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Abstract—Pattern recognition systems are 
widely used in a host of different fields. Due to 
some reasons such as lack of knowledge about 
a method based on which the best classifier is 
detected for any arbitrary problem, and thanks to 
significant improvement in accuracy, researchers 
turn to ensemble methods in almost every task of 
pattern recognition. Classification as a major task 
in pattern recognition, have been subject to this 
transition. The classifier ensemble which uses a 
number of base classifiers is considered as meta-
classifier to learn any classification problem in 
pattern recognition. Although some researchers 
think they are better than single classifiers, they 
will not be better if some conditions are not met. 
The most important condition among them is 
diversity of base classifiers. Generally in design 
of multiple classifier systems, the more diverse 
the results of the classifiers, the more appropriate 
the aggregated result. It has been shown that 
the necessary diversity for the ensemble can be 
achieved by manipulation of dataset features, 
manipulation of data points in dataset, different 
sub-samplings of dataset, and usage of different 
classification algorithms. We also propose a new 
method of creating this diversity. We use Linear 
Discriminant Analysis to manipulate the data 
points in dataset. Although the classifier ensemble 
produced by proposed method may not always 
outperform all of its base classifiers, it always 
possesses the diversity needed for creation of an 
ensemble, and consequently it always outperforms 
all of its base classifiers on average.

Index Terms— Classifier Ensemble, Diversity, 
Linear Discriminant Analysis.

I. INTRODUCTION

Different pattern recognition tasks are 
employed in different problems. Pattern 

recognition is considered as a general tool for 
solving any problem in any field [2], [18-19], 
[21], [27-35]. Clearly, it is always needed to find 
a better pattern recognition model. Classification 
as a major task in pattern recognition is not 
an exception to this subject. Classification is 
a task that tries to predict category of some 
objects. In ensemble method for classification, 
many classifiers are combined to make a final 
prediction. Ensemble methods show better 
performances than a single classifier in general. 
The final decision is usually made by voting after 
combining the predictions from set of classifiers.

Most of the classification researches resulted 
in algorithms that have provided a good 
performance for specific problem, but they 
have not enough robustness for other problems. 
Because of the difficulty that these algorithms 
are faced to, the recent researches have been 
directed to the combinational methods that have 
more power, robustness, resistance, accuracy 
and generality [15]. Although the accuracy of 
the classifier ensemble is not always better than 
the most accurate classifier in ensemble pool, its 
accuracy is never less than their average accuracy 
[9]. Classifier ensemble can be considered as a 
general solution method for pattern recognition 
problems [14-15]. Inputs of classifier ensemble 
are predicted class tags of base classifiers and 
its output is consensus predicted class tags. It is 
an accepted subject in pattern recognition that 
finding the best classifier model for solving a 
given problem is impossible [22-23] and it has 
some serious drawbacks. The main drawback is 
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that the best individual classifier for the given 
classification problem is very difficult to identify, 
unless deep prior knowledge is available for 
such a task [3]. It is worthy to noting that the 
motivations in favor of classifier ensemble 
strongly resemble those of a “hybrid” intelligent 
system. The obvious reason for this is that 
classifier ensemble can be regarded as a special-
purpose hybrid intelligent system.

It is believed that “combining the diverse 
classifiers any of which has better results than 
random ones, creates a good ensemble”. Diversity 
is always considered as a crucial concept in 
classifier ensemble. It is considered as the most 
effective factor in succeeding an ensemble. The 
diversity in an ensemble refers to the amount of 
dissimilarity in the outputs of its components 
(base classifiers) in deciding for a given sample. 
Assume an example dataset with two classes. 
Indeed the diversity concept for an ensemble 
of two classifiers refers to the probability that 
they may produce two dissimilar results for an 
arbitrary input sample. The diversity concept 
for an ensemble of three classifiers refers to the 
probability that one of them produces dissimilar 
result from the two others for an arbitrary input 
sample. It is worthy to mention that the diversity 
can converge to 0.5 and 0.66 in the ensembles of 
two and three classifiers respectively. Although 
reaching the more diverse ensemble of classifiers 
is generally handful, it is harmful in boundary 
limit. It is very important dilemma in classifier 
ensemble field: the ensemble of accurate/diverse 
classifiers can be the best. It means that although 
the more diverse classifiers, the better ensemble, 
it is provided that the classifiers are better than 
random.

Classifier ensemble systems can be categorized 
by the ways they are built. Four dimensions for 
characterizing ensemble methods have been 
proposed: combination level, classifier level, 
feature level, and data level. In this article, we 
will focus on the classifier level and feature level 
that deals with the ways the base classifier are 
created and some new features may be created.

Bagging [1], Random Forest [5] and 
AdaBoost [6-8] may be the three most widely 
used techniques to generate homogeneous 
classifiers. Bagging trains its diverse classifiers 
by employing a primary learning algorithm to 
some bootstrapped sub-samples. These sub-
samples are randomly extracted out of the train 
dataset with replacement and have the same 

sample size as that of the train dataset. Random 
Forest [5] is an ensemble approach that uses 
a decision tree as its primary classifier. It uses 
bootstrapped sub-sampling to obtain different 
train datasets like Bagging. Both Bagging and 
Random Forest utilize simple majority voting 
mechanism to aggregate their primary classifiers 
into a consensus classifier. AdaBoost, the most 
prominent member in boosting family, generates 
a series of base classifiers by applying a given 
base learning algorithm to successive derived 
training sets that are obtained by either resampling 
or reweighting the original train dataset in the 
light of a weight distribution maintained over 
the training set. AdaBoost initially assigns 
equal weights to each training instance and in 
subsequent iterations, it adjusts these weights 
so that the weight of the instances misclassified 
by the previously trained classifier is increased, 
whereas that of the correctly predicted ones is 
decreased. Thus, AdaBoost attempts to produce 
new classifiers that are able to better predict 
the “hard” instances for the previous ensemble 
members. The final classification is obtained 
from a weighted vote of the base classifiers.

II. BACKGROUND
A classifier ensemble will be named a 

generative classifier ensemble if it produces base 
classifiers during the training of ensemble. In 
generative classifier ensemble methods, diversity 
is usually made using two categories of classifier 
ensembles. One category of these methods 
obtains diverse individuals by training classifiers 
on different training set, such as bagging [1], 
boosting [25], cross validation [20] and using 
artificial training examples [13]. Another category 
of methods for creating diversity employs 
different structures, different initial weighing, 
different parameters and different base classifiers 
to obtain ensemble individuals. For example, [24] 
adapted the training algorithm of the network 
by introducing a penalty term to encourage 
individual networks to be decorrelated. Liu and 
Yao [12] used negative correlation learning to 
generate negatively correlated individual neural 
network.

A classifier ensemble will be named a non-
generative classifier ensemble if it produces 
base classifiers first, then during the training of 
ensemble it only selects a subset of the ensemble. 
The non-generative classifier ensemble is also 
named selective classifier ensemble approach 
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where the diverse components are selected from 
a number of trained accurate base classifiers. 
For example, Opitz and Shavlik [17] proposed 
a generic algorithm to search for a highly 
diverse set of accurate networks. Lazarevic and 
Obradoric [11] proposed a pruning algorithm to 
eliminate redundant classifiers. Navone et al. [16] 
proposed another selective algorithm based on 
bias/variance decomposition. GASEN proposed 
by Zhou et al. [26] and PSO based approach 
proposed by Fu et al. [4] also were introduced to 
select the ensemble components.

Linear Discriminant Analysis:
Linear discriminant analysis (LDA) is an 

algorithm used in pattern recognition to discover 
a linear transformation of attributes. It is widely 
used to discover a linear mapping of dimensions 
where data points of different classes in the 
dataset are discriminated from each other. Indeed, 
the objective function of LDA is to find the best 
locations for Gaussian distributions of different 
clusters and the best parameters for those 
Gaussian distributions in any given dataset. LDA 
tries to decrease dimensionality while preserving 
as much of the class discriminatory information 
as possible. The output of LDA can be considered 
as a linear classifier. It can also be considered as 
dimensionality reduction technique. 

However it is commonly considered as a 
dimensionality reduction. LDA is also closely 
related to Principal Component Analysis (PCA) 
in which it explores linear combinations of 
features which perfectly represent the data. 
As LDA is supervised, it tries to model the 
difference between the classes of data. PCA is 
an unsupervised task. So, PCA does not take into 
account any difference in class.

III. PROPOSED METHOD
Before presenting our method, some materials 

must be clarified. Assume our dataset is always 
denoted by D. Our dataset contains n data points 
and defined in a f-dimensional feature space. 
Also assume that our dataset has c classes. Let 
us assume T is target vector. It means that Ti is 
category of ith data point. Also we assume that 
ith data point is denoted by Di.

Definition 1 data point: a vector of f 
continuous values that represents a data object. 
So Dij is jth feature of ith data point.

Definition 2 hard classifier: a model that 
receives a data point and returns a categorical 

label.
Definition 3 soft classifier: a model that 

receives a data point and returns a vector of c 
continuous values where each value is in range 
[0,1]. The jth output of a soft classifier is denoted 
by oj and represents for support of the classifier 
for jth class. It means that when a data point is 
given to a soft classifier, it produces a vector 𝒐𝒐𝒐𝒐��⃗  

that each value of that represents amount of 
classifier support for its corresponding class for 
the data point. It is clear that if you are obliged to 
select only one class tag for a data point using a 
soft classifier, the class with maximum support, 
is the best candidate. The class with maximum 
probability (definition 5) is named the most 
probable tag (MPT). The class with the second 
maximum probability is named runner-up tag 
(RUT).

Definition 4 support for a class: A value in 
range [0,1] produced by a soft classifier on a data 
point indicating how much the classifier believes 
the data point belongs to that class. 

Definition 5 probability for a class: A 
probability value indicating the data point 
belongs to a class. To compute it, assume a soft 
classifier output over a data point is a vector 
𝒐𝒐𝒐𝒐��⃗ = [𝑜𝑜𝑜𝑜1,𝑜𝑜𝑜𝑜2, … 𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐]  . The probability vector is 

𝒑𝒑𝒑𝒑��⃗ = [𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝2, …𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐]  and computed based on 

equation 1.

𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 × 𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖

∑ �𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 × 𝑜𝑜𝑜𝑜𝑗𝑗𝑗𝑗 �𝑐𝑐𝑐𝑐
𝑗𝑗𝑗𝑗=1

                  (1)

where Pj is the prior probability presented in 
definition 11 and formulated in equation 2.

Definition 6 ensemble support for a class: A 
value in range [0,1] produced by a soft classifier 
on a data point indicating how much the classifier 
believes the data point belongs to that class.

Definition 7 ensemble: a Ens_Size soft 
classifiers that is denoted by E. It is worthy to 
mention that Ei stands for ith soft classifier of the 
ensemble.

Definition 8 ensemble support for a class: A 
value in range [0,1] produced by an ensemble 
of soft classifiers on a data point indicating 
how much the ensemble believes the data point 
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belongs to that class. It is the averaged support 
of soft classifiers on that data point for the class.

Definition 9 hard data point (HDP): A 
data point will be defined as a hard data point 
if (ensemble) probability difference between 
MPT and RUT is more than a threshold. The 
mentioned threshold that is denoted by hard_Th 
is a parameter of the algorithm.

Definition 10 erroneous data point (EDP): ith 
data point will be defined as an erroneous data 
point if MPT is not equal to Ti.

The proposed method gets dataset as input, 
and puts it into three partitions: training set, test 
set and validation set. The size of training set 
divided by the size of dataset is named training 
set ratio and denoted by TrR. The size of test set 
divided by the size of dataset is named test set ratio 
and denoted by TeR. The size of validation set 
divided by the size of dataset is named validation 
set ratio and denoted by VaR. Throughout the 
paper, training set, test set and validation set are 
denoted by TrS, TeS and VaS respectively. Also 
in the paper, target vector of training set, test set 
and validation set are denoted by TTrS, TTeS and 
TVaS respectively. 

Definition 11 Prior Probability: a Pi where 
i{1,2,…,c} is computed based on equation 2.

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
                      (2)

where ni
TrS is the number of data points of 

class i in TrS and nTrS stands as the number of data 
points in TrS. The algorithm is depicted in Fig. 1.

Then the data of each class is extracted from 
the original validation data set. The proposed 
algorithm assumes that a classifier is first trained 
on training set, and then this classifier is added 
to our ensemble. Now using this classifier, we 
can obtain erroneous data points on validation 
data set. Using this work we partition validation 
data points into two classes: erroneous and non-
erroneous. At this step, we label validation data 
points according the two above classes and 
then using a pairwise classifier we approximate 
probability of the error occurrence. This pairwise 
classifier indeed works as an error detector. Next 
all data, including training, testing and validation 
are served as input for that classifier, and then 
their outputs are considered as new features of 
those data points. At the next step, using linear 

discriminant analysis (LDA) we reduce the 
dimensionality of the above new space to that 
of previous space [3]. We repeat this process in 
predefined number of iterations. Repeating the 
above process as many as the predefined number 
causes to creation of that predefined number of 
data sets and consequently also that number of 
classifiers.

---------------------------------------------------------------------------
Inputs:
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷, 𝑐𝑐𝑐𝑐,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇,𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇ℎ,𝑇𝑇𝑇𝑇, @𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
Output:
𝐸𝐸𝐸𝐸,𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇
𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸
𝐷𝐷𝐷𝐷 = 𝑆𝑆𝑆𝑆ℎ𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐷𝐷𝐷𝐷)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟(𝐸𝐸𝐸𝐸 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟(𝐸𝐸𝐸𝐸 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟(𝐸𝐸𝐸𝐸 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷1..𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆                                       
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇1..𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+1)..(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 )                  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+1)..(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 )
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆+1)..(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆)
𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆+1)..(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆+𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆)
𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆 = 1. . 𝑐𝑐𝑐𝑐

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸 = ∅
𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆 = 1 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇
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𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟
𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷_𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸,𝑃𝑃𝑃𝑃,𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇)

𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇 =
|𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷_𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟| 

𝐸𝐸𝐸𝐸
 

---------------------------------------------------------------------------

Fig. 1. The pseudo code of the proposed combinational 
algorithm

Pseudo code of the proposed algorithm is 
shown in Fig. 1. It can be said about time order 
of this algorithm that the method just multiplies a 
constant multiplicand in the time order of simple 
algorithm (training a simple classifier). Suppose 
that the time order of training a simple classifier 
on a data set with n data points and c classes to 
be O(f(n,c)), also assume that in the worst case 
the time order of training pairwise classifier on 
that data set to be O(g(n,c)) and also m to be 
the number of max_iteration (or that predefined 
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number). Then the time order of this method is 
Ω(3*m*f(n,c)). Consequently the time order of 
the method will be Ω(m*f(n,c)). This shows time 
order of the algorithm relevant to just a constant 
factor is reduced, that this waste of time is 
completely tolerable against important achieved 
accuracy.

After creating diverse classifiers for our 
classifier ensemble, the next step is finding 
a method to fuse their results and make final 
decision. The part of making final decision is 
named combiner part. There are many different 
combiners. Combination method of base classifier 
decisions depend on their output type. Some 
traditional methods of classifier fusion which are 
based on soft/fuzzy outputs are as below:

Majority vote: assume that we have k 
classifiers. Classifier ensemble vote to class j if 
a little more than half of base classifiers vote to 
class j.

 
Fig. 2. Half Ring dataset.

Simple average: the average of results of 
separate classifiers is calculated and then the 
class that has the most average value is selected 
as final decision.

Weighted average: it is like simple average 
except that a weight for each classifier is used for 
calculating that average.

IV. EXPRIMENTAL RESULTS
The metric for evaluating an output of a 

classifier is accuracy; i.e.the accuracy is taken as 
the evaluation metric throughout all the paper for 
reporting performance of classifiers. 

The proposed method is examined over 6 
different standard datasets and one artificial 
dataset. These real datasets are available at UCI 
repository [11]. Brief information about the used 
datasets is available in Table 1. The details of 

HalfRing dataset can be available in [14]. The 
artificial HalfRing dataset is depicted in Fig. 2. 
The HalfRing dataset is considered as one of the 
most challenging dataset for the classification 
algorithms.

Table 1. Brief information about the used datasets.
# Dataset Name # of 

Class
# of 

Features
# of 

Samples
Data distribution 

per classes

1 Halfrings 2 2 400 300-100
2 Ionosphere 2 34 351 126-225
3 Iris 3 4 150 50-50-50
4 Wine 3 13 178 59-71-48
5 Bupa 2 6 345 145-200
6 BreastCancer 683 9 2 444-239 
7 Yeast 1484 8 10 463-5-35-44-51-

163-244-429-
20-30

The predefined number of max_iteration in 
the algorithm is experimentally considered 3 
here. Here, train set, test set and validation set 
are considered to contain 60%, 15% and 25% 
of entire dataset respectively. The summery of 
the results are reported in Table 2. All classifiers 
used in the ensemble are support vector machines 
(SVM).

Table 2. A summary of seven independent runs of algorithm 
over “Bupa” dataset

"Bupa" Iteration 1 Iteration 2 Iteration 3 Ensemble

Run 1 61.77 69.12 48.53 67.65
Run 2 67.65 66.18 73.53 67.65
Run 3 72.06 75.00 70.59 75.00
Run 4 66.18 57.35 64.71 66.18
Run 5 66.18 66.18 67.65 69.12
Run 6 63.24 60.29 66.18 64.71
Run 7 66.18 65.69 65.20 68.14

As it is inferred from Table 2, different 
iterations have resulted in diverse and usually 
better accuracies than initial classifier. Of course 
the ensemble of classifiers is not always better 
than the best classifier over different iterations, 
but always it is above the average accuracies 
and more important is the fact that it almost 
outperforms initial classifier and anytime it 
is not worse than the first. Indeed the first 
classifier (classifier in the iteration 1) is simple 
classifier that we must compare its results to 
ensemble results. In the Table 2 each row is one 
independent run of algorithm, and each column 
of it is the accuracy obtained using that classifier 
generated in iteration number corresponds to 
column number. The ensemble column is the 
ensemble accuracy of those classifiers generated 
in iteration number 1-3.

In the second experimentation, the predefined 
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number of max_iteration in the algorithm is 
experimentally considered 7 here. Here, train 
set, test set and validation set are considered to 
contain 60%, 15% and 25% of entire dataset 
respectively. The summery of the results are 
reported in Table 3. All reported results are 
averaged over 10 distinct runs.

Table 3. Proposed method vs. simple ensemble
Base 

Classifier 
Type

Dataset Name

Bupa Wine Iris Breast Yeast

Proposed 
Method

MLP 68.48 98.79 95.32 96.49 59.50
kNN 63.91 79.82 93.25 95.81 58.28
SVM 68.35 99.01 95.04 96.31 59.82
DT 70.21 99.58 96.12 96.19 54.78

Simple 
Ensemble

MLP 67.68 98.16 94.36 96.04 58.11
kNN 63.86 79.82 93.28 95.95 58.69
SVM 68.22 98.73 94.88 96.28 59.36
DT 69.20 99.033 95.14 95.87 54.24

As it can be inferred from Table 3, recognition 
ratio is improved considerably when DT is the 
base classifier rather other base classifiers. 
Because of low number of features and records 
in Iris, the improvement is more significant on 
Wine dataset. 

Table 3 shows the results of performance of 
classification accuracy of the proposed method. 
These results are average of the ten independent 
runs of the algorithm. In these results, the 
parameter k in k-Nearest Neighbor algorithm, 
kNN, is set to one. The MLPs have two hidden 
layer with 10 and 5 neurons respectively in each 
of them.

The detailed results of the proposed method 
comparing with different classification algorithms 
are presented in Fig 3. To reach these results, 10 
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Fig. 3. Performance of different classification methods in terms of accuracy. X axis stands for dataset number.
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independent runs of each algorithm are employed 
and their average accuracy is reported. In each 
run 66 random percent of dataset is considered as 
train set and the rest 34% is considered as test set. 
The results still confirm that the proposed method 
is promising comparing with other classification 
algorithms including AdaBoosting. Fig 4 depicts 
a more detailed comparison between the proposed 

method and Adaboosting method. It contains the 
result of Fig. 3 plus the confidence interval for 
each method.

Fig. 5 compares the only AdaBoosting method 
with the proposed method. The results of the Fig 
5 show that the proposed method can compete 
with AdaBoosting. The proposed method can 
even outperform the AdaBoosting in some cases.

Fig. 4. Performance of different classification methods in terms of accuracy with the confidence interval.

Fig. 5. Performance of the proposed method with AdaBoosting method in terms of accuracy with the confidence interval.
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V. CONCLUSION AND DISCUSSION
Thanks to the good performance of the 

ensemble methods, they have been employed 
in various applications. Generally in design of 
combinational classifier systems, the more diverse 
the results of the classifiers, the more appropriate 
the final result. We propose a new method of 
creating an ensemble. It has been shown that 
the necessary diversity of an ensemble can be 
achieved by the proposed algorithm. The method 
was explained in detail above and the results 
over some real data sets prove the correctness 
of our claim. Although the ensemble created by 
proposed method may not always outperform all 
of the classifiers existing in ensemble, it always 
possesses the diversity needed for creation of an 
ensemble, and consequently it always outperforms 
the first or the simple classifier. We have also 
showed that time order of this mechanism is not 
much more than simple methods. Indeed using 
manipulation of data set features, we inject the 
necessary diversity in the ensemble; it means 
this method is a type of generative methods that 
manipulates data set in another way different with 
previous methods such as bagging and boosting.

These results can be due to its emphasis 
on boundary data points. By emphasizing on 
different boundary data points, in each iteration 
we obtain a diverse and well-scattered bag of 
data and consequently a diverse classifier. 
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