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The clinical diagnosis of amyotrophic lateral sclerosis (ALS) relies on determination of

progressive dysfunction of both cortical as well as spinal and bulbar motor neurons.

However, the variable mix of upper and lower motor neuron signs result in the clinical

heterogeneity of patients with ALS, resulting frequently in delay of diagnosis as well

as difficulty in monitoring disease progression and treatment outcomes particularly

in a clinical trial setting. As such, the present review provides an overview of

recently developed novel non-invasive electrophysiological techniques that may serve

as biomarkers to assess UMN and LMN dysfunction in ALS patients.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, neurophysiological biomarkers, transcranial
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that was first
described in the 1869 by Jean-Martin Charcot (1–3) although earlier detailed clinicopathological
descriptions of a case of ALS, was published by Radcliffe and Clarke (4). Charcot postulated the
importance of the upper motor neuron in its pathogenesis (3) and its associated degeneration
of motor cortical Betz cells that has become a well-recognized pathological feature (5, 6). The
diagnosis of classical amyotrophic lateral sclerosis (ALS) relies on the clinical identification of
progressive dysfunction in both the cortical (“upper”, UMN) and spinal (“lower”, LMN) motor
neurons involving multiple body regions, much of which is encompassed within the El Escorial
criteria (7, 8). The clinical heterogeneity of ALS is a result of the variable mix of UMN and
LMN signs (9), hence contributing to delay in diagnosis and difficulty in monitoring disease
progression as well as treatment outcomes particularly in a clinical trial setting (6). As such, there
is a critical need to devise objective biomarkers of disease progression in ALS that may facilitate
both improvement in diagnosis as well as to provide meaningful outcome measures to monitor
treatment (10).

The present review will provide an overview of recently developed neurophysiological
biomarkers, with emphases on novel non-invasive electrophysiological techniques used to assess
UMN and LMN dysfunction in ALS patients.

Biomarkers of UMN Dysfunction
An important component in the diagnosis of ALS relies on clinical features of UMN involvement
in the presence of progressive LMN weakness (11), but often these signs of UMN impairment may
be underappreciated in a limb that is concurrently affected by LMN loss especially in early stages of
ALS (6, 12, 13). Upper motor neuron signs may initially be absent in approximately 7–10% of ALS
patients (6, 14). As such, objective UMN biomarkers may be critical for the diagnosis of ALS, as
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potential mimicking disorders such as multifocal motor
neuropathy, Kennedy’s disease and adult-onset spinal muscular
atrophy (SMA), may present as pure LMN syndromes (6, 15, 16).
Autopsy reports have also demonstrated UMN degeneration
in 50–75% of patients with clinically pure LMN syndromes
(5, 17, 18).

Transcranial Magnetic Stimulation
Since its original description more than 3 decades ago
(19), Transcranial magnetic stimulation (TMS) has undergone
significant evolution as a non-invasive technique for cortical
stimulation, providing valuable insight into the functional
integrity of brain pathways. Its main application has been in
the investigation of complex neuronal networks of the primary
motor cortex (M1), which is influenced by both inhibitory and
excitatory mechanisms (20). Transcranial magnetic stimulation
(TMS) biomarkers of cortical hyperexcitability appear to be
useful biomakers of UMN dysfunction in ALS (21). In
addition, TMS have provided insights into the underlying
pathophysiological mechanisms in ALS, thereby allowing for the
development of diagnostic and prognostic biomarkers in ALS
(21).

The TMS technique utilizes a transient magnetic field to
induce an electric current in the cortex (22). This magnetic field
is generated through a stimulating coil held over a subject’s head,
which painlessly and non-invasively penetrates the skull without
attenuation (Figure 1). Depending on stimulation intensity and
coil type, the electromagnetic force can stimulate neurons at a
depth of 1.5–3.0 cm beneath the scalp (23). There have been
several theoretical models postulated to explain the exact effect
of this electromagnetic field on biological tissue, with studies
in both animals and humans conferring that TMS generates a
corticomotoneuronal volley composed of direct (D) and indirect
(I) waves occurs at intervals of 1.5–2.5ms (24). Direct waves
are thought to represent the activation of corticospinal axons
and are only recruited at high intensities or with the TMS
coil positioned such that induces currents in a lateral-medial
direction. Indirect waves seem to be activated at lower intensities
and are mediated by a more complex interaction between cortical
excitatory and inhibitory neurons (25). TMS delivered over the
primary motor cortex (M1) is thought to activate pyramidal
neurons (Betz cells) trans-synaptically via I-waves (26), but
the exact neural circuitries evoked remain to be determined.
These complex neural circuits are critically dependent on
both excitatory and inhibitory interneuronal systems, facilitated
by cellular receptor and neurotransmitter interactions (27).
Excitation is primarily mediated by glutamate/NMDA receptor
interaction, while inhibition is facilitated by γ-aminobutyric acid
(GABA)/GABAA/B receptor action (28).

Cortical hyperexcitability in ALS is heralded by reduced short-
interval intracortical inhibition and CSP duration, in addition to
increased intracortical facilitation and motor evoked potential
amplitude (12, 29, 30). Furthermore, significant bilateral TMS
abnormalities was observed in ALS patients at an early disease
stage (31), consistent with previous studies that have reported
functional abnormalities of the motor cortex as an early and
specific feature of ALS, and preceding the onset of LMN

dysfunction (6, 12, 29, 30, 32–34). More recent studies have
demonstrated changes in TMS parameters indicative of cortical
hyperexcitability, were more prominent over the dominant
motor cortex and in particular, contralateral to the site of disease
onset, suggesting a vulnerability of the dominant motor cortical
neurons and supporting the importance of cortical processes in
the pathophysiology of ALS as postulated first by Menon et al.
(31).

Single-Pulse TMS
The resting motor threshold (RMT) is a reflection of the
ease with which corticomotoneurons are excited, hence the
corticomotoneuronal membrane excitability, as well as the
density of UMN projections onto motor neurons (35). Through
the α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
(AMPA) receptors, RMT is influenced by the glutamatergic
neurotransmitter system, such that excessive glutamate activity
reduces RMT, and is susceptible to modulation by sodium
channel blockers (28, 36). In ALS, the RMT is reduced early
in the disease (indicative of cortical hyperexcitability) followed
by progressive increase and eventual inexcitability with disease
progression (32, 37–39). As motor threshold is modulated by
glutamate activity (28), the reduced motor threshold supports
the notion that cortical hyperexcitability being an early feature
of ALS contributing to the ensuing lower motor neuron
degeneration (21). The motor cortex is found to be inexcitable
in approximately 20% of ALS patients and appears to be a late
finding. In contrast, motor cortex inexcitability is a relatively
frequent fidning in patients exhibiting the pure UMN phenotype
termed primary lateral sclerosis [PLS] (40).

The central motor conduction time (CMCT) time is
defined by the time interval between stimulation of the
motor cortex and arrival of the corticospinal volleys at the
spinal motor neurons, and is inferred from the motor evoked
potential (MEP) onset latency (21). Prolongation of CMCT
is an invariable finding in ALS being documented in 16–
100% across different series (5, 21, 37, 41–44). In patients
without clinically predominant UMN phenotypes, prolongation
of CMCTs occurs in 50–71% of patients (41, 44). Although
the mechanisms underlying CMCT prolongation are presently
not fully elucidated, an increase in desynchronization of
corticomotoneuronal volleys resulting from degeneration of
the fastest conducting corticomotoneuronal fibers has been
suggested (45, 46). Large discrepancies in sensitivity of this
parameter reported by previous studies are likely attributable
to technique-dependent variations associated with CMCT
calculations.

The cortical silent period (CSP) refers to the interruption
of voluntary electromyography activity in a target muscle after
motor cortex stimulation (47), and the mechanisms that underly
the CSP are complex but thought to be mediated primarily
by the activation of inhibitory neurons acting via GABA-B
receptors within the cortex (21, 48). The CSP duration has
been consistently reduced in patients across all ALS phenotypes
(21, 30, 32, 34, 43, 49–51). The decrease in CSP duration in
ALS patients likely represent a combination of degeneration of
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FIGURE 1 | Paired-pulse threshold tracking transcranial magnetic stimulation (TMS). (A) TMS coil placed over the vertex activates the primary motor cortex and the

response (motor evoked potential, MEP) is recorded from the contralateral abductor pollicis brevis muscle. (B) TMS parameters are mediated by a complex interplay

between intraneural circuits and cortical output cells, with cortical interneurons mediating inhibition by activation of GABAergic synapses leading to influx of chloride

anions (Cl−) and hyperpolarization of post-synaptic neurons. (C) Change in stimulus intensity required to achieve a target MEP of 0.2mV (±20%) is used to quantify

SICI (which is recorded with interstimulus intervals between 1–7ms) and ICF (between 10–30ms).

inhibitory interneurons as well as GABAB-mediated receptor
inhibition dysfunction (21).

Paired-Pulse TMS
In the paired-pulse paradigm, a conditioning stimulus (CS)
precedes and is utilized to modulate the effect of a second test
stimulus (TS). By varying the time interval between the paired
pulses (the interstimulus interval, ISI) a number of parameters
can be determined, using either a constant stimulus method
[in which the CS and TS are kept at a constant level and
MEP amplitude is evaluated (52)] or the threshold-tracking (TT)
TMS protocol (53). TT-TMS was developed to overcome the
markedMEP amplitude variability seen when utilizing the earlier
protocol and uses a fixed MEP response which is tracked by
a varying TS (53, 54). By applying a subthreshold (set at 70%
RMT) conditioning stimulus at predetermined time intervals
prior to a suprathreshold test stimulus, the threshold-tracking
TMS technique allows the short-interval intracortical inhibition
(SICI) and intracortical facilitation (ICF) to be investigated (53,
55) (Figure 1).

Reduction or absence of SICI, which is a biomarker of
cortical interneuronal inhibitory GABAergic function, has been
established as an early feature of ALS (Figures 2A,B), correlating
with biomarkers of peripheral neurodegeneration and at times

preceding the onset of LMN dysfunction in sporadic ALS cohorts
[(31, 53), etc]. Although there were no significant differences in
the degree of reduction observed between the sides of the motor
cortices, there was a trend for more changes observed over the
dominant motor cortex, particularly contralateral to the side of
disease onset (31). The changes were also similar regardless of
the severity of LMN dysfunction, or site of onset (bulbar or limb)
(12, 21, 32, 56).

The reduction in SICI has been a widely reported feature
present in both familial and sporadic forms of ALS with the
alterations observed as an early feature (21, 30, 34, 57–62).
Further to this, longitudinal assessments of asymptomatic SOD-
1 mutation carriers have identified cortical hyperexcitability
developing prior to the clinical onset of ALS, therefore
suggesting that cortical hyperexcitability underlies the process of
neurodegeneration in familial ALS (34).

The use of threshold-tracking TMS may be able to uncover
UMN involvement in ALS phenotypes without clinically
evident UMN signs such as the flail limb variant of ALS
or progressive muscular atrophy (PMA). Moreover, this
technique was able to reliably distinguish between ALS and
other neurological mimic conditions including multifocal
motor neuropathy, spinal muscular atrophy, Kennedy’s disease,
peripheral nerve hyperexcitability disorders, Hirayama disease,
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FIGURE 2 | Cortical excitability in motor neuron disease (MND). Paired-pulse subthreshold conditioning transcranial magnetic stimulation demonstrating (A) reduction

in short-interval intracortical inhibition (SICI, above dotted line) and intracortical facilitation (ICF, below dotted line) and (B) significant reductions in averaged SICI

(between interstimulus intervals of 1–7ms) in MND patients compared with controls (C) Averaged short-interval intracortical inhibition (SICI), between interstimulus

interval (ISI) 1–7ms, was significantly reduced in amyotrophic lateral sclerosis (ALS). (D) The reduction of averaged SICI was comparable in Awaji subgroups. Peak

SICI at ISI (E) 1ms, and (F) 3ms was significantly reduced in Awaji subgroups. ****P < 0.0001. Reproduced with permission license no. 4457360494951 (1) and

license no. 4457440155614 (12).

CIDP, lead neuropathy, hereditary spastic paraparesis, as
well as hereditary motor neuropathy with pyramidal features
(63–68).

SICI abnormalities using the threshold-tracking technique,
appear to be the most robust diagnostic parameter that is

indicative of UMN dysfunction in ALS patients (12, 29, 69).
Using either an abnormal SICI or an inexcitable cortex, this
TMS method demonstrated a sensitivity of approximately 73%
and a specificity of 81% (69). Moreover, an absent SICI was
associated with a 97% sensitivity (33). TMS abnormalities
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were observed in 77% of patients with ALS, with frequency
of abnormalities that were similar across all Awaji diagnostic
groups, using the established cut-off SICI of<5.5% (63) resulting
in 88% of Awaji-criteria possible patients being reclassified as
Awaji-criteria probable or definite (12). More specifically, an
abnormally reduced SICI was demonstrated in 56% of Awaji-
criteria possible patients (12) (Figures 2C–F).

More recent studies have also documented increasing
cortical hyperexcitability with advancing disease indicating
that intracortical inhibitory neurons become progressively
dysfunctional in ALS (Figure 3A) (70). Reduced SICI was also
reported to be an independent prognostic biomarker in ALS
patients within the first 2 years of disease onset (71) (Figure 3B).
Separately, SICI was shown to partially normalize with treatment
by riluzole (72), an anti-glutamatergic agent exhibiting modest
clinical effectiveness in ALS (73, 74). Paralleling the clinical
efficacy Riluzole, the modulating effects last about 3 months
(75), and may be related to overexpression of efflux pumps
located at the blood brain barrier during the disease course (76).
Regardless of the underlying mechanisms, studies of riluzole
have suggested a utility of threshold-tracking TMS in assessing
biological effectiveness of compounds at an early stage of drug
development. Taken together, these results suggest that non-
invasive in vivo monitoring of cortical function and particularly,
SICI may also be an effective biomarker used to monitor the
effects of novel therapeutics in a clinical trial setting.

Biomarkers of LMN Dysfunction
Objective assessment of LMN dysfunction, utilizing
neurophysiological techniques, appear to be more sensitive than
clinical assessments (77, 78). Conventional neurophysiological
techniques, such as nerve conduction studies which measure the
compound muscle action potential (CMAP) amplitude, may be
relatively insensitive in assessing LMN degeneration due to the
process of reinnervation (79).

Estimation of Motor Unit Numbers
As such, various methods to approximate the number of motor
units innervating individual muscles, including motor unit
number estimation (MUNE), and motor unit number index
(MUNIX), may potentially represent valuable biomarkers of
LMN degeneration. Since the development of the first MUNE
technique in 1971 (80), there have been numerous other MUNE
techniques introduced (81–85). The basic principle of MUNE
techniques is the dividing of the maximal CMAP amplitude
by the average surface-recorded motor unit potential (86).
The original MUNE technique utilized incremental stimulation
whereby the stimulus intensity at one point on the nerve
was gradually increased from subthreshold until 10 increments
in the motor response was recorded, but this technique
relied on the assumption that the smallest recorded potential
using the surface electrode over a target muscle following
minimal stimulation represented a single motor unit potential
(Figure 4A). Consequently, the variance in the result MUNE was
considerable and resulted not uncommonly in artificially lower
MUNE counts (86, 88).

FIGURE 3 | (A) Cortical excitability changes with disease progression. Patients

were divided into three groups according to disease stage. The duration of the

illness from onset to death was normalized between zero and one and

expressed as a percentage (%), with data averaged by proportion of disease

duration. Early stage (Circle) was defined as the proportion of disease duration

<33%, mid (Triangle) was 33–66%, and late (Square) was >66%. ALSFRS-R

of patients in early stage was 42.3 ± 0.6, that in mid was 40.2 ± 0.7, and that

in late was 34.8 ± 2.0. SICI at ISI 1–7ms decreased with disease progression.

Data are given as mean ± SE. Reproduced with permission license no.

4456860473754 (70). (B) Kaplan-Meier plots of survival probabilities

according to averaged short-interval intracortical inhibition (SICI) values.

Amyotrophic lateral sclerosis patients with a disease duration under 2 years

were divided into 2 groups according to values in average SICI, interstimulus

interval 1–7ms. Patients with SICI ≤3.1% demonstrated reduced survival

compared to patients with SICI >3.1% (p = 0.034). Estimated median survival

was 28 months in patients with reduced SICI and 36 months in patients with

higher SICI. Reproduced with permission license no. 4456870994973 (71).

The motor unit index (MUNIX) technique is a method
designed to express the number of functioning motor units
within amuscle as an index, instead of providing a direct measure
of their absolute numbers. It is based on patients performing
a voluntary contraction at various intensity levels and surface
interference patterns being captured and decomposed to obtain

Frontiers in Neurology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 1141

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Huynh et al. Neurophysiological Biomarkers in ALS

FIGURE 4 | (A) Incremental MUNE in healthy and ALS subjects,

demonstrating a large number of “steps” with increasing stimulus intensity

consistent with a large number of functioning motor units within measured

muscle, whilst there were only four steps in the ALS subject indicating only four

functional motor units remaining in muscle. (B) Percentage changes in MUNE

values (geometric means) and mean ALSFRS-R and CMAP amplitude at 4 and

8 months. Reproduced with permission license no. 4457481173441 (87).

a normalized motor unit size, which is then in turn divided into
the maximal CMAP value to obtain the MUNIX (86, 89, 90).

Recent studies using different MUNE methods have
demonstrated potential utility for assessing disease progression
in ALS patients as reflected by a progressive linear decline in
MUNE counts (87, 91–94). Interestingly, a recently developed
MUNE technique, termed MScan, appeared to be the most
sensitive MUNE method in detecting ALS disease progression
(Figure 4B) (87). Additionally, MUNIX was able to detect
disease progression in presymptomatic muscles in ALS (95, 96),
and changes longitudinally in these muscle groups appeared
more sensitive to those changes in the revised ALS Functional
Rating Scale (ALSFRS-R) (93).

Neurophysiological Index
The neurophysiological index (NI) is a potential
electrophysiological biomarker in assessing lower motor
neuron loss in ALS (97). Using a simple formula, The NI
has the advantage of using routine CMAP amplitude, F-
wave frequency, and distal motor latency of the ulnar-nerve

innervated abductor digit minimi (ADM) muscle and is more
sensitive than the CMAP amplitude alone in demonstrating
longitudinal lower motor neuron loss in ALS. NI was able to
detect motor neuron loss in muscles of the presymptomatic
limb in ALS patients as well as successfully tracking disease
progression, demonstrating continued loss of functional motor
units during this presymptomatic period, when weakness,
atrophy, or fasciculations were not detectable to both patients
and evaluating clinicians (78). The validation of NI as a clinically
meaningful parameter in disease progression of ALS patients was
also demonstrated longitudinally in the symptomatic muscles of
patients that correlated with their ALSFRS-R decline (97, 98).
Additionally, NI was able to detect deterioration that occurred
over a short period of 4 weeks in ALS patients, hence enabling
the utility of this index in a clinical trial setting (77). NI has
favorable reproducibility and low intraindividual variability but
amongst its limitations, the index is only restricted to the ADM
muscle (which is less affected compared to other intrinsic hand
muscles such as the APB and FDI, in keeping with the split hand
pattern of wasting and weakness) (99) and requires persistent
F-waves (that can be frequently absent in ALS) (78).

Split-Hand Index
The split-hand sign is documented as an early and specific
clinical feature in patients with ALS that is not characteristic
in other commonly encountered clinical mimics (99, 100). It
refers to the preferential wasting and weakness of the thenar
complex muscles (APB and FDI) with relative preservation of
the hypothenar muscle, ADM (99), and appeared to have a
cortical origin with the corticomotoneuronal input to the thenar
complex in ALS patients preferentially affected (101, 102). This
clinical observation provided an opportunity to develop a simple
neurophysiological biomarker to aid the diagnosis of ALS using
conventional nerve conduction studies. The split-hand index (SI)
was derived by multiplying the CMAP amplitude of the APB
muscle by the FDI CMAP amplitude and then dividing the
product by the ADMCMAP amplitude. It was demonstrated that
a reduction in the split-hand index was consistent across ALS
phenotypes but appeared most pronounced in those with limb-
onset, and that a cut-off value≤5.2 reliably differentiated between
ALS and other neurological disorders (103).

Electrical Impedance Myography
Electrical impedance myography (EIM) is a novel non-
invasive form of testing to provide quantitative information
on neuromuscular disorders that may be useful and reliable in
assessing longitudinally the severity of a disease process (104–
107). EIM utilizes a small, high-frequency electrical current
applied across two electrodes positioned over a muscle, and the
resulting surface voltages are measured between a second pair
of electrodes, from which the resistive and capacitive properties
of the tissue are obtained (86, 105). The advantage is that
this technique does not rely on inherent electrical activity of
the tissue (which conventional neurophysiological techniques
do), but rather on how the tissue impacts the applied current,
rendering the technique sensitive to structural and compositional
changes in muscle such as denervation, reinnervation, myofiber
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atrophy and fat replacement within the muscle that occur in
ALS (104). EIM values have been shown to correlate with
standard clinical approaches including handheld dynamometry
and MUNE (106, 107), and may be able to provide more than a
five-fold reduction in sample size requirements for ALS clinical
therapeutic trials over standard outcome measures such as the
ALS functional rating scale-revised (ALSFRS-R) (108). Although
EIM can detect changes early in the disease course of ALS as well
as in clinically unaffected muscle groups (105), a limitation of
EIM is that identified changes may not be able to differentiate
ALS from other neuromuscular conditions (109, 110).

CONCLUSION

Amyotrophic lateral sclerosis remains a devastating
neurodegenerative disorder with a poor prognosis, much
of which is attributable to frequent delays in diagnosis, an
incomplete understanding of the underlying pathophysiological
mechanisms, and the current lack of effective disease-modifying
treatment available. As such, there is a critical need to devise
accurate and reliable biomarkers to address the above shortfalls
in current ALS management. The current review has presented
recent developments in novel neurophysiological biomarkers

that are able to effectively interrogate upper and lower motor

neuron dysfunction and characterize their change over time with
disease progression, thereby exhibiting the potential to improve
diagnosis, as well as facilitating in the prognosis and monitoring
of the effects of future therapeutic agents in a clinical trial
setting.
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