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Abstract. Energy and mass-balance modelling of glaciers is
a key tool for climate impact studies of future glacier be-
haviour. By incorporating many of the physical processes
responsible for surface accumulation and ablation, they of-
fer more insight than simpler statistical models and are be-
lieved to suffer less from problems of stationarity when ap-
plied under changing climate conditions. However, this view
is challenged by the widespread use of parameterizations for
some physical processes which introduces a statistical cali-
bration step. We argue that the reported uncertainty in mod-
elled mass balance (and associated energy flux components)
are likely to be understated in modelling studies that do not
use spatio-temporal cross-validation and use a single perfor-
mance measure for model optimization. To demonstrate the
importance of these principles, we present a rigorous sen-
sitivity and uncertainty assessment workflow applied to a
modelling study of two glaciers in the European Alps, ex-
tending classical best guess approaches. The procedure be-
gins with a reduction of the model parameter space using a
global sensitivity assessment that identifies the parameters to
which the model responds most sensitively. We find that the
model sensitivity to individual parameters varies consider-
ably in space and time, indicating that a single stated model
sensitivity value is unlikely to be realistic. The model is most
sensitive to parameters related to snow albedo and vertical
gradients of the meteorological forcing data. We then apply a
Monte Carlo multi-objective optimization based on three per-
formance measures: model bias and mean absolute deviation
in the upper and lower glacier parts, with glaciological mass
balance data measured at individual stake locations used as
reference. This procedure generates an ensemble of optimal

parameter solutions which are equally valid. The range of pa-
rameters associated with these ensemble members are used
to estimate the cross-validated uncertainty of the model out-
put and computed energy components. The parameter values
for the optimal solutions vary widely, and considering longer
calibration periods does not systematically result in better
constrained parameter choices. The resulting mass balance
uncertainties reach up to 1300 kg m−2, with the spatial and
temporal transfer errors having the same order of magnitude.
The uncertainty of surface energy flux components over the
ensemble at the point scale reached up to 50 % of the com-
puted flux. The largest absolute uncertainties originate from
the short-wave radiation and the albedo parameterizations,
followed by the turbulent fluxes. Our study highlights the
need for due caution and realistic error quantification when
applying such models to regional glacier modelling efforts,
or for projections of glacier mass balance in climate settings
that are substantially different from the conditions in which
the model was optimized.

1 Introduction

Surface energy and mass balance models are valuable tools
for estimating the response of glaciers to meteorological
forcing (Oerlemans, 2011). Model results can be used to esti-
mate regional run-off and resultant sea level rise (e.g. Hock,
2005), but additionally, and unlike results of empirical melt
models, they can also be used to characterize the fundamen-
tal processes and key drivers of melt on glaciers, which is
critical for understanding how they may behave under the
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influence of changing climate (e.g. Mölg and Hardy, 2004;
Klok and Oerlemans, 2004; Hock and Holmgren, 2005; Mölg
et al., 2008; Prinz et al., 2016; Willeit and Ganopolski, 2017).

All glacier surface mass and energy balance models con-
tain a degree of parameterization of physical relationships.
These parameters are either optimized to fit observations,
or chosen based on previously established empirical rela-
tionships, or are a mix thereof. Uncertainty surrounding the
transferability of parameterizations in both space and time
poses a critical limitation on the usefulness of such models
for regional upscaling of glacier behaviour or forward pro-
jections of global glacier behaviour under changing climate
conditions.

Early energy balance studies typically apply models at a
single point in space for which local physical relations can
be readily established empirically, or direct measurements
are available to tune the parameterizations (e.g. Mölg and
Hardy, 2004; Greuell and Konzelmann, 1994; Bintanja and
Van Den Broeke, 1995). Optimizing a model to local mea-
surements can successfully reproduce local melt rates or sur-
face temperature (e.g. Oerlemans and Knapp, 1998), and
where this is the case, reliable simulation of glacier ablation
is often taken to mean that the model also accurately reveals
the relative importance of specific energy sources to ice ab-
lation. Model optimization based on data from a single site,
or from a very short time series, is, however, prone to param-
eter over-fitting, meaning that parameters are specifically ad-
justed to the study location and/or time (Beven, 1989). This
can be evident in upscaling point optimizations to the glacier
scale: for example, Klok and Oerlemans (2002) applied a dis-
tributed energy balance model to a mid-latitude glacier, us-
ing a combination of previously published parameter values
and values estimated from local point-scale measurements,
and found reasonable agreement for local energy fluxes. The
albedo parameterization was identified as a potential source
of uncertainty as it was based on data from a single point and
1 year of observations (Klok and Oerlemans, 2002; Oerle-
mans and Knapp, 1998) and may not be valid elsewhere on
the glacier surface throughout all seasons (Van De Wal et al.,
1992; Konzelmann and Braithwaite, 1995).

In studies of spatially distributed glacier mass balance
(e.g. Klok and Oerlemans, 2004; Hock and Holmgren, 2005;
Hock, 2005; Reijmer and Hock, 2007; Mölg et al., 2009; Rye
et al., 2012; Gurgiser et al., 2013) optimization of free pa-
rameters to in situ measurements can be successful if the pro-
cesses being parameterized are quasi-constant over the whole
glacier surface, or if a dense measurement network is avail-
able for spatially distributed optimization. Brock et al. (2000)
concludes that the accuracy of spatially distributed models is
strongly dependent on the ability to apply multiple local op-
timizations, and on the importance of individual energy com-
ponents. Nevertheless, most temperature index models (e.g.
Hock, 2005; Pellicciotti et al., 2005; Carenzo et al., 2009;
Robinson et al., 2010, 2011) and also a number of energy
balance models (e.g. Mölg et al., 2009; Gurgiser et al., 2013)

have been optimized towards a single best fit to the glacier-
wide mass balance measurement, which requires a subjective
choice of the single mass balance metric to be used. For ex-
ample, optimizing for cumulative mass balance, mass bal-
ance gradient or stake measurements have been shown to
be problematic as different optimal solutions are found de-
pending on the mass balance metric chosen for optimization
(Rye et al., 2012). The associated differences in the individ-
ual optimal parameter values and resultant values of the en-
ergy components have not been studied in detail, and fur-
thermore, uncertainties of mass balance measurements (e.g.
Zemp et al., 2013; Galos et al., 2017) imply that a single
best-fit model simulation may not be found at all (Beven and
Binley, 1992).

A way forward may be found in multi-objective optimiza-
tion of glacier energy balance modelling, first applied in a
glaciological context by Rye et al. (2012). They optimized
a mass and energy balance model, on two Arctic glaciers in
Svalbard over∼ 40 years using three objectives for optimiza-
tion: (i) the mass balance gradient, (ii) the mean absolute
error (MAE) at the stake location, and (iii) the cumulative
mass balance. This approach creates an ensemble of optimal
solutions which all are equally “good” in respect to all three
objectives. With this approach the authors could reconstruct
the mass balance of the glaciers before direct measurements
were available and also give an estimate of the model un-
certainty from the parameter spread within the optimal solu-
tion set. This work demonstrated that it is likely that stated
model performance based on single objective optimizations
does not adequately represent model performance at a glacier
scale or over longer time periods.

Mass balance models are required to be transferable in
space and time in order to estimate run-off on a larger scale
or the impact of a changing climate (Oerlemans et al., 2005;
De Woul and Hock, 2005; Raper and Braithwaite, 2006). To
study the transferability of an enhanced temperature-index
model Carenzo et al. (2009) used the optimized parameters
from one particular year and glacier and compared it to the
locally optimized run at different glaciers and over differ-
ent time periods. They concluded that their model shows a
rather good transferability in space, except during overcast
conditions. Furthermore, they observed that the parameters
vary depending on year and location and are correlated to
each other. MacDougall and Flowers (2011) and Prinz et al.
(2016) investigate transferability of full energy balance mod-
els; while MacDougall and Flowers (2011) find satisfactory
temporal transferability in the Arctic over 2 years, albeit with
some local parameter adjustment, Prinz et al. (2016) fail to
do so in the tropics over an interval of a century. This is at-
tributed to a substantially changed climate over the century
and/or different micro-meteorological setting due to dramatic
glacier shrinkage (Prinz et al., 2016), which implies the prob-
lem of transferring a calibrated model to rather different cli-
matic settings and glaciers and raises the question about the
general uncertainty and transferability of such models.
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Figure 1. The sequential approach used in this study can be classified in three steps. First, data management and model setup in beige,
the simulations (blue) first use a global sensitivity analysis to reduce the parameter space followed by a multi-objective optimization. All
simulations are performed independently for three summers on two glaciers. The data analysis (green) is done independently for sensitivity,
parameter and model uncertainty analyses.

It can be expected that models with more parameters have
greater variation in their solutions. Reduction of free param-
eters for optimization based on a sensitivity analysis is there-
fore a helpful tool to reduce both the effect of parameter cor-
relation and computational expense (Spear and Hornberger,
1980; Saltelli et al., 2000; van Griensven et al., 2006). Gur-
giser et al. (2013) applied such a parameter reduction proce-
dure on a tropical glacier to reduce the free parameters prior
to assessing model transferability.

Model sensitivity and model uncertainty are often evalu-
ated together, and assessments of varying robustness have
been presented in the literature. For example, Mölg et al.
(2012) used an arbitrarily chosen spread of the most posi-
tive and negative deviation simulations around their single
best fit in respect to root mean square deviation (RMSD) of
cumulative mass balance to estimate uncertainty. This gives
only a rough estimate, as only two particular runs determine
the uncertainty estimate. Anslow et al. (2008) first optimize
their model and then vary the optimized parameters within
certain bounds (5 %) and perturb the meteorological input to
quantify the impact on the mass balance. This provides the
sensitivity of the model output towards the parameter values
and inputs, but the created range is also used as model er-
ror estimate. Machguth et al. (2008) perform a similar as-
sessment but base their perturbation ranges on probability
density functions, whereby model uncertainty is assessed by
applying random and systematic errors and uncertainties to

the meteorological input data as well as to the mean value
of parameters. The reported uncertainty, of 700 kg m−2 for
a 400-day simulation at a single point (roughly 10 % of the
total melt), is related to the standard deviation of the proba-
bility density function. Rye et al. (2012) used multi-objective
optimization to better constrain their model parameters but
do not evaluate their model on independent observations (i.e.
observations not used for calibration).

In this study, we present a model calibration and un-
certainty assessment workflow built upon a combination of
these ideas. Our aim is to bring awareness that uncertainty
estimates of physically-based models with many free param-
eters are likely to be under-estimated when applied in dif-
ferent settings (geographical and or temporal) than those for
which the model was calibrated. Using an established dis-
tributed energy and mass balance model (Mölg and Hardy,
2004; Mölg et al., 2008, 2009), we simulate 3 years of sum-
mer mass balances on two mid-latitude glaciers (Fig. 1).
We start by applying a global sensitivity analysis to reduce
the parameter space extending the local sensitivity analysis
used by Gurgiser et al. (2013) to a global variance-based
method (Saltelli et al., 2006), a procedure which has recently
been applied in snow pack modelling (Sauter and Obleitner,
2015). Subsequently, we use the multi-objective optimization
applied by Rye et al. (2012) to calibrate our model based on a
set of three quality measures. The parameter uncertainty and
resulting uncertainty of the energy components are evaluated
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Figure 2. Model simulations are performed at the stake locations shown as points; points marked in black are only used in the optimization,
while green points indicate the seven stakes on each glacier that were also used in the sensitivity analysis. Detailed maps are available in the
Supplement (Figs. S1–S2).

based on this calibration procedure. Finally, the temporal and
spatial transfer of such a model ensemble is assessed with
cross-validation.

In this paper, we will use the term “model uncertainty” to
describe the difference between any modelled quantity and
its counterpart in reality (“the truth”). An uncertainty value
is a measure of how much trust can be given to a mod-
elled quantity: in practice, model uncertainty can be esti-
mated based on observations, and in any modelling activ-
ity which includes parameter calibration model uncertainty
must be estimated separately from the calibration procedure
(cross-validation). For quantities without equivalent in real-
ity (e.g. model parameters), we use the term “uncertainty” to
refer to the fact that their true value is really unknown, and
that this uncertainty in the parameters is also conveyed in the
model uncertainty. When we speak from “model sensitivity”,
we mean the variance of the model output as function of the
variance of an input quantity (e.g. forcing data, model param-
eters). A model sensitivity analysis does not require observa-
tions. In our paper, we restrict our sensitivity analysis to the
internal model parameters, not to the input meteorological
variables.

2 Study sites and model input data

Two glaciers in the eastern European Alps were selected
as test sites in this study (Fig. 2). Hintereisferner (HEF;
46.80◦ N, 10.75◦ E) is a sizeable valley glacier in the Aus-
trian Ötztal Alps that spanned 2454 to 3720 m a.s.l. in 2013,
when the glacier area was ca. 6.7 km2. Langenferner (Ve-
dretta Lunga) (LGF; 46.46◦ N, 10.61◦ E) is a smaller val-
ley glacier in the Italian Ortler Alps that spanned 3370 to
2711 m a.s.l. in 2013. These glaciers were chosen since the
model used here requires topographic and meteorological in-
put data, and measurements of surface mass balance for eval-
uation. For both these glaciers (i) topographic data are avail-
able in the form of high-resolution digital elevation mod-
els (DEMs) derived from airborne laser-scanning data ac-
quired in autumn 2013 (Galos et al., 2015); (ii) meteoro-
logical data are available from automatic weather stations
(AWSs) in the vicinity of the glaciers for the period 2012
to 2014 and (iii) intense glaciological observations, includ-
ing measurements of seasonal mass balance (e.g. Klug et al.,
2017; Galos et al., 2017), are available.
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At HEF the AWS is located on a small plateau within a
rock slope north of the upper tongue area of the glacier at an
altitude of 3025 m a.s.l. The horizontal distance of this AWS
from the glacier is about 300 m and it provides all meteoro-
logical data required for the model except for precipitation.
Precipitation data were taken from the gauge operated by the
Bavarian Academy of Sciences at Vernagtbrücke, 3.5 km east
of HEF at an elevation of 2600 m a.s.l., and were scaled to the
elevation of the AWS on the basis of precipitation gradients
derived from 11 totalizing rain gauges in the vicinity of the
glacier (Strasser et al., 2017). At LGF the AWS data came
from the station of the Hydrological Service of the province
of Bozen operated at Sulden Madritsch, 2.5 km north of the
glacier at an altitude of 2825 m a.s.l. (Galos et al., 2017).

3 Model and methods

3.1 Energy balance model

The energy and mass balance model used in this study is
a process-based model that has been applied in a range of
glacier environments (Mölg and Hardy, 2004; Mölg et al.,
2008, 2009, 2012; Gurgiser et al., 2013; Prinz et al., 2016;
Galos et al., 2017). The model was run in hourly time-steps
for three summer periods over each glacier. The model is a
distributed mass and energy balance model, but in this study
simulations were limited to 18 stake locations on each glacier
to reduce computational expense. The model tracks the ac-
cumulation of solid precipitation and uses the surface energy
balance to calculate the ablation at the glacier surface:

QM+Qice = SWnet+LWnet+QS+QL+QG+QP, (1)

where LWnet and SWnet are the net radiation balances for
long-wave (thermal) and short-wave (solar) radiation and the
other energy fluxes are the sensible (QS), latent (QL), ground
(QG) and precipitation (QP) heat flux. The available energy
is used to raise the glacier surface temperature (Qice) if below
freezing point or for melting (QM) if the glacier surface is at
the melting point. Mass losses of the glacier are represented
via melt (QM) and sublimation (QL). Refreezing of liquid
precipitation and resublimation lead to additional mass accu-
mulation at the surface. We use the model in a similar con-
figuration to Prinz et al. (2016). The only difference is given
by a change in the short-wave radiation scheme which is ex-
plained in the detailed model description in the Appendix
(Sects. A1–A6).

3.2 Methods

3.2.1 Global sensitivity analysis (GSA)

Variance-based sensitivity testing methods work in a proba-
bilistic framework judging sensitivity by relative variances of
model input and output (van Griensven et al., 2006; Saltelli

et al., 2000, 2006, 2010). This is a global method that is in-
dependent of model calibration, i.e. independent of a local
optimal run, and is hereafter referred to as global sensitiv-
ity analysis (GSA). The method treats the model as a simple
function f with

y = f (X) X =X1,X2, . . .,Xn, (2)

where y is the single model result (in this case mass balance)
and X1,...,n are the individual input parameters.

The influence of an individual parameter can be examined
by the main effect (Vi) of Xi on Y .

Vi = VXi (EX−i(Y |Xi)) (3)

X−i is the whole parameter space except any variation in Xi
(a fixed Xi), E is the expectation value and V the variance.
EX−i(Y |Xi) is the mean model output with whole parame-
ter variation except in Xi . The variance over all values for
Xi yield the variance attributed to parameter Xi . The sensi-
tivity of the model towards single parameters is evaluated by
normalizing by the total variance of the output.

SXi =
VXi (EX−i(Y |Xi))

Vy
(4)

SXi is the first-order sensitivity index. The total sensitivity
index (STi ) is the effect of Xi with all its interactions on the
model variance:

STi =
EX−i(VXi (Y |X−i))

Vy
. (5)

This can be related to the sensitivity obtained from local sen-
sitivity analysis. The model sensitivity (variance) to Xi is
tested (VXi (Y |X−i)) at every point of the parameter space
(X− i fixed). To clarify, consider the example of a simple
non-additive model Y =X1 ·X2+X3 with the variables Xi
as input parameters with a given variance/uncertainty. As-
suming unified distribution within the intervals

X1 ∈ [1,3],X2 ∈ [0.1,0.3],X3 ∈ [0.5,1],

leads to a model output range of Y ∈ [0.6,1.9]. The variance-
based method yields the results for SXi , the first-order sensi-
tivity index and STi , the total sensitivity index for an ensem-
ble of 10 000 runs as shown in Table 1. The first-order effect
ofX3 is the largest, while the other two are similar if compu-
tational uncertainty is neglected. The most variance is caused
by the last parameter.X3 has no interactions, so its total index
is the same as the first-order one, while interaction between
X1 and X2 creates additional variance, so their total index is
higher. In the example X1 and X2 contribute to ≈ 60 % of
the total variance and X3 ≈ 40 %, as X1 ·X2 ∈ [0.1,0.9] and
X3 ∈ [0.5,1].

The estimation of the sensitivity indices follows the algo-
rithm from Saltelli et al. (2010). The model used here has
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Table 1. The sensitivity indices for the simple model Y =X1 ·X2+
X3. The indices for X1 and X2 are similar as they both have the
same normalized variance. X1 ·X2 creates additional variance by
the interaction of the two parameters yielding higher total indices.

X1 X2 X3

SXi 0.26 0.27 0.43
STi 0.31 0.30 0.43

22 free parameters. A base sample of 12 000 parameter set-
tings was created with a quasi-random Sobol sequence. The
random numbers are linearly transformed onto the parameter
intervals. The distribution is always treated as uniform and
the limits for every parameter are given in Table 2. The in-
dices are estimated with N ·(k+2) runs, where k is the num-
ber of parameters andN the base sample size. The GSA con-
sists of a total ensemble size of 300 000 simulations per year
and glacier, fulfilling the convergence criteria for the algo-
rithm (STi ≥ SXi ,

∑
SXi ≤ 1, SXi ≥ 0). Note that we did not

investigate if fewer solutions could already fulfill the conver-
gence criteria. To reduce computational expenses the GSA
model was limited to seven stake locations on each glacier
(Fig. 2).

The parameter sensitivity results from the GSA are also
used as a tool to reduce the number of free parameters in
the model by identifying those parameters which have only
a marginal influence on the model output (Spear and Horn-
berger, 1980; Saltelli et al., 2000; van Griensven et al., 2006).
The model is considered insensitive to parameters with a total
sensitivity index (STi ) of < 0.05, and these parameters were
fixed at the median value of the range shown in Table 2 in
subsequent model simulations.

3.2.2 Multi-objective optimization and uncertainty
quantification

A multi-objective optimization allows for more than one op-
timal solution in the calibration procedure, and offers a way
to assess a range of plausible parameter sets that we will use
later on for model predictions. The multi-objective optimiza-
tion used here follows previous approaches in hydrology and
glaciology (Yapo et al., 1998; Rye et al., 2012). Where the
model is given n objectives, with fn to be minimized in re-
spect to the model parameter input X, the optimization ap-
proach can be written as follows:

minimize(f1(X),f1(X), . . .,fn(X)). (6)

The result of Eq. (6) is an ensemble of optimal solutions that
represent trade-offs between the objectives and no single one
can be deemed superior to the other optimal solutions. There-
fore, they are called the non-dominated set of optimal solu-
tions, or Pareto set (Pareto, 1971). As an illustration, consider
an optimization with two objectives (f1,f2): The concept of
a Pareto optimal set is shown in Fig. 3 in which the (classic)

Figure 3. The figure displays a 2-dimensional Pareto space which
comprises a 2-dimensional Pareto front. The solutions on this front
(black solid line) are referred to as the non-dominated set of so-
lutions. In comparison, all other solutions within the solution space
are inferior in at least one objective relative to the Pareto front. Clas-
sic single objective optimization yields the points fmin

1 and fmin
2 ,

which represent the minimum of those objectives that the model
can achieve. The utopian point (black) is the point (fmin

1 ,fmin
2 )

where both objectives are at their minimal value. Commonly, the
compromise solution (red) of the Pareto set is considered an objec-
tive choice for a single solution as it has the minimum Euclidean
distance of the optimal solution towards the utopian point.

single objective solutions are the points fmin
1 and fmin

2 for
the two objectives. A solution at the utopian point is desirable
as all functions would be at their minimum, but the models
generally cannot optimize the different objectives simultane-
ously. There are only compromise solutions between the ob-
jectives. The members of the set of optimal solutions defin-
ing the Pareto front are superior to the other solutions, but
are all equal to each other without subjective ranking by the
modeler. The variation of the parameters of the optimal so-
lution set defines the minimum parameter uncertainty (Vrugt
et al., 2007). This uncertainty is a result of shortcomings in
the model and/or the variations of parameters, such as spatial
or temporal change in the true parameter value over the sim-
ulation period (Oerlemans and Greuell, 1986; Marshall and
Warren, 1987). If a single simulation must be chosen to be
the optimal model set up, the compromise solution, defined
as the point with the lowest Euclidean distance to the utopian
point, is a common choice.

In this study the multi-objective optimization is based on a
Monte Carlo simulation. The non-sensitive parameters from
the GSA were fixed to their median value from the range
used in the GSA (Table 2). Then 20 000 model simulations
with random value combinations of the remaining parame-
ters were created and the mass and energy balance were sim-
ulated for 18 stake locations. This approach was chosen in
favour of an evolutionary algorithm so that different objec-
tive function spaces and all single objectives could be inves-
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Table 2. The ranges for the 22 different parameters used in the sensitivity study. Most parameterizations are explained in the Appendix A.

No. Name Abbreviation Minimum Maximum Unit

1 Temperature gradient Tgrad 0.0055 0.0085 K m−1

2 Precipitation gradient Pgrad 0 0.12 m−1

3 All liquid precipitation threshold Plimit+ 2 3 ◦C
4 All solid precipitation threshold Plimit- 0.5 1.5 ◦C
5 Surface layer thickness sfc 0.1 0.5 m
6 Momentum roughness length over ice z0i 1× 10−3 5× 10−3 m
7 Scalar roughness length over ice zhi 0.1× 10−3 2× 10−3 m
8 Roughness length over fresh snow zhfs 0.1× 10−3 2× 10−3 m
9 Momentum roughness length over fresh snow z0fs 1.5× 10−3 6.5× 10−3 m
10 Roughness lengths of aged snow z0hfi 0.1× 10−3 4× 10−3 m
11 Precipitation density ρs 200 370 kg m−3

12 Part of refreezing mass forming superimposed ice suifra 0.0 0.36
13 Absorbed short-wave at ice surface ζi 0.72 0.88
14 Absorbed short-wave at snow surface ζs 0.81 0.99
15 Extinction coefficient of ice βi 2 3
16 Extinction coefficient of snow βs 13.68 20.52
17 Value for bottom temperature Tbottom 271 273 K
18 Ice albedo αi 0.15 0.25
19 Fresh snow albedo αfs 0.8 0.9
20 Firn albedo αfi 0.4 0.65
21 Timescale in albedo module t 5 30 days
22 Depth-scale in albedo module d 2 5 cm

tigated with the same set of simulations. Various objective
functions were initially explored, including root mean square
deviation (RMSD) and mean absolute deviation (MAD) over
all simulation points, but finally three objective functions
that captured the main patterns of behaviour were applied:
(i) the BIAS over all simulated stakes, (ii) the mean abso-
lute deviation (MAD) of the lower nine stakes (MADlow9)
and (iii) the MAD over the upper nine stakes (MADtop9).
The BIAS is used as a proxy for the cumulative mass bal-
ance with the avoidance of interpolation errors. The RMSD
is a commonly used measure for optimization in glaciolog-
ical modelling (e.g. Gurgiser et al., 2013; MacDougall and
Flowers, 2011). By using the MAD here we want to reduce
the effect of individual stakes which could be influenced by
processes which are not captured by the model (snow redis-
tribution through wind or avalanches, dust and debris cover
and related changes in radiation, etc.), but the general fea-
tures of those two statistical functions are similar. Previous
studies (e.g. Klok and Oerlemans, 2004; Hock, 2005; Sauter
and Obleitner, 2015) have focused on the accumulation and
ablation area separately or exclusively, but without a dis-
tinct mathematical comparison. Therefore, the approach of
the split MAD was chosen. The Pareto front was identified,
and a second ensemble including solutions within a certain
range (100 kg m−2) from the Pareto front was additionally
identified to account for errors in the field measurements of
mass balance at each simulation point. However, results of
this second ensemble will only be mentioned briefly through-

out the discussion. The spread of the parameter settings of all
optimal solutions of the Pareto and near-Pareto Sets are used
to indicate the parameter uncertainty for each case, and the
calculated surface energy balance components of these opti-
mal sets are also used to estimate the uncertainty of the en-
ergy components on the point scale, as well as on the glacier
scale.

4 Results and discussion

4.1 Global sensitivity analysis

The focus of this GSA is not on the absolute sensitivity to-
wards single parameters, but rather to reduce the dimension
of the parameter space. Therefore, the following discussion is
limited to two classes: parameters to which the model is sen-
sitive (STi > 0.05) and non-sensitive (STi < 0.05). On each
glacier the mass and energy balance at seven stake locations
over 3 years was simulated for the GSA, so the maximum
count of sensitivity for a parameter would be 21, meaning
that the model is always sensitive to that parameter at every
point of the glacier.

At Hintereisferner, 11 out of 22 parameters are identified
as sensitive (Fig. 4a), and these sensitive parameters are clas-
sified in two general categories. Firstly, all but the lowest
stake location are sensitive to parameters related to surface
albedo, particularly of snow and firn, and secondly, for stakes
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Figure 4. The amount of sensitive stakes per year for (a) HEF and (b) LGF. The sensitivity analysis was performed at seven stakes on each
glacier, though the vertical gradients can only be tested at six stakes as one is located at the same altitude as the reference weather station.
Every parameter with a sensitivity index higher than 0.05 got a score of 1, giving a maximum count of seven per year (meaning the model
is sensitive to this parameter at all stakes). Parameters involved in the parameterization of surface albedo are dominating, with snow related
parameters in the upper section of the glacier and ice related ones at the lower stakes. Hintereisferner shows a total of 11 sensitive parameters
and Langenferner 6.

with high elevation differences compared to the AWS, the
model is also sensitive to the vertical temperature gradient.

The sensitivities show spatial and temporal variability,
which can be explained by the varying mass balance con-
ditions of the respective year (mean specific summer/annual
mass balance with 2012:−2643/−1560, 2013:−1841/−510
and 2014: −1494/−122 kg m−2). For example, sensitivity to
the ice-related parameters is most evident in 2012, which
was the driest (in terms of precipitation, not air humidity)
and most negative mass balance year, with large parts of the
glacier surface free of snow and firn for most of the ablation
season. By contrast, the roughness length of fresh snow is
only influential at the upper stakes in 2014, where snowfall
was frequent during the ablation season resulting in the least
negative mass balance of the three study years. Sensitivity
towards the elevational precipitation gradient is only relevant
at the lowest stakes (500 m below the weather station) in the
wet years.

On the smaller Langenferner, 6 of the 22 parameters were
identified as sensitive (Fig. 4b). Similar to HEF, the model
shows consistent sensitivity to surface albedo and the vertical
temperature gradient. As LGF is smaller than HEF, the sensi-

tivity shows less variability in space and time, though the an-
nual mass balances during the three study years range from
about −1500 to +400 kg m−2, and, as the tongue of LGF
does not extend to such a low elevation as the one of HEF,
it is less sensitive to ice-related parameters. Variations in the
ice albedo within the bounds of 0.15 and 0.25 hardly influ-
ence the mass balance model results on the smaller glacier,
even though ice is exposed for the majority of the summer at
the lowest stake. This low sensitivity to the ice albedo com-
pared to the snow albedo parameters is explained by the fact
that, as the removal of snow cover is accompanied by a large
drop in albedo (0.4–0.65 to 0.15–0.25), the time of exposure
is more crucial than the final ice albedo, and this time of ice
exposure is itself influenced by the snow albedo via its dom-
inant control on the short-wave radiation budget. Within the
chosen parameter ranges, the net short-wave radiation varies
by 50 % in the case of fresh snow (10 %–20 % absorbed) and
only by 12 % over ice.
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Table 3. Five objective functions are used to analyse the model performance. The minimum value for every function and each year are given
in kg m−2. While the BIAS is low in all cases, absolute errors and RMSD are much higher, and highest in 2012. Note that the minimum
MAD does not refer to the same run over the whole glacier and its upper and lower parts.

HEF 2012 HEF 2013 HEF 2014 LGF 2012 LGF 2013 LGF 2014

BIAS 0.11 0.48 0.00 0.52 0.28 0.04
RMSD 470 213 285 537 391 214
MAD 414 170 225 419 309 153
MADtop9 252 108 228 328 114 170
MADlow9 397 165 130 346 283 81

4.2 Calibration

First we consider the best model performance with respect
to each individual objective function tested (Table 3), before
presenting the multi-objective optimization based on the first,
fourth and fifth objective in Fig. 5.

In all cases a model simulation with very low bias (<
1 kg m−2) with respect to the stake mass balance can be
found. This illustrates that apparently a good optimization on
the single value of cumulative mass balance over the stakes is
relatively easy to achieve (Table 3). In comparison, the devi-
ation of all other objective functions is much higher, ranging
from 81 to 537 kg m−2. The deviations in these objectives
are all largest in 2012 on both glaciers. RMSD and MAD
vary in a similar way between the years at each glacier, with
the higher RMSD values indicating a non-uniform deviation
from the measurements over the stakes. With the exception of
2014, the glacier-averaged MAD is larger than the MAD cal-
culated for either the upper or lower section of the glaciers.
This is to be expected as the stakes within each section of
the glacier experience more similar climate conditions, re-
sulting in a lower MAD. The fact that MAD in the lower
glacier section is larger than in the upper section in 2012 and
2013 is probably related to the incapability of the model in
its current configuration to correctly reproduce the date of ice
exposure. In 2014 the upper glacier sections show a slightly
higher MAD, associated with above average accumulation in
the previous winter and the frequent summer snowfall in this
season.

The multi-objective optimization, using BIAS, MADtop9
and MADlow9, yields an ensemble of solutions. The non-
dominated set for each of the 3 years has 27, 17, 69 mem-
bers for HEF and 58, 61, 14 members for LGF, respec-
tively (Fig. S4). The fewest solutions are found in years with
the lowest total MAD (HEF, 2013; LGF, 2014). Figure 5
shows the Pareto front of optimal solutions for HEF 2012 and
the corresponding parameter settings. A low bias is easily
achieved by the model if no other objectives are considered
because it is a single value (the sum of the mass balance at all
stakes) and, for example, deviations in the ablation and accu-
mulation area may compensate each other. The projections
onto the BIAS planes are less curved (the distance between
the utopian and compromise point is smaller) and the perfor-

mance in respect to the MADs can be drastically increased
with only a small cost in the BIAS. The 2-dimensional pro-
jections of the Pareto space (Fig. 5a and b) illustrates, for
example, that allowing for a model bias of 25 kg m−2 can im-
prove the MAD by 200 and 300 kg m−2 in the lower and up-
per glacier sections, respectively. The MADs plane (Fig. 5c)
is more curved (larger distance between the utopian and com-
promise point), indicating that the two objectives cannot be
optimized by the model at the same time, such that some pa-
rameter sets leading to good results for the ablation zone of
the glacier may not sufficiently reproduce the relevant pro-
cesses in the accumulation zone.

The parameter values of those optimal solutions span the
entire allowed space apart for some of those relating to snow
albedo which span (almost) the whole parameter space in
all years for both glaciers, and show no obvious tendencies
towards a certain albedo range (Sect. 3). For HEF in 2012,
snow albedo values cluster in the higher range (0.52–0.6) for
firn and (0.86–0.9) for fresh snow (Fig. 5d), while on LGF
lower firn and fresh snow albedo values (< 0.5/< 0.84) are
optimal. Similar behaviour is observed for the albedo time
scale (see Appendix A3), which tends towards higher val-
ues for HEF in 2012/13 and towards lower ones for LGF in
2013/14. The confinement of snow albedo is mainly a re-
sult of the highest model sensitivity towards this parameter,
nevertheless it still varies and the converse argument, of less
sensitive parameters showing greater span is not valid: for
example, the roughness length over fresh snow is generally
at the lower margin of the allowed parameter range (0.1–
0.14×10−3 m) in 2012, even though the model is considered
insensitive (STzhfs

< 0.05) to this parameter in that particu-
lar year. These results highlight that the parameter settings
of multiple optimal solutions for this type of mass and en-
ergy balance models can vary drastically. There are no clear
correlations between two individual parameters, instead all
parameters interact simultaneously to some degree. Without
the a priori reduction of model parameters by GSA, even less
information could be extracted from the optimization. Com-
pared to Rye et al. (2012) our parameters span a wider range
of the normalized parameter space, which is due to a wider
initial parameter range in our study. Despite the relatively
narrow ranges of values reported in the literature, our study
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Figure 5. Each individual member of the Pareto set for HEF in 2012 is displayed with a different colour and the compromise solution
highlighted (red triangle or red line). The different panels are the 2-dimensional projections of the Pareto space onto the (a) BIAS and
MADtop9; (b) BIAS and MADlow9; and (c) MADlow9 and MADtop9 planes. Panel (d) shows the normalized parameter values for each case
in the same colours as in the Pareto space plots. The parameter settings of the optimal solutions are quite diverse and span over most of the
parameter space. The firn albedo and albedo timescale are the only parameters showing some confinement to a narrower range. The chaotic
nature of the parameter settings furthermore shows that a single solution is not representative in its parameter settings for the ensemble of
optimal solutions.

clearly reveals that many of the parameters could take almost
any value in the optimization process. Changes to the pa-
rameter ranges accounting for potentially unrealistic values
may quantitatively change the results, but within the range
no change in the sensitive parameters is expected. For exam-
ple, Rye et al. (2012) applied values for fresh snow albedo
in the range of 0.65 to 0.95, while we restricted the initial
range to values between 0.8 and 0.9, as reported in the lit-
erature (e.g. Cuffey and Paterson, 2010). We also used fresh
snow densities which are relatively low compared to those
reported in recent studies (e.g. Helfricht et al., 2018). How-
ever, the used values are based on previous studies (e.g. Mölg
et al., 2008; Gurgiser et al., 2013; Prinz et al., 2016) and the
choice of those does not significantly influence the results.

4.3 Transferability studies

To investigate the transferability of the optimized mass bal-
ance model settings, all the optimal solutions of the Pareto
set of one glacier summer mass balance case were applied to
the five other summer and glacier cases. While each Pareto
set was identified based on the multi-objective optimization,
the transferability study uses only the Euclidean distance to-

wards the utopian point as a quantification tool. The indi-
vidual optimal parameter settings for HEF 2012 for exam-
ple yield quite varying performances for the other summers
(Fig. S4a). While the performance on the same glacier (HEF)
is reasonably good for 2012 (200–800 kg m−2 compared to
152–600 kg m−2 in the optimization period of summer 2013)
and slightly worse for 2014, the optimal solutions do not per-
form so well for LGF, resulting in Euclidean distances of
up to 3500 kg m−2. Analogous analysis of the ensemble be-
haviour of other summers shows that the optimal solution for
2012 also performs well in 2013 and vice-versa, and shows
acceptable performance in 2014. The deviation of the 2012
and 2013 optimal values of HEF yields errors greater than
2000 kg m−2 on LGF. The 2014 HEF ensemble performs on
average better on HEF, but two simulations perform better
on LGF in 2012/13 and around 20 are within the same error
as for HEF. On LGF also 2012 and 2013 agree better, and
the ensembles produce reasonable results for both glaciers in
2014. The ensemble of 2014 on LGF yields similar errors
(250–800 kg m−2) for LGF 12/13 and HEF 14. All ensem-
bles of LGF produce larger errors on HEF in 2012 and 2013.
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Figure 6. (a) Performance of the single compromise solution for each season and glacier (GGGyy), with HEF in solid blue colours and LGF
in red. The simulations which perform best over a 3-year (RMSDHEF and RMSDLGF) and 6-year period (RMSDall) are given with dashed
lines, following the same colour scheme. (b) The corresponding parameter setting of the optimal solutions to the left. The colour scheme
is equivalent. The compromise solutions for the individual years show different parameter settings and also varying performance out of the
calibration period. Only the snow-albedo related parameters show a trend as they take rather large values on HEF and small on LGF. No clear
trend is visible for the other parameters.

The cross-validation (Fig. 6) focuses on the transferabil-
ity of the single compromise solution to other season and
glacier cases. This can be considered as a classical best guess
solution. The features follow the structure of the ensemble
behaviour discussed above with HEF 2012 and 2013 seem-
ing to be distinct from the other four cases. The compro-
mise solutions for HEF 2012 and 2013 are similar in per-
formance and parameter value and, while they perform ade-
quately for HEF in 2014, within the estimated model uncer-
tainty of 1300 kg m−2, the error is greater than 1500 kg m−2

when either of these compromise solutions is applied on
LGF, no matter for which year. Similarly, the compromise
solution for the 3-year period for HEF (RMSDHEF in Fig. 6),
which is dominated by the characteristics of 2012 and 2013,
also performs poorly when applied to LGF (errors of up to
3500 kg m−2). The compromise solution of HEF 2014, how-
ever, generally performs better on LGF than for other years
at HEF, and reciprocally, the compromise solution over the
whole period at LGF performs best at HEF in 2014, and the
maximum error (up to 2500 kg m−2) is lower than for cases
of HEF compromise solutions being applied to LGF. This
is probably due to the domination of more negative mass
balances in 2012 and 2013 at HEF, where good model per-
formance is linked to capturing the large extent of the ab-
lation area, whereas the shorter glacier tongue at LGF has
smaller impact on the mass balance of this glacier. The com-
promise solution (RMSDall) for all six cases also highlights
that within this set of six the cases HEF 2012 and HEF 2013
are more distinct from the other cases as the overall compro-
mise solution performs worst in these two cases. For most pa-
rameters no clear separation between the two glaciers is evi-
dent, except for fresh snow albedo and the albedo timescale
which are both larger at HEF and smaller at LGF. Inspec-
tion of the optimal parameter values reveals that runs with a

longer calibration period (RMSDxxx) do not necessarily take
trade-off values between the individual years. For example,
in this case the solution that performs best over both glaciers
and the whole time period (RMSDall) takes larger values of
fresh snow density and ice-albedo than any other compro-
mise solution (Fig. 6b). This further highlights the model
complexity and is suggestive of the effects of physical short-
comings (such as parameter values that are constant in space
and time) compensating each other.

4.4 Energy balance components

Analysis of the energy balance components associated with
Pareto set solutions offers a qualitative means of verifying
that the identified optimal parameter settings are in line with
expected physical processes at the glacier surface. The en-
ergy balance components calculated by the model are ex-
pected to vary depending on the parameter settings of an opti-
mal ensemble, which have been demonstrated to span almost
the whole parameter space. This variation in energy balance
components is indicative of the uncertainty in the modelled
energy fluxes (we say “indicative”, because the true uncer-
tainty can only be assessed using observations, which are not
available here). Figure 7 illustrates such variations in the en-
ergy balance components for the case of HEF 2012 based on
the our model, not accounting for uncertainties in the me-
teorological input itself. In this case, the most uncertain en-
ergy balance component is the short-wave radiation, which
at the same time is the largest energy source for the surface.
Total energy flux from short-wave radiation decreases with
altitude, while the associated uncertainty increases. The sen-
sible and latent heat flux provide a net energy source to the
surface and their value and uncertainty also decrease with al-
titude. The long-wave radiation budget is a net energy loss
from the surface in summer, and its value increases and un-
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Figure 7. The energy balance components for 8 out of 18 selected stake locations close to the central flow line, displayed in different colours
for HEF 2012. Solid bars represent the fluxes of short-wave radiation (SW), long-wave radiation (LW), turbulent heat fluxes (QL and QS),
penetrating short-wave (QPS), precipitation heat flux (QP),conductive heat flux (QC) and the resultant available heat for melting (QM, here
plotted as a positive flux).

certainty decreases with elevation. As a result of these eleva-
tional patterns in uncertainty, the uncertainty in melt energy
is also largest at low elevations.

The variation of the averaged energy components over the
stakes for HEF 2012 are given in Fig. 8. The uncertainties
are generally lower than on a stake basis. The short-wave,
conductive ground heat flux and sensible heat flux supply a
net heating to the surface on both glaciers. The precipitation
heat flux is also a minor energy source. The penetration of
short-wave radiation and the long-wave budget remove en-
ergy from the glacier surface. Latent heat is the only energy
flux that has either a positive or negative effect on the sur-
face energy balance depending on stake location, glacier and
year. On both glaciers, lower elevation locations tend to show
more positive energy fluxes from latent heat. At HEF this flux
is mostly an energy addition to the glacier surface while on
LGF it mostly serves to remove energy from the surface. In
the beginning of the summer, sublimation during the day and
condensation or re-sublimation during the night is dominant
on HEF, and the general trend over the summer is to pro-
gressively more condensation. LGF shows less condensation
during mid-summer, which is mainly attributed to less windy
conditions than at HEF.

The total contribution of the energy balance components
averaged over the glacier are listed in Table 4. The rela-
tive uncertainties of the energy balance components are up
to 50 % of their contribution on single stake basis and 30 %
averaged over HEF; slightly lower (30 % and 25 %, respec-

Figure 8. The energy balance components averaged over all stakes
has less uncertainty than on the point scale for HEF 2012. The ob-
jective functions are all integrated over the whole glacier and thus
the uncertainty is lower. Glacier wide the short-wave radiation is
the largest component with the largest absolute uncertainty as well,
followed by the turbulent fluxes. The long-wave balance and the
penetrating short-wave radiation provide a net cooling effect for the
surface.

tively) for LGF. This leads to a variation in the available heat
for melting and the mass balance of about 30 % on a point
scale. The absolute uncertainty of the seasonally averaged
available energy for melting can reach up to 35 W m−2 at
the tongue area of HEF. This corresponds to a daily melt
uncertainty of 9 kg m−2 and seasonal uncertainty of up to
1.3 kg m−2. The glacier averaged available heat for melting
is much less uncertain over all stakes. This is a result of the
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Table 4. The energy balance components are averaged over all stake locations. The uncertainty is given in respect to the minimum and
maximum of the ensemble. The short-wave radiation (SWnet) has the largest impact, decreasing in importance from 2012 to 2014, with a less
negative mass balance (QM). The penetrating short-wave radiation (QPS) follows the same pattern with the opposite effect. The long-wave
budget (LWnet) is lower for LGF. The turbulent fluxes are greatest in 2012 and larger on HEF. The precipitation (QP) and convective (QC)
heat flux are of minor importance.

SWnet LWnet QS QL QPS QP QM QC

HEF 12 80± 10 −16± 3 31± 9 17± 7 −13± 1 1 103± 19 3 W m−2

HEF 13 75± 11 −21± 3 21± 7 13± 5 −12± 2 0 80± 8 4 W m−2

HEF 14 69± 15 −21± 3 20± 7 8± 5 −10± 2 1 71± 7 4 W m−2

LGF 12 122± 14 −22± 1 14± 4 −3± 1 −19± 3 1 97± 11 4 W m−2

LGF 13 112± 22 −28± 2 8± 3 −3± 2 −16± 4 0 78± 16 5± 1 W m−2

LGF 14 95± 7 −27± 1 9± 2 −2± 1 −12± 1 1 68± 5 5 W m−2

calibration process. The sum of total available melt energy is
directly linked to the bias as objective function, which shows
the largest value among the optimal solutions on HEF 2012
with 600 kg m−2. In comparison the MADs which are more
influenced by the mass balance at the individual stake reach
values up to 1000 kg m−2.

The largest uncertainties in our study are associated with
the short-wave radiation as a result of the albedo parame-
terization, which relies on five model parameters. Alterna-
tive albedo parameterizations are also known to be a source
of substantial uncertainty (e.g. Klok and Oerlemans, 2004;
Willeit and Ganopolski, 2017). The greatest uncertainty is
commonly found in the accumulation area and around the
equilibrium line altitude. This is because (i) the parameter-
ization for snow albedo has more variation and free model
parameters than albedo over ice, and (ii) around the ELA the
variation of the ice exposure date increases the uncertainty
of short-wave radiation flux. Point scale albedo measure-
ments combined with localized optimization schemes may
solve this issue, but for distributed models a more detailed
model may be necessary to better capture the full complexity
of the processes governing initial snow albedo and its change
through time (e.g. Flanner and Zender, 2006).

The long-wave radiation shows a lower uncertainty in this
study than in Sauter and Obleitner (2015) and its uncertainty
is mainly due to the air temperature, the related temperature
gradient parameter, and the surface temperature. It is impor-
tant to note that we cannot state that the general uncertainty
of energy balance models associated with incoming long-
wave radiation is low, since in this study the parameterization
was optimized prior to the sensitivity analysis as direct mea-
surements are available at the weather station. Consequently,
long-wave radiation is considered a meteorological forcing
here and therefore it was decided to do this prior optimiza-
tion. The parameterization gives no bias for the station but
the hourly RMSD was up to 30 W m−2, which is in the range
of the net long-wave budget. This therefore also mainly influ-
ences short-term differences in the long-wave budget rather
than the seasonal energy flux. Nevertheless, as with albedo, it

remains unclear whether long-wave radiation modules based
on air-temperature, cloudiness and sky-view factor are suffi-
cient to model spatio-temporal variation over a glacier.

The turbulent fluxes are associated with the second largest
uncertainty in this study, which is in agreement with other
studies that found larger uncertainties in the radiative forcing
(Willis et al., 2002). Turbulent fluxes are important for de-
termining short-term variations of melt rates due to, for ex-
ample, changes in the stability regimes (Lang, 1981). How-
ever, the uncertainties in our model are due to differences in
roughness lengths and the temperature gradient. Roughness
lengths over ice and snow vary substantially (e.g. Braith-
waite, 1995) in space and time (Greuell and Konzelmann,
1994; Calanca, 2001). The appropriateness of using con-
stants for these values in glacier modelling is also question-
able, and stability corrections may differ from the glacier
margins to the interior, for example. It is therefore also ques-
tionable how appropriate constant roughness lengths and sta-
bility corrections for ice and snow in space and time are.
Furthermore, recent studies (Sauter and Galos, 2016) showed
that the application of the bulk approach in complex moun-
tain terrain can generally be problematic.

Heat supply from rain is negligible in our study, which is
in agreement with other studies on alpine glaciers (e.g. Hock,
2005).

4.5 Implications of this study

The larger glacier, Hintereisferner, has more sensitive param-
eters and the variation over the stakes is larger than at Lan-
genferner, as a result of more distinct climate regions on the
longer tongue of the larger glacier. This is also true for the
uncertainty of energy balance components, with the excep-
tion of the net solar radiation, which is comparable on both
glaciers. Short-wave radiation is the most uncertain of the
energy balance components, due to the albedo parameteriza-
tion, which accounts for the change in albedo over time, but
does not account for any possible spatial variation in tem-
perature or grainsize-dependent albedo decay rates. We have
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shown that the model has difficulties optimizing the upper
and lower part of the glacier simultaneously, as a result of the
variable parameter values of physical quantities like albedo.
The large spread of our ensemble is a result of trade-off so-
lutions between the real albedo at any time and any location
and the temporally and spatially averaged parameterization
applied. Other parameterizations that are assumed as con-
stant in space and/or time, or only indirectly affected by tem-
perature and altitude dependencies, are also subject to similar
trade-off effects. Although the physical relations may not be
the same at all times and the lower tongue area may be quite
different from the upper glacier, this does not mean that the
model performance is worse on the larger glacier (HEF) with
more variation in a quantitative matter (Table 3), but rather
that the solutions of the Pareto front show more variation in
the parameter settings. This analysis clearly identifies the is-
sue of governing parameters and parameterizations not being
constant in space and time as the main problem of distributed
energy balance modelling. The most readily appreciable ex-
ample in this regard is ice albedo, which is often lower near
the terminus due to debris and dust accumulation and water
saturation of the glacier surface.

To improve this we suggest two potential approaches:
(1) although optimizing all key parameters serves a purpose
for a broad range of applications, fixing low sensitivity pa-
rameters to common values, which are not optimized, re-
sults in a type of a simplification of the model that reduces
over-fitting and potentially increases the stability and com-
parability of the energy balance model over short-timescales.
The overall performance of such a model will be lower be-
cause the tuning possibilities have been restricted, but better
estimates of the model uncertainties for out-of-sample pe-
riods can be generated. (2) Parameters or parameterizations
could be allowed to vary in space and/or time. This could
be achieved either by increasing the measurements and data
availability or increasing the model complexity. More com-
plex albedo schemes are available, for example, for snow-
pack models like Crocus (Vionnet et al., 2012) or SNOW-
PACK (Lehning et al., 2002). However, if new parameteriza-
tions are introduced they require sufficient field data to con-
strain the physical process and should not be just added as
additional model free parameters to optimize.

The approaches in this study are helpful tools to com-
bine these suggestions. A clear understanding of the model
sensitivity, independent of the optimization of the model is
necessary to decide on the importance of certain parame-
ters. It gives the option of fixing parameters and focusing on
the key processes. We have shown that multi-objective opti-
mization is a valid tool to assess uncertainties in the model.
The objectives used are all based on the same data (i.e. stake
data). This allowed us to show the uncertainty that is just as-
sociated with treating the available data in a different way
without requiring additional measurements. The model can
readily be optimized to minimise bias or meet any single
value objective; therefore, model performance based on sin-

gle best-fit approaches should be treated with caution. Fur-
thermore, a single solution may suffer significantly from pa-
rameter over-fitting and is not representative in its parameter
settings for other plausible solutions. The chosen objectives
show that there is inter-annual variation in the performances
of the upper and lower section of the glacier in our cases.
The curved nature of the Pareto front highlights that simul-
taneous optimization of both areas is difficult for the model.
Parameters are just not constant in either space or time, so
the model uncertainty increases when the model is applied
to other time periods or on another glacier. The model un-
certainty is in the range of 1000 kg m−2 per summer season
for each glacier. It is larger when transferring the calibrated
model to another alpine glacier, but still of the same order of
magnitude. Our results reveal larger model uncertainties re-
lated to spatial transfer than found in previous studies (Mac-
Dougall and Flowers, 2011). This can be explained by the rel-
atively large inter-annual variability of mass balance, as well
as the comparably large distance between the glaciers in our
study. Together with an uncertainty estimation of the energy
balance components the key parameterizations, which need
further improvement, can be identified. Furthermore, within
the multi-objective framework it is possible to focus on pro-
cesses individually: for example if the albedo is measured
on the point scale, the difference to its model value could be
used as an objective, instead of an a priori calibration of the
albedo parameterization itself.

Neither meteorological forcing on the point scale nor mass
balance measurements are free of errors, and the related
model uncertainties were not formally disentangled from
other uncertainties in this study. Zemp et al. (2013) have esti-
mated an annual measurement uncertainty of 140 kg m−2 on
point scale glaciological mass balance measurements, while
Galos et al. (2017) report somewhat lower values for Langen-
ferner. More information about the propagation of those er-
rors is needed to quantitatively include them in the optimiza-
tion. However, if an uncertainty of 50 kg m−2 in the MAD
and BIAS is included, the Pareto sets increase by 1 order of
magnitude. This complicates further interpretations and in-
creases the total model uncertainty.

The analysis presented here indicates that while mass and
energy balance models help us to understand the physical
processes on the glacier, the necessity for parameterizations
within these models introduces considerable, variable uncer-
tainty to the model output. Calibration of surface mass bal-
ance models is complex and uncertainty studies are helpful
to understand those models, and it is not advisable to draw
general conclusions from such modelling efforts without first
fully understanding the inherent model sensitivity and the
properties of the uncertainty of the calculated mass balance
and associated energy fluxes in detail.
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5 Conclusions

Based on a well developed mass and energy balance model,
applied to two well-studied glaciers in the European Alps,
this study gives a robust estimate of the model uncertainty
and discusses the advantages of parameter space reduction
and multi-objective optimization in glaciological modelling.

Using a variance-based global sensitivity method, model
sensitivity to the free model parameters was identified, inde-
pendent of the calibration data. Model sensitivity to specific
parameters is both site- and time- specific, and this should
be acknowledged in wider applications of such models. By
separating the parameters into two sensitivity categories, the
model parameters to be optimized can be reduced. Those
that the model output is sensitive to were subject to a multi-
objective optimization, while non-sensitive parameters were
fixed to literature values.

The multi-objective optimization was based on three ob-
jectives related to stake mass balance data measured using
the glaciological method. We used the model bias over all
stakes and the mean absolute deviation over the upper and
lower part of the glaciers. It proved difficult to optimize
model performance in the upper and lower section of the
glacier simultaneously. The bias over all stakes, which was
used as a proxy for the cumulative mass balance, can be min-
imized easily, and this should be considered when optimiz-
ing for a single best fit against single values. The ensemble of
optimal solutions shows a wide spread of parameter settings
within the physically reasonable range. This implies that the
common approach of a single best optimized parameter set is
subject to over-fitting and may significantly differ from other
equally plausible solutions, meaning that they are not repre-
sentative by default. Furthermore, our results show that the
constraint of plausible parameters is only marginally linked
to the sensitivity, with very sensitive parameters also tak-
ing multiple optimal values. This implies that keeping these
parameters constant in space and time increases the model
uncertainty. The overall model uncertainty (not accounting
for uncertainties related to meteorological forcing data) is in
the range of 1000 kg m−2 per summer season on the same
glacier, and increases when applied to the other glacier. The
model performance is worse when applied to another glacier,
but is of the same order of magnitude as for the temporal
transfer, suggesting the model can be applied, within its un-
certainty, to other glaciers with similar climatic settings.

Parameter uncertainty is connected with uncertainty in the
energy balance components, which, in the cases studied here,
reached 30 % averaged over the glacier and 50 % at individ-
ual stake locations. In our study the most uncertain energy
balance components are the net short-wave radiation and the
turbulent fluxes, reasserting the findings of other studies (e.g.
Van De Wal et al., 1992; Klok and Oerlemans, 2002) that in-
dicate the snow and ice albedo representation is the most cru-
cial parameter on mid-latitude glaciers for the summer mass
balance.

Overall, the findings of this study highlight that under-
standing the sensitivity and uncertainty of surface energy
and mass balance models is complex, and simplistic assess-
ments, in particular single best guess approaches, of model
performance are likely to overstate model capabilities. Fur-
ther studies such as this, incorporating more models, glaciers
and years would help to constrain the degree to which results
from such models can be considered reliable for regional ap-
plications and for projections of glacier mass balance.

Code and data availability. The code of the mass balance model
can be requested from Thomas Mölg (thomas.moelg@fau.de).
Pareto construction scripts and the updated solar module can be re-
quested directly from Tobias Zolles (tobias.zolles@uib.no).

The mass balance and meteorological data used in this paper
are available at Zenodo; https://doi.org/10.5281/zenodo.1326398
(Zolles, 2018). All mass balance data are publicly avail-
able through the WGMS (https://wgms.ch/products_ref_glaciers/
hintereisferner-alps/, last access: 1 June 2018, Juen, 2018).
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Appendix A: Model description

The mass and energy balance model used here consists
of coupled surface and subsurface components. The model
computes mass balance as the sum of solid precipitation, sur-
face deposition, internal accumulation (refreezing of liquid
water in snow), change in englacial liquid water storage, sub-
surface and surface melt and sublimation. This approach is
based on the surface energy balance of a glacier in the fol-
lowing form:

QM+Qice = SWnet+LWnet+QS+QL+QG+QP, (A1)

where SWnet is net short-wave radiation, LWnet is the sum
of incoming and outgoing long-wave radiation at the glacier
surface; QS and QL are the turbulent fluxes of sensible and
latent heat, respectively; QG is the subsurface energy flux
comprised of QC; the conductive heat flux in the subsurface;
and QPS is the energy flux from short-wave radiation pen-
etrating into the subsurface, and finally, QP is the heat flux
from precipitation. The sum of these fluxes yields a residual
flux F which, if the glacier surface temperature (TS) reaches
273.15 K, represents the latent energy for melting. If TS is
below 273.15 K, energy conservation is achieved by solving
TS to balance the fluxes (e.q. Mölg et al., 2009). The model
is fully described in the previously mentioned publications
and briefly below.

A1 Long-wave radiation

The calculation of the incoming long-wave radiation is based
on Stefan–Boltzmann law (Mölg et al., 2009; Klok and Oer-
lemans, 2002; Konzelmann et al., 1994):

LWin = σεT
4
a (A2)

with σ being the Stefan–Boltzmann constant and ε the emis-
sivity:

ε = εcs(1− np)+ εcln
p, (A3)

where “cs” and “cl” are the clear-sky and cloud emissivity,
respectively, n is the cloud cover fraction calculated in the
solar module as neff and p is an exponent related to the im-
portance of cloud emissivity (Greuell et al., 1997). The cloud
emissivity is computed using

εcl = 0.23+ b
(
ea

Ta

)1/8

, (A4)

with ea as the atmospheric vapour pressure. The three pa-
rameters εcs, p and b were optimized (using a 5000 member
Monte Carlo) to reproduce the measured long-wave radia-
tion. First the runs within 10 % of the best run, in respect to
a weighted average of BIAS and RMSD, between the simu-
lated and the measured incoming long-wave radiation at the
HEF Station were determined. The run of this ensemble with

the lowest RMSD/BIAS on LGF was taken as the best com-
promise solution. The parameters are fixed within the model
for the whole study period and are based on three summers
of data at HEF and one and a half at LGF (therefore a larger
impact of the longer data at HEF on the optimization). The
trade-off values are taken to be applicable on both glaciers
with the final values of b = 0.515, n= 1.95 and εcs = 0.994.
These setting results in an hourly RMSD below 31/37 Wm−2

for HEF/LGF and no bias, not far from the optimal setting for
either glacier with 30/36 Wm−2.

The outgoing long-wave radiation follows the Stefan–
Boltzmann law as in Eq. (A2), with T the glacier surface
temperature and the emissivity of ice εi is assumed 1.

A2 Convective fluxes

The latent heat flux (QL) and the sensible (QS) are computed
similar to Mölg and Hardy (2004). The calculations are based
on the Monin–Obhukov similarity theory (Garratt, 1992).

QL = 0.623Lvρ0
1
p0

κ2ν(ea−Es)

ln zm
z0m

ln zν
z0ν

, (A5)

with Lv being the enthalpy of vaporization (2.514 MJkg−1),
ρ0 the air density at mean sea level (1.29 kgm−3), p0 is
1013 hPa, κ the van Karman constant (0.4), ea is the water
vapour pressure in air and Es the surface value, respectively.
z0m and z0ν are the momentum and scalar roughness length
of water vapour. zm and zv is the height above ground where
the wind speed and the water vapour (ea) is measured and
calculated. The sensible heat flux

QS = cpρ0
p

p0

κ2ν(Ta− Ts)

ln zm
z0m

ln zh
z0h

, (A6)

is computed with cp, the specific heat of air at constant pres-
sure, Ta, Ts the air and surface temperature and zh the scalar
roughness length for temperature. The roughness lengths (zj )
are a model free parameters in this study. The model distin-
guishes three different roughness lengths depending on the
glacier surface: fresh snow, firn and ice. For a stable strati-
fied atmosphere, a stability correction based on Phi functions
is applied (Mölg and Hardy, 2004).

A3 Surface albedo and the albedo module

The albedo parameterization is based on Oerlemans and
Knapp (1998). It computes the broadband albedo for each
grid cell, based on the ice and snow albedo and the depth of
the snow pack:

α = αsnow+ (αice−αsnow) · exp
(
−d

d∗

)
, (A7)

αice is a model free parameter d is the snow depth, and d∗ is
the characteristic scale for the snow depth and a free parame-
ter (Oerlemans and Knapp, 1998). The relation for the snow
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albedo (αsnow) is

αsnow = αfirn+ (αfreshsnow−αfirn) · exp
(
−t

t∗

)
, (A8)

with αfirn, αfreshsnow and t∗ as model free parameters subject
to optimization. The albedo module (t∗) is a characteristic
time scale in days (Klok and Oerlemans, 2002) and t the time
since the last snowfall event (> 0.1 cm fresh snow).

A4 Surface temperature and ground energy flux

The conductive heat flux (QC) and the energy flux from pen-
etrating short-wave radiation (QPS) determine the ground
heat flux (QG) of the energy balance (Eq. 1). The model
solves the thermodynamic energy equation for a multi-layer
grid with a fixed bottom temperature (15 Layers, 0.1 m steps
in the first metre, gradually increasing to a total depth of 7 m).
The bottom temperature is a model free parameter. QC is
computed from the temperature difference between the sur-
face and the first layer.

The calculation of the penetration of short-wave radiation
is based on Bintanja and Van Den Broeke (1995). A constant
fraction (1−ζi) of the net-short-wave radiation is penetrating
the surface and the intensity is exponentially decreasing with
depth. The optimization and sensitivity analysis in this study
uses four parameters with the extinction coefficient and the
absorbed fraction (ζi) for snow and ice.

A5 Surface accumulation and precipitation

The surface accumulation is directly related to the precipita-
tion. The model has two threshold values for all liquid and
all solid precipitation (Mölg et al., 2012). In between these
thresholds, the portion increases linearly. The temperature
threshold and the density of solid precipitation are subject
of the sensitivity analysis and optimization.

A6 Solar module and solar module sensitivity

The parameterization of the short-wave radiation is based on
the calculation of the cloudiness, in the form of the effective
cloud cover fraction neff:

neff =
1−SWmea/(Dcs+ Scs)

k
, (A9)

with SWmea being the measured short-wave and Dcs, Scs the
calculated diffuse and direct radiation under clear sky con-
ditions. The parameter k determines at which fraction of the
clear sky value full cloudiness is achieved; i.e. all incoming
radiation is diffuse. It is important to note, we allow neff > 1
if such low radiation was measured. The influence of k on the
model output was investigated (Appendix A6). The calcula-
tion of the clear sky values is described in Mölg et al. (2009).
The diffusion portion of radiation under clear sky conditions
was determined using a manual selection of clear sky days.

The values varied between the snow free (Kdif = 0.51) and
snow covered days (Kdif > 0.65). For the calculations an av-
eraged value of 0.6 was used. As Kdif is a fixed glacier wide
value, while snow cover might vary, a modulation depending
on the conditions at the weather station is not possible. The
applicability ofKdif as a single value might need to be reeval-
uated for other models, applications and research questions.

The calculation of the incoming short-wave radiation on
every point of the glacier is based on the assumption of ho-
mogeneous cloudiness (neff). It is a reversing of Eq. (A9)

SWdiff = (A10)
(Dcs+ Scs) · (1− neff · k)((1−pdiff) · neff+pdiff),

with SWdiff being the calculated diffuse radiation and pdiff
the portion of diffuse radiation under clear sky conditions.
pdiff is calculated as the ratio of the clear sky diffuse and to-
tal radiation. It was 0.084 and 0.085 for the two glaciers and
set to 8.5 % (for both to have a common value). Compared
to previous works using the solar module, we changed the
increase of diffuse radiation. Instead of a linear increase of
diffuse radiation, the portion of diffuse radiation is linearly
increasing with increased cloudiness. This is a basic param-
eterization and reproduces the measured radiation fully. Via
neff, k is determining the ratio of direct and diffuse radiation.
This could alter the energy balance. The direct radiation is
calculated analogously and corrected for slope and aspect.

The calculation of solar radiation incorporates the free pa-
rameter k, which determines at which fraction of the total
possible global radiation everything is considered as diffuse
radiation. The parameter k varies with latitude (Hastenrath,
1984) and is not constant in time either; therefore the ef-
fective cloud cover incorporates some of its variability and
is not exactly the cloudiness (Mölg et al., 2009). With the
new parameterization (Eq. A10), the global solar radiation
at the weather station can be fully reproduced so k cannot
be optimized. But it determines the portions of direct and
diffuse radiation, which may have a significant influence on
the energy and mass balance. Therefore, an additional GSA
was performed with the parameter k as the 24th model free
parameter. Based on the values for the tropics 0.65 (Mölg
et al., 2009) and the Arctic with≈ 0.85 (Hock and Holmgren,
2005) it was varied in this range for the sensitivity analy-
sis. Its maximum sensitivity index over all seven investigated
stakes in the GSA was 2× 10−3, which is 1 order of mag-
nitude lower than the threshold for our sensitive parameters.
Therefore, the choice of k within the given range is not influ-
ential on the simulation of the mass balance on the glacier.
The model albedo does not vary between direct and diffuse
radiation, so it only influences the total amount of radiation
at less or more shaded areas than the weather station.

Furthermore, the change in the calculation of direct and
diffuse components from linear with cloudiness to a linear
increase of the fraction are better suited to represent the site
radiation. This is in agreement with the measured radiation
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by Hock and Holmgren (2005) on the Arctic glacier, Stor-
glaciären (Fig. S5). The slightly higher starting value (pdiff)
is due to larger portion of diffuse radiation under clear sky
conditions in the Arctic than in the mid-latitudes, and the
higher final value is due to a smaller k in this study (0.8)
compared to around 0.85 in the Arctic. The influence of this
change in parameterization is probably also rather small, as
the model is not sensitive to changes in the relative frac-
tions of diffuse and direct radiation on the chosen glaciers
and stake locations.
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