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Abstract—Emerging communication technologies of the In-
ternet of Things (IoT) make all the devices of a spatial-limited
physical computing environment locally interconnected as well
as connected to the Internet. Software agents running on devices
make the latter “smart objects” that are visible in our daily lives
as real participating entities. Based on the M3 architecture for
smart spaces, we consider the problem of creating a smart space
deploying a Semantic Information Broker (SIB) in a localized IoT-
environment. SIB supports agent interaction in the smart space
via sharing and self-generating information and its semantics.
This paper proposes a renewed SIB design with increased
extensibility, dependability, and portability. The research done
is a step towards an efficient open interoperability platform for
the smart space application development.

I. INTRODUCTION

The Internet of Things (IoT) refers to the connection of
physical objects. IoT technologies make all the devices of a
spatial-limited physical computing environment interconnected
as well as connected to the Internet. This ability leads to the
consideration of notion of localized IoT-environments [1], [2],
which now appears in many places of everyday life. Software
agents running on devices turn the latter into “smart objects”
that are visible in our daily lives as real participating entities.
The next generation of software applications (smart applica-
tions) can be deployed in localized IoT-environments based
on the smart spaces paradigm [3]. It allows creating a smart
environment that “is able to acquire and apply knowledge
about its environment and to adapt to its inhabitants in order
to improve their experience in that environment” [4].

We consider the M3 architecture (multi-device, multi-
vendor, multi-domain) for smart spaces [5], [6], [7], [1]. It
utilizes the blackboard and publish/subscribe communication
models to support interaction of agents via sharing informa-
tion of the environment, rather than making agents to send
messages to one another directly. The information and its
semantics are collected in a smart space using ontological
representation models of the Semantic Web and forming a
knowledge base for interoperable sharing among participants.
A smart space is maintained by a Semantic Information Broker
(SIB). The latter is deployed on a host accessible by any
device of the localized IoT-environment. SIB maintains an
RDF triplestore, which represents the smart space content and
acts as an informational hub relating many data sources. SIB
provides access and reasoning primitives for agents to operate

over the collected information. The content is generated by
agents themselves.

There are several SIB implementations available: the first
official Smart-M3 SIB [8], RIBS [9] for resource limited de-
vices, OSGi SIB [10] for Java-based systems, and RedSIB [11]
as evolution of the Smart-M3 SIB. They have grown from the
SEDVICE system [12], where the M3 architecture was first
implemented and experimented. The existing SIB implemen-
tations clearly showed certain elegant properties of the M3
architecture. On the other hand, the application development
needs consideration of many technical aspects in order to
achieve satisfactory operation in real-life settings.

In this paper, we propose a renewed SIB design with
increased extensibility, dependability, and portability. We con-
sider this design as further evolution of RedSIB. The modular
approach is applied for high extensibility, similarly to [13].
Interprocess communication in SIB is optimized along the path
from agent request arrival to SIB till the result is formed for
delivering to the agent which results in higher dependability.
The pool of access operations is systematized based on the
original Smart Spaces Access Protocol (SSAP) and its variants
as well as extended with mechanisms previously introduced in
Knowledge Sharing protocol (KSP). The C/C++ programming
language and Qt framework are used for the SIB implementa-
tion for higher portability.

The rest of the paper is organized as follows. Section II
presents existing space-based approaches that exploit Semantic
Web technologies for interoperable information sharing. Sec-
tion III introduces the M3 architecture for SIB-based smart
spaces with indirect information exchange in agent interaction.
Section IV describes our architecture of the renewed SIB,
which is based on the original Smart-M3 SIB and its successor
RedSIB. Section V considers access operations to smart space
content, which are basic elements for programming agent
interaction. Section VI summarizes the key properties of the
proposed SIB design.

II. RELATED WORK

Several software platforms are available for creating
semantic-oriented and data-centric computing environments
based on the paradigm of triple space computing. The
paradigm applies the blackboard model for networked commu-
nication and employs Resource Description Framework (RDF)
of the Semantic Web for information representation of shared
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content. The platforms have mostly the status of research
prototype; they focus on feasibility study of the paradigm and
on proof-of-the-concept elaboration of possible solutions for
application development.

In the TripCom project [14], an RDF triple space distributes
its content in an overlay network made up of many kernels.
The kernels form a distributed hash table, each kernel stores a
subset of triples. A client knows one of the kernels to address
any query despite in which kernel the triples are stored. The
TripCom design achieves high scalability, enabling to store
huge amount of RDF triples. Nevertheless, TripCom software
clients are oriented to run on powerful machines.

In the TSC framework [15], a triple space represents its
content as RDF graphs made up from triples and applies se-
mantic matching algorithms for searching in such graphs. TSC
describes transactional context and provides operations for
publishing and retrieval. In the publish/subscribe mechanism,
any user can subscribe using a template and receive notification
whenever an update matches the query. Nevertheless, TSC does
not support knowledge inference and does not allow expressive
querying for searching the space content. The TSC middleware
focuses on large scale architecture, preventing the use of low
capacity devices.

In the SENS system [16] (Semantic Event Notification
Service), a triple space employs a reasoning engine. The latter
makes knowledge inference after every publication. The infer-
ence is based on the whole content the space stores, in contrast
to methods with query operation for information subset. Such
a triple space stores directly all inferred knowledge at the price
of the performance of publish operation.

In SemWebSpaces [17] (Semantic Web Spaces), a triple
space employs matching based on RDFS reasoning capabili-
ties. Space content is a set of RDFTuples. Each tuple consists
of the four fields: subject, predicate and object of an RDF
statement and an identifier for the tuple based on tuplespace
ontology. SemWebSpaces uses RDF reasoners, and RDFTuples
introduced to the space can be checked for ontological confor-
mance. SemWebSpaces also defines an ontology for describing
the space itself. SemWebSpaces is a lightweight platform
aiming at minimal system footprint and simplicity/flexibility
of code. The platform does not support security mechanisms
and has issues with scalability.

In Conceptual Spaces [18] (CSpaces), a space is a finite set
of ontologies, their instances, and mapping and transformation
rules. All these elements are represented using a common
formal language that allows the ontologies to be enriched with
rules. CSpace consists of raw sub-space and reasoning sub-
space. The former stores imported or local data, including on-
tologies and mappings. The latter provides a compact represen-
tation of an associate raw sub-space, increasing the reasoning
performance. Each reasoning sub-space is periodically regen-
erated with the latest version of the raw sub-space. Dedicated
machines—CSpaces servers—store the content published in
CSpaces, provide an access point for CSpace clients, include
reasoning services for evaluating complex queries, implement
subscription mechanisms, and balance workload.

The above triple space platforms allow constructing various
computing environments to process information and implement
semantic-aware services. The ideas of information sharing via
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triple space and subscriptions encouraged the development
of M3 architecture for smart spaces [12] and its particular
implementation—Smart-M3 platform [8].

III. SMART SPACES

In wide sense, smart spaces form a programming paradigm
for a certain class of ubiquitous computing environments [4],
[19], [5]. Consider localized IoT-environments; each is asso-
ciated with a physical spatial-restricted place (office, room,
home, city square, etc.) and, in addition to local networking,
has access to the Internet. Such an environment is equipped
with variety of devices: sensors, data processors, actuators,
consumer electronics, personal mobile devices, multimodal
systems, etc.

Deployed in an IoT-environment, the smart space makes
the environment “smart” to handle the number of devices
and the amount of information to be processed [12], [3].
Cooperation of devices is supported by establishing a shared
view of resources in the environment. Software part of a smart
environment includes two sides: “agents” and an information
“hub”. Participation of a device is determined by its software
agent. Each agent produces its share of information and makes
it available to others via the hub. Similarly, an agent consumes
information of its own interest from the hub. That is, a hub is a
server that realizes a shared information space for the required
cooperation.

We focus on a particular approach for creating smart
spaces—the M3 architecture [5], [6], [7], [1]. It aims at
information-level compatibility, rather than promoting the
compatibility within one specific service-level solution. Col-
laboration between different producers and consumers of in-
formation happens on a more abstract level. Agents interact on
the semantic level, utilizing (potentially different) existing un-
derlying services. The key architectural component is Semantic
Information Broker (SIB) that implements an information hub
for agents of a given environment. SIB maintains an RDF
triplestore forming a common knowledge base [20]. Agents
are also called knowledge processors (KPs). Communication
between them is indirect, it is implemented through exchange
of triples via SIB. High device interoperability is achieved
since KPs share information via SIB, rather than have the
underlying devices explicitly send messages to one another.
Information interoperability problem is solved due to RDF
representation model.

Interaction between agents is based on operations (smart
spaces access primitives) with shared content. They are in-
herited from semantic space computing [21]; Table I pro-
vides a summary. Operations publish and read are traditional
database-like operations. Operation take retrieves and then
deletes the data fragment. Blocking operations (with prefix b-)
wait until at least one result is returned. Operation subscribe
is a persistent query tracking changes in a specified part of the
content. In such indirect interactions, network communication
between a KP and its SIB follows specialized protocols.
The original implementation is Smart Spaces Access Protocol
(SSAP) [8] and its variants [22] such as Knowledge Sharing
Protocol [23] for smart spaces.

When considering localized IoT-environments, the follow-
ing properties of SIB must be primarily taken into account.
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TABLE 1. CONTENT ACCESS OPERATIONS IN TRIPLE SPACE COMPUTING
TripCom TSC SENS SemWebSpaces CSpaces Smart-M3 (SSAP)

publish out create publish outr, claim write insert
read rda, rd, rdg without time- | read tryReceive endorse, extract read query

out parameter (non-blocking mode)
b-read rda, rd, rdg with timeout | waitToRead receive endorse, extract (blocking | waitToRead {not available}

parameter mode)
take ina, in, ing without time- | take tryDelete in take remove

out parameter (non-blocking mode) (only delete)
b-take ina, in, ing with timeout waitToTake delete in waitToTake {nol available}

parameter (blocking mode)
subscribe subscribe subscribe subscribe {not available} subscribe subscribe

Simplicity: SIB architecture is easy to elaborate, evolve and
understand by third-party developers.

Extensibility: SIB architecture provides an easy way of adding
functionality.

Dependability: SIB operation is stable and can run continu-
ously without failures for a long period of time. In case of
failures SIB is able to recover its working state.

Portability: Various computing devices can be hosts for SIB,
including Linux and Windows based systems as well as such
embedded systems as OpenWrt on routers.

There exist several SIB implementations that follow the M3
architecture. None of them fully satisfies the above properties.
Our proposal for new design and implementation of SIB is
presented further in Section IV.

Smart-M3 SIB [8] is the first official SIB reference imple-
mentation. Its open source code is written in C language, with
strong dependence on the glib library and the Piglet triplestore
to operate with RDF data. Smart-M3 SIB provides support for
the original SSAP protocol and for extended search queries in
Wilbur query language. The SPARQL query language is not
supported. There are problems with performance, especially
with subscription when it is actively used.

Plug-in SIB approach [13] is used to extend the Smart-M3
SIB functionality. Each plug-in aims at additional processing
of the smart space content.

RIBS [9] is a secure and fast SIB implementation, which
is proprietary. RIBS targets for resource limited devices. Pure
ANSI C code is used with minimal system dependencies. Bit-
cube triplestore is employed, which provides random access
lookup operation with constant latency in lieu of cubical
memory consumption.

OSGi SIB [10] is a Java-based SIB implementation. The
OSGi technology is utilized to achieve a high level of modu-
larity and portability. Jena framework with Pellet is utilized
to effectively operate with RDF data. OSGi SIB supports
SPARQL queries and reasoning rules over RDF data. This SIB
implementation, however, is resource-demanding due to usage
of Java. Besides software agents from other SIB implementa-
tions are incompatible with this SIB version.

RedSIB [11] is evolution of the original Smart-M3 SIB
implementation. The Redland library is employed to maintain a
triplestore and SPARQL support. The subscription mechanism
is refactored for better performance. RedSIB (as well as Smart-
M3 SIB) consists of two subsystems (sib-daemon and sib-
tcp). D-BUS communication system is used for exchanging
data between these subsystems. Since D-BUS is not intended
for transferring big amounts of data the efficiency essentially
suffers.
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IV. THE SEMANTIC INFORMATION BROKER

Our SIB implementation is based on Smart-M3 SIB and
RedSIB. We improve modularity and portability of the SIB
design. These two properties are borrowed from OSGi SIB
and RIBS, respectively. Based on the RedSIB source code,
we employ the Redland library, for representing smart space
content in an RDF triplestore and for implementing operations
over the content (read&write, search query, reasoning).

The Smart-M3 SIB architecture is shown in Fig. 1, where
the main subsystems are Network part, Operation logic, Triple-
store. Network part handles network requests and forwards
them to the operation logic. Connection between Network
part (e.g., sib-tcp) and Operation logic (sib-daemon) uses D-
BUS inter-process communication system. Operation logic
processes operation request (SSAP operation or SPARQL
queries) and performs corresponding changes in Triplestore
(Redland library). Redland provides common interface for
operating with triplestores of different kinds (e.g., memory,
files, sqlite).

The RedSIB implementation has complicated code struc-
ture, which makes difficult to modify and improve SIB func-
tions. The main difficulty is a multithread implementation
where several thread pools and asynchronous queues are used.
After receiving a request, sib-tcp forwards it to sib-daemon
using D-BUS. In sib-daemon, a new thread is created for
every request and then it is pushed to the asynchronous
queue. Scheduler processes the requests in round-robin cycle

Network-part ! Interaction

| bt } Library |Operation| Redland __-H&I
P X "linterface|  logic | fibrary > MysoL |

1
| -
!

Fig. 1. The Smart-M3 SIB implementation is essentially based on D-BUS.
In our architecture, SIB interface with network is implemented using dynamic
or static libraries
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Fig. 2. The proposed Plug-ins based SIB architecture: achieving the extensibility of SIB functionality

in a separate thread and performs corresponding operations in
Triplestore. Sib-daemon does not have independent modules
to process data exchange in effective representation format
(e.g., it processes messages directly in the D-BUS format).
The implementation of subscription operation makes the SIB
processes structure even more complicated. For every subscrip-
tion, two threads are created: one in sib-tcp and another in sib-
daemon. When subscription indication is needed it initiates a
long chain of function calls in several threads. Our goal is to
simplify the SIB architecture to make it more extensible and
customizable for further improvements and understandable for
third-party developers.

Our first direction of SIB development is eliminating D-
BUS. One reason is that D-BUS is used only in Linux
systems, thus preventing the use of other operating systems
(e.g., Windows). Another reason is that D-BUS does not
effectively support transfer of big amounts of data. Operation
becomes unstable when transferring fast data streams of triples.
We propose the SIB architecture without these two processes
communicating via D-BUS.

The new SIB architecture was depicted in Fig. 1 above. SIB
communication modules for various network protocols (e.g.,
TCP, Nota) become plug-ins. They can be loaded/unloaded
from the main SIB program (SIB with dynamic libraries).
When higher portability is needed, such plug-ins can be
integrated to SIB using static compilation (SIB with static
library). In this case, SIB does not load external libraries and
is used as monolith application with the customizable set of
network protocols. This feature targets SIB portability, taking
into account devices with operating systems that have limited
or no support of dynamic libraries.

This D-BUS elimination does not affect the functional SIB
capabilities. In the case with D-BUS, sib-daemon and sib-
tcp are standalone applications, where sib-daemon does not
control sib-tcp. Indeed, the flexibility is that sib-tcp can be
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started or stopped manually in any moment. If Network part
is implemented as plug-ins then SIB loads and controls plug-in
lifecycle (loading/initialization/unloading). This way, Network
part becomes easier for developing and testing. SIB can track
network errors and restart/reinitialize network plug-ins in case
of errors. Consequently, the new SIB architecture achieves
higher dependability.

Our second direction of SIB development is to simplify the
architecture in order to achieve higher extensibility. The archi-
tectural details are presented in Fig. 2. This SIB architecture
is modular, allowing inclusion/exclusion of certain modules
in compilation phase or in runtime. The feature affords to
customize SIB functionality for given host device and IoT
environment. The main module is SIB initializer. It prepares
SIB for operation and initializes other SIB modules according
to configuration from configuration file or command line
parameters. The module initializes access points, scheduler,
and Redland triplestore.

Network part is implemented as a pool of access points,
each is an external module for SIB. Access point binds to
particular network protocol (TCP or UDP) and port. Each
access point receives KP requests and sends corresponding
responses. Protocol manager interacts with a specific access
point and performs request parsing and response generation.
Access protocol (such as SSAP or KSP) is implemented
as a separate module, which parses request messages and
creates response messages. Access point manager initializes
its access point and sets protocol managers. One access point
is associated with a certain protocol manager module. There
can be several access points of the same type (e.g., several
TCP listeners running on different ports). SIB can be run with
several protocol managers to handle additional access methods.
For example, it is possible to implement SPARQL over HTTP
to access SIB as a common SPARQL access point.

Each access point sends two types of messages to its




PROCEEDING OF THE 17TH CONFERENCE OF FRUCT ASSOCIATION

protocol manager: requests from agents and network errors/no-
tifications (e.g., agent is disconnected). Similarly, each pro-
tocol manager sends two types of messages to access point:
responses to agents and commands (e.g., shutdown, disconnect
agent). While responses implement messages of a particular
access protocol, commands are targeted only for access point
and are used to control network connection.

Access points can be loaded/unloaded on the fly, thus it is
possible to enable/disable different protocols support in SIB
without shutting it down. An access point is a separate library,
making difficult or even impossible to load such libraries for
some embedded devices. To overcome this problem architec-
ture allows to compile SIB with certain access points internally
as was described above for SIB with static library (Fig. 1).

The plug-ins approach of [13] allows adding plug-ins into
the Smart-M3 SIB implementation. They introduce additional
processing of RDF-represented content. In our SIB architec-
ture, such functionality can be added using handlers. They
are used for basic functionality of SIB (triplestore operations,
subscription). A handler can be statically compiled with SIB,
which is a default way to implement handler for basic func-
tionality. These modules can be chosen in compilation time of
SIB. Other handlers, which extends SIB functionality, can be
implemented for loading in runtime.

Scheduler module controls processing of commands among
modules. It processes commands with KPs requests/responses
and internal notifications (to control runtime of other modules).
After receiving a command the scheduler delegates it to
an appropriate command handler. Three command handlers
can be distinguished from the RedSIB version: base opera-
tion handler (insert/remove/update/query), SPARQL handler,
SPARQL Update handler. Similarly, three persistent command
handlers are: base subscription handler, SPARQL subscription
and SPARQL Update. Persistent command contains persistent
operation (subscription or SPARQL). Persistent operation is
always stored on the SIB side (continuous in time) and a
response is generated whenever a specified event occurs.

Our SIB architecture is designed with the purpose of
hosting SIB on various devices and platforms. In addition to
Linux-based platforms, the new SIB implementation targets
Windows OS machines and embedded devices (such as routers
with OpenWrt firmware). The architecture assumes the ability
to include/exclude particular modules on compilation phase
and in runtime mode. It becomes possible to produce limited
SIB executables to run on restricted devices for the cost of
reduced functionality.

Let us summarize the distinguished properties of the pro-
posed SIB design. As a result of the D-BUS elimination, the
interprocess communication has simpler structure. SIB can
be easier ported to other platforms. The modular approach
facilitates evolution of the SIB implementation. Based on the
plug-ins approach, the SIB architecture supports many access
protocols, including the original SSAP.

V. AGENT INTERACTION IN A SMART SPACE

SSAP [8] is the first official protocol for operation-based
network communication between an agent (KP) and its SIB.
On the other hand, KSP protocol is oriented to use on an
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TABLE II. SYSTEM OF SIB OPERATIONS
Type Operations
Basic operations Session Join, Leave
management

Content access Instant Query, Insert, Remove,

and management Update
Persistent (Un)Subscribe
operations
Extended operations Persistent Insert, Remove, Update
SIB configuration rules
SPARQL operations SPARQL SELECT, CONSTRUCT, ASK,

DESCRIBE
INSERT, DELETE,
INSERT DATA, DELETE DATA

SPARQL Update

agent which is hosted on a constrained device [22], [23].
According to the plug-ins based architecture, SIB can support
many different access protocols. Moreover, the access can be
extended with SPARQL queries over HTTP such that SIB acts
like a SPARQL endpoint.

Table II systemizes all operations that our SIB design sup-
ports. Basic operations include the original SSAP operations.

1)  Session management (joining & leaving the smart
space).

2)  Content access and management (reading & writing
& maintaining the RDF triplestore).

3)  Persistent operations (querying in time period).

Session management contains operations Join and Leave.
To access a smart space its agent establishes an SSAP session
with SIB using Join. A session provides a time-lengthy sub-
strate for the agent to communicate with SIB. After successful
Join the agent performs operations with the content (manip-
ulate with triples, subscriptions). To terminate its session the
agents calls Leave, and all information associated with the
session on the SIB side is removed, including closing all
agent’s subscriptions. Session-based access is optional; agents
on restricted devices may prefer one-time access operations
with SIB.

Sessions support management of agent’s privileges on the
SIB side. Let us distinguish public and private actions in the
smart space. A public action does not require any special privi-
leges to perform the operation and rights to access the needed
content from the smart space. For example, action “getting
current temperature” is public if the “query” operation has no
special rights for execution and the temperature value (encoded
in RDF triples) has no access restrictions. Otherwise, such an
action is private. For private actions the agent can establish a
session for the authentication (a smart space participant) and
authorization (to perform the action).

Content access and management operations manipulate
with triples in the RDF triplestore (see also Table I). Basic
operations are read&write operations of SSAP: search Query,
Insert, Remove, and Update. They are instant, i.e., in tra-
ditional “one query—one result” style. SSAP does not support
take operation and blocking operations. Update implements
a transaction composed of subsequent Insert and Remove.

In the RedSIB implementation, SSAP was enhanced with
support for SPARQL and SPARQL Update queries (due to
Redland library). The implementation supports 1) SELECT,
CONSTRUCT, ASK, and DESCRIBE query of SPARQL and
2) INSERT, DELETE, INSERT DATA, and DELETE DATA
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queries of SPARQL Update. Note that these SPARQL possi-
bilities generalize the basic read&write operations of SSAP.

For a persistent operation, the agent registers its operation
in SIB. The latter associates this operation with its agent and
continuously keeps the operation state on the SIB side. SIB
activates the operation whenever an appropriate action occurs
in the smart space. Activation can happen many times until
the agent terminates the operation. After termination, SIB
removes the operation state. SSAP supports only one per-
sistent operation—subscription. Its registration can use triple
templates or SPARQL SELECT query to specify the content of
agent’s interest. The agent receives a subscription notification
whenever the specified part of content is changed (e.g., due to
activity of other agents).

The set of persistent operations can be extended with per-
sistent Insert and persistent Remove [22]. In these operations,
SIB, on behalf of the agent, performs updating and removal
of the content whenever SIB detects specified conditions. A
persistent operation can be extended with SPARQL Update.
Such extensions were proposed in KSP.

The difference of KSP and SSAP is emphasized below.

e Binary format (important for low capacity devices).
The binary format is compact and faster to parse, but
not as versatile as the XML format used in SSAP.

e  KSP transactions are based on the SPARQL 1.1 (and
SPARQL UPDATE) only. In SSAP, SPARQL is one
of the three query formats.

e KSP does not require join and leave operations. Ac-
cess control parameters can be added explicitly to ev-
ery KSP message when session-based communication
is not needed.

e  KSP allows agents to define the maximum size for SIB
response. Hence restricted devices can limit consump-
tion with partial content found in the smart space.

e In addition to Subscription, KSP defines other persis-
tent operations, which continuously change the smart
space content (on behalf of their agents).

Persistent operations can be used internally in SIB to
implement configuration of the automatic content maintenance
and transformation process. This way, a SIB administrator can
define actions that SIB performs over the collected content. Ex-
amples are information consistency recovery or rights check of
joining agents. Otherwise, this process should be implemented
as a dedicated agent detecting appropriate changes in the
content and reacting correspondingly [24]. SIB configuration
rules are persistent operation bindings to some events. The
main difference is that rules are set by a SIB administrator
while persistent operations are called by agents. Note that
SPARQL is not the only way to define such rules. Another
promising approach is answer set programming [25], when
SIB is enhanced with artificial reasoners for the content.

In our SIB architecture (see Fig. 2 above), operations
implementation is structured with modules. Session manage-
ment operations are implemented in Protocol Manager. Content
access and management operations are implemented in com-
mand handlers (basic operations, SPARQL operations, etc.).
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Subscription and other persistent operations are implemented
in the persistent command handlers. The proposed modularity
allows turning on/off modules to deploy SIB with a selected
tradeoff between required functionality and available capacity.

Now consider the sequence of processing steps on the
SIB side for any SSAP operation in our SIB architecture.
The sequence is modeled in Fig. 3. The agent (KP) sends
an SSAP (or another) request. The latter is delivered to SIB
using some network transport protocol (e.g., TCP). A network
listener—a particular Access Point—receives the request. Net-
work requests can be processed either in one thread or in
several threads. This is an issue of further studies. Access
Point forwards the request to Protocol Manager for parsing (is
implemented in separate module—Message Manager—which
parses messages of particular protocol) and converting the
operation into a scheduler command. Then command goes
to Scheduler, which receives commands in multiple threads.
According to command type (insert, remove, SPARQL re-
quest, subscription, etc.), Scheduler forwards the command to
corresponding Command Handler. The latter module performs
particular operation in the RDF triplestore. Note that our SIB
design preserves the property of processing each command
in a separate thread, which is important for serving several
commands of multiple agents in parallel.

When an operation has been completed in the RDF triple-
store, Command handler forms a response command with
operation result. Scheduler forwards the response command to
corresponding Protocol Manager, which constructs a response
message for Access point. Then the response is sent and
delivered over the network to the agent.

The most complicated processing is related to subscrip-
tion. Our SIB design is based on the RedSIB subscription
mechanism, which is shown in Fig. 4. When Scheduler for-
wards a subscription command to Subscription handler, the
latter performs a query request, creates a separate RDF store
(subworld, to store associated triples), and runs a separate
thread for this subscription. Then, whenever some Command
handler performs changes in the triplestore, this handler noti-
fies Subscription handler. Every subscription thread checks the
changes for matching. Correspondingly, subscription indication
responses are sent to the agents. New SIB implementation fully
borrows subscription mechanism from RedSIB although it can
be modified or replaced on another mechanism in the future.

New version of SIB will be implemented using Qt frame-
work and provide functionality similar to the RedSIB imple-
mentation. So it will support all operations from original SSAP
implementation although pool of commands can be extended
with new operations (for example, blocking operations from
Table I). SIB architecture presented in this paper is quite
simple to extend and change by third-party developers. All new
functions (including new operations) are added as modules.
Due to such modularity SIB extensibility is achieved. Thus
at the deployment phase SIB can be configured to settings
of a given IoT environment. New SIB implementation will
rely mostly on rich capabilities of Qt framework (network
connections processing, threads, modules interaction and plug-
ins). Well-testes and optimized Qt mechanisms contribute SIB
dependability and portability that allows to run it on different
platforms.
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VI. CONCLUSION

This paper provided the renewed SIB design, which can
be considered a step towards an efficient open interoperability
platform for the smart space application development. The
design takes into account such properties as extensibility,
dependability, and portability, which are fully satisfied in
none of the existing SIB implementations. On one hand,
the compatibility with SSAP is preserved, making an ease
transition from the Smart-M3 SIB or RedSIB for the large
set already developed applications. On the other hand, new
opportunities for application development appear, especially
related to advanced smart space access operations.
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