conditions× sample day 4,36 3.65 0.0135
Species× sample day 4,36 0.47 0.7562
UV-B conditions× species× sample day 8,36 0.54 0.8203

under full-sun conditions. Our findings are broadly consistent with those of other studies
that have found simple and complex impacts of UV-B radiation on aquatic ecosystems (see
Hader et al., 2007 and references therein). For example, UV-B radiation can penetrate up to
3 m in clear freshwater habitats that have dissolved organic carbon (DOC) concentrations
between 2 and 5 mg L−1, resulting in severe reductions in biomass of major producers
(e.g., phytoplankton) and consumers (e.g., zooplankton, fish) within the food web (e.g.,
Williamson & Zagarese, 2003).Davidson & Belbin (2002) found that marine phytoplankton
concentration and biomass decreased in 40% and 60% respectively in habitats less than
2 m deep when exposed to UV-B radiation for more than a day.

In this study, survival was the only mosquito fitness parameter negatively affected by
UV-B radiation condition. Environmental stresses on insects are often manifested and
detected through the release of hormones, such as cortisol, epinephrine, and octopamine
(Peric-Mataruga, Nenadovic & Ivanovic, 2006; Farooqui, 2012). Releases of stress hormones
as a result of UV-B radiation have also been associated with reductions in survival in
at least one other insect (e.g., red flour beetle, Tribolium castaneum, Sang et al., 2016).
Hormones also have key effects upon insect developmental time and body size (McBrayer
et al., 2007). For example, the Prothoracicotropic hormone plays an important role in the
release of ecdysone, a steroid hormone that affects the larval development time and body
size in many insects, including mosquitoes (Zhang & Denlinger, 2011). UV-B radiation has
been also been shown to delay the metamorphosis of Tribolium castaneum by influencing
Prothoracicotropic hormone and ecdysteroid metabolism (Sang et al., 2016). Although
we did not observe effects of UV-B radiation on the development time or body size of
Ae. albopictus or Cx. pipiens in this study, it is possible that disruptions to the ecdysteroid
metabolism in these and other mosquito species are mainly manifested in reduced survival.

Ecological theory and empirical evidence suggest that trade-offs occur among life-history
traits when limited energy is partitioned among growth, maintenance, and reproduction
(Bell, 1980). Environmental factors at the larval stage have been shown to affect a range of
traits in adult mosquitoes, mostly via changes in body size, including susceptibility to viral
infection (Alto et al., 2005), reproduction (Steinwascher, 1982), and longevity (Haramis,
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Figure 2 Metabolic rate of microbial communities in response to container inhabitants, UV-B radi-
ation conditions, and sample day. Least squares means (±SE) for metabolic rate expressed as heat pro-
duction (µW/ml) of microbial community from vials that contain Ae. albopictus larvae, Cx. pipiens lar-
vae, and no larvae (just microbial community) in response to (A) interaction of sample day (days 1, 8, and
15) and UV-B conditions (NUV, S, and FS) and (B) main effects of UV-B conditions. Data were statisti-
cally tested using ANOVA. Significant pairwise comparisons among treatment levels for main effects of
(A) sample day and (B) UV-B conditions are indicated by capitalized letters, and interaction effects are in-
dicated by lowercase letters.

Full-size DOI: 10.7717/peerj.6133/fig-2
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Table 3 Analysis of variance of the effects of UV-B conditions and specie on the fitness parameters of mosquitoes. Two-way ANOVA of the ef-
fects of UV-B conditions (full-sun, shade, and no-UV) and specie (Ae. albopictus and Cx. pipiens) on the fitness parameters (survival, developmental
time, and body size) of Ae. albopictus and Cx. pipiensmosquitoes.

Variable Survival Development time Body size-wing length

dfs F P dfs F P dfs F P

UV-B conditions 2,11 7.11 0.0104 2,11 0.80 0.4773 2,11 1.05 0.3857
Species 1,11 0.01 0.9963 1,11 1.50 0.2491 1,11 16.36 0.0023
UV-B conditions× species 2,11 0.59 0.5717 2,11 0.30 0.7456 2,11 0.05 0.9518

1985; Reiskind & Lounibos, 2009), all of which can mediate changes in vectorial capacity
(Araujo, Gil & e-Silva, 2012; Moller-Jacobs, Murdock & Thomas, 2014; Dickson et al., 2017).
In addition to affecting larval survival, it is also possible that the effects of UV-B radiation
at the larval life-stage might also manifest in adult traits (Dickson et al., 2017).

In addition to affecting mosquito populations through changes in microbial
communities, we cannot disregard direct negative effects of elevated UV-B radiation
on larvae. The only prior study to rigorously study the effects of UVR on mosquito larvae
observed severe negative impacts on larval mobility (e.g., loss of movement coordination)
and eclosion rates after exposure to UVR for 48 h (MacGregor, 1932). Histological analyses
showed damage in the larvae cuticle, disintegration of the abdominal segments, and partial
paralysis (MacGregor, 1932). However, MacGregor (1932) examined the effects of UV-C
radiation (180–254 nm), which does not naturally reach the earth’s surface and is only
commonly found from artificial sources unlikely to affect mosquitoes (e.g., mercury lamps,
welding torches). To our knowledge, our study is the first to test field-relevant UVR on the
ecology of mosquitoes and the activity of their microbial food resources.

The specific effects of UV-B radiation on the cells of living organisms is still unclear (Pelz-
Stelinski, Kaufman &Walker, 2011). Prior studies have demonstrated that UV-B radiation
damages the DNA, proteins, membranes, and photochemical efficiency of photosynthetic
prokaryote organisms, affecting their photosynthesis and biomass production (e.g., Hader
et al., 2007; Gao et al., 2008; Wu, Gao & Wu, 2009). For example, the spiral structure
of cyanobacteria, Arthrospira platensis, can be broken and its photosynthetic activity
disrupted with exposure to UV-B radiation within the temperature range of 18–20 ◦C,
resulting in lower biomass (Gao et al., 2008). Wu et al. (2005) reported that exposure to
6 h of UV-B radiation broke the spiral filaments of A. platensis into small pieces, affecting
its photosynthesis activity, as well as important photosynthetic electron transport and
pigment-protein complexes.

Deforestation and the conversion of natural environments (e.g., grassland, agriculture)
to build has increased over the last 100 years (Weng, 2010; Seto et al., 2011; Al-mulali et
al., 2013). These land use changes are most likely to increase open spaces with full-sun
conditions, although large building structures may increase shade in some areas (Wai,
Yu & Lam, 2015). Seto, Guneralp & Hutyra (2012) predicts that by 2030 urban land cover
will increase by 1.2 million km2 if current population trends continue. Urbanization
also contributes to increasing pollutants from industrialization, vehicles, and electrical
power generation (An et al., 2008; Al-mulali et al., 2013), many of which (e.g., CO2, smog,
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Figure 3 Mosquito fitness parameters in response to UV-B radiation conditions. Least squares means
(±SE) for fitness parameters of Ae. albopictus and Cx. pipiensmosquitoes. (A) survival percentage of Ae.
albopictus, (B) survival percentage of Cx. pipiens, (C) development time of Ae. albopictus, (D) development
time of Cx. pipiens, (E) body size of Ae. albopictus, and (F) body size of Cx. pipiens in response to UV-B
conditions: full-sun (FS), shade (S), and no-UV (NUV). Data were statistically tested using ANOVA. Sig-
nificant pairwise comparison among treatment levels for main effects are indicated by different letters
above bars.

Full-size DOI: 10.7717/peerj.6133/fig-3

particulate matter) may absorb and reflect UVR away from the earth’s surface (Czerwinska
et al., 2016). The combination of more open spaces and higher pollution could have
complex impacts on the amount of UVR reaching ground surfaces in both space and time
(Mandronich & Flocke, 1997).

Ae. albopictus and Cx. pipiens, two of the most broadly distributed mosquito species
worldwide, are medically important because they are vectors for a number of arboviruses
and they inhabit peridomestic areas (Costanzo, Mormann & Juliano, 2005; Leisnham &
Slaney, 2009). West Nile virus (WNV) is the most important mosquito-borne human
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disease in the United States, with over 48,183 reported cases since being first detected
in North America in 1999 (CDC, 2017). In the northeastern part of the United States,
WNV is primarily circulated by Cx. pipiens among bird populations that amplify the virus
(Kilpatrick, LaDeau & Marra, 2007). Ae. albopictus is capable of acting as a vector of WNV
in the laboratory, but only rarely bites birds in the field and instead feeds on a range of
hosts, including humans (Sardelis et al., 2002).

Anthropogenic environmental changes and the resultant increases in the exposure to
UV-B radiation to container habitats could alter the distributions and abundances of these
species. But their effects are difficult to predict and tease apart from associated changes
to physio-chemical and biological conditions, including temperature, hydroperiod, and
nutrients. Nevertheless, numerous studies have shown that Cx. pipiens is more likely
to utilize containers that are more exposed to sunlight than Ae. albopictus and other
mosquito species (Vezzani & Albicocco, 2009; Dowling et al., 2013); thus, we might expect
Cx. pipiens to be especially prone to changes in UV-B exposure. On the other hand, Ae.
Albopictus, which shows a strong preference to oviposit in shaded areas and at ground
level (Amerasinghe & Alagoda, 1984; Williges, Faraji & Gaugler, 2014), could experience
changes in its behavior, abundance, and distribution as responses to changes in UV-B
exposure, changes that are likely to have important implications for the transmission of
vector-borne diseases. It has been found that Ae. albopictus can occasionally lay eggs at
greater heights depending on environmental factors like temperature (Toma et al., 2003)
and habitat availability (Obenauer et al., 2009). For example, Ae. albopictus abundance
could increase in dense urban areas (high density housing with high buildings) compared
to peri urban/suburban areas (low density housing with low buildings), because of more
abundant shaded environments to lay eggs, which could increase the risk of viral diseases
spread by these mosquitoes. Li et al. (2014) found higher populations of Ae. albopictus
in dense urban areas compared to peri urban areas in Guangzhou, China. Ae. albopictus
also showed faster larval development, higher adult emergence rate, and longer survival
time compared to peri urban and rural areas (Li et al., 2014), which could increase vector
capacity. Ae. albopictus had showed high plasticity to adapt to new environments (Vitek
& Livdahl, 2009; Tabbabi, 2018). Liew & Curtis (2004) showed that Ae. albopictus could
vertically move as high as 60 m to oviposit in apartment buildings when there is not
suitable habitat at ground level.

Better understanding of impacts of UV-B in the ecology of Ae. albopictus and Cx. pipiens
is necessary to optimally assess human risk. By manipulating only UV-B radiation in a
controlled laboratory experiment, our study was able to pinpoint the effects of UV-B
radiation and demonstrated important impacts of altered exposure that we might expect
from changes to shade.

CONCLUSIONS
In summary, this study shows that UV-B radiation can have strong negative effects on
the larval survival of both Ae. albopictus and Cx. pipiens. These effects were likely indirect,
through decreases in the availability of microbial food, but could have also been direct,
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through adverse impacts on the cells of larvae. This is among the first studies to rigorously
test the effects of UV-B radiation on the survival and fitness of mosquito larvae using
levels typically observed in open and shaded habitats in the field. The impacts of UV-B
radiation on larval survival are likely to affect the distribution and abundances of Ae.
albopictus and Cx. pipiens but in ways that may be difficult to detect in the field since
most landscapes are a patchwork of open and shaded areas that adult individuals can
move between. Future research should examine the effects of UV-B radiation on the
ecology, physiology, and behavior of other mosquito species and life-stages (eggs, adults),
as well as on other community processes, such as predation, parasitism, and on vector
competence across other disease systems such as chikungunya and Zika virus to gather a
greater understanding of the potentially important impacts of UV-B radiation on vector
ecology.
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