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Abstract. Let GΓ be a partially commutative group. We find a finite presentation for the subgroup

ConjV (GΓ) of compressed vertex conjugating automorphisms of the automorphism group Aut(GΓ)

of G. We have written GAP packages which compute presentations for Aut(GΓ) and its subgroups

Conj(GΓ) and ConjV (GΓ).

1. Introduction

The class of partially commutative groups, also known as right-angled Artin groups, is a natural

generalisation of both the classes of free and free Abelian groups, has a simple description and its

groups are, in many ways algorithmically tractable. They have applications in many areas, for example

the theory of 3-manifolds [15] and concurrent processes [6]. Furthermore, groups in the class provide

several important examples of pathogenic behaviour in finitely presented group theory. Further details

may be found in [3] and [8].

Throughout the paper Γ denotes a finite simplicial graph (i.e. undirected, with no loops or multiple

edges). We write V = V (Γ) = {x1, . . . , xn} for the set of vertices of and E = E(Γ) for the set of

edges, which are 2-subsets of V . The partially commutative group with commutation graph is the

group G with presentation

GΓ = ⟨V |R⟩

MSC(2010): Primary: 20F36 20F28; Secondary: 20F05.

Keywords: Partially commutative groups, Right-angled Artin groups, Automorphisms of groups.

Received: 13 June 2017, Accepted: 24 August 2018.

∗Corresponding author.

http://dx.doi.org/10.22108/ijgt.2018.104745.1437

.

33

http://www.theoryofgroups.ir
http://www.ui.ac.ir
http://dx.doi.org/10.22108/ijgt.2018.104745.1437


34 Int. J. Group Theory 8 no. 3 (2019) 33-42 A. J. AL-Juburie and A. J. Duncan

where

R = {[xi, xj ] | xi, xj ∈ V and {xi, xj} ∈ E}

and [xi , xj ] = x−1
i x−1

j xixj .

We denote by Aut(G) the automorphism group of a group G. A finite generating set for Aut(GΓ)

was found by Laurence [10], building on the work of Servatius [13]. Several authors have continued

the study of this group: see for example [7], [12], [4] and the references therein. In particular, Day

[5] constructed a finite presentation for Aut(G) and Toinet [14] constructed a finite presentation for

the subgroup Conj(GΓ) ≤ Aut(G) of all vertex conjugating automorphisms: that is the subgroup

consisting of automorphisms ϕ having the property that, for all x ∈ V , there exists gx ∈ G, such that

xϕ = xgx .

Here we consider a subgroup ConjV (G)≤Conj(G)
of compressed conjugating automorphisms (see Def-

inition 3.1) studied in [7], for which we find a finite presentation, following the methods of Day and

Toinet. The first author, with assistance from George Mitchell and Matthew Fisher, has also developed

GAP [9] packages to compute presentations for Aut(GΓ), Conj(GΓ) and ConjV (GΓ).

2. Automorphisms of partially commutative groups

2.1. Preliminaries. Fix a finite simplicial graph and let G = GΓ be the corresponding partially

commutative group. Let L = V ∪ V −1 and, for x ∈ V , define v(x) = v(x−1) = x. Define the link of

x ∈ V to be lk(x) = {y ∈ V | y is adjacent to x} and the star of x to be st(x) = lk(x) ∪ {x}. For a

subset Y of V let Y −1 = {y−1 | y ∈ Y } and extend the definitions of link and star to L by setting, for

all x ∈ L,

• lk(x) = lk(v(x)) and st(x) = st(v(x)),

• lkL(x) = lk(v(x)) ∪ lk(v(x))−1 and stL(x) = st(v(x)) ∪ st(v(x))−1.

For x ∈ L define x to be the full subgraph on V \ st(x). In the sequel, it is convenient to abuse notation

as follows.

• For a connected component 0 of x we shall refer to V ∩0 as a connected component of x.

A word (over L) is an element of the free monoid L∗ generated by L and the length of the word

w is denoted |w|. The length of a conjugacy class C is defined to be the minimum of the lengths of

elements of C. A k-tuple C = (C1, . . . , Ck) of conjugacy classes has length |C| =
∑k

i=1 |Ci|. Also, if

α ∈ Aut(G) then by Cα we mean (C1α, . . . , Ckα).

2.2. Laurence-Servatius Generators. In [13] Servatius listed four types of automorphism of G

and conjectured that these generated Aut(G); showing this to be true in several cases. Subsequently

Laurence[10] proved that the Servatius conjecture holds for all G. In this section we describe these

four types of automorphism which we call Laurence-Servatius generators. Some initial terminology is

required. If x, y ∈ L then we say that x ≤ y if lk(x) ⊆ st(y). This gives rise to an equivalence relation

∼ on L, given by x ∼ y if x ≤ y and y ≤ x. We denote the ∼ equivalence class of x by [x].
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Definition 2.1. (i) For all x, y ∈ L there is an automorphism, denoted τx,y, sending x to xy and

fixing all elements of V except v(x), if and only if x ≤ y and v(x) ̸= v(y) [13].

For y, x1, . . . , xr ∈ L such that xi ≤ y, v(xi) ̸= v(y) and v(xi) ̸= v(xj) if i ̸= j, let

D = {x1, . . . , xr} and define the elementary transvection τD,y = τx1,y · · · τxr,y. Let Tr(G)=Tr

be the set of all such elementary transvections.

(ii) Given x ∈ L, let C be a connected component of x. Then there is an automorphism of G,

denoted αC,x, sending y to yx, for all y ∈ C, and fixing all elements of V \C [13].

Let x ∈ L and let Y be a non-empty union of disjoint connected components Y1, . . . , Yr of x.

The map αY,x = αY1,x · · ·αYr,x is called an elementary vertex conjugating automorphism. The

set of all elementary vertex conjugating automorphisms is denoted LI(G)=LI (because Servatius

called them “locally inner”).

In particular, if Y = V \ st(x) then αY,x, the inner automorphism sending g to gx for all

g ∈ G, is called an elementary inner automorphism and denoted γx.

(iii) For x ∈ V , there is an automorphism ιx of G that sends x to x−1 and fixes all other elements

of V [13]. ιx is called an inversion and the set of all inversions is denoted Inv(G)=Inv.

(iv) An automorphism π of G is called a graphic automorphism if π restricted to V determines

an automorphism of . Every automorphism of extends to give a graphic automorphism of G

[13]. The subgroup of all graphic automorphisms of GΓ is denoted Aut(G)=Aut .

In addition, define Aut±(G) to be the subgroup of Aut(G) generated by the graphic automorphisms

and inversions.

In the light of the following theorem, we call the set LS = Tr∪LI∪ Inv∪Aut the Laurence-Servatius

generators of Aut(G). (In fact, Servatius and Laurence use a slightly smaller generating set: they

consider τD,x and αC,x as generators only for |D| = 1 and for C a single connected component of x.)

Theorem 2.2 ([13], [10]). Aut(G) is generated by the set LS.

Day[5] constructs a presentation for Aut(G) with generating set containing, and closely related

to LS. This presentation has relations (R1)–(R10) which are rewritten in [1] to give the following

theorem.

Theorem 2.3 ([5], [1]). The group Aut(GΓ) has finite presentation ⟨LS |R⟩, where R is a set of

relations (R1)–(R10), corresponding to the relations of the presentation in [5].

2.3. Vertex conjugating automorphisms. Of interest here is the following theorem of Laurence.

Theorem 2.4 ([10]). The subgroup Conj of vertex conjugating automorphisms is generated by the set

LI.

Toinet[14] gave a presentation for Conj as follows.
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Definition 2.5. Let C consist of the the relations (C1) to (C4) below, on the set of elementary vertex

conjugations LI. In these relations, elements of LI are written αC,z, where z ∈ L and C is a union of

connected components of z.

(C1) (αC,x)
−1 = αC,x−1,

(C2) αC,xαD,x = αC∪D,x, if C ∩D = ∅,
(C3) αC,xαD,y = αD,yαC,x, if v(x) /∈ D, v(y) /∈ C, x ̸= y±1, and either C ∩D = ∅ or y ∈ lkL(x);

(C4) γ−1
y αC,xγy = αC,x, if v(y) /∈ C and x ̸= y±1.

Theorem 2.6 (Toinet[14]). The subgroup Conj(GΓ) has a presentation ⟨LI |C⟩.

3. The subgroup of compressed automorphisms

Definition 3.1. An element ϕ ∈ Conj(G) is said to be a compressed conjugating automorphism if,

for every element x ∈ V , there exists fx ∈ G such that yϕ = yfx, for all y ∈ [x] the equivalence class

of the vertex x. The subgroup of all compressed conjugating automorphism is denoted ConjV .

(In [7] elements of ConjV are called vertex conjugating automorphisms. In this paper we have

reverted to the earlier use of this terminology, by both Laurence and Toinet, for elements of Conj,

as in Sections 1 and 2 above. To maintain consistency with existing GAP packages, [7] and [1], we

have nevertheless kept the notation ConjV for the subgroup of compressed automorphisms.) Here we

adapt Toinet’s proof of Theorem 2.6 to give a presentation for ConjV . First we define a candidate

generating set for ConjV .

Definition 3.2. Define LIV to be the set of elementary vertex conjugations αC,x, where x ∈ L, C is

a union of connected components of x and, for all z ∈ V either

(i) [z] ∩ C = ∅; or
(ii) [z] ⊆ C ∪ st(x).

Lemma 3.3. LIV = LI∩ConjV .

Proof. It follows directly from the definitions that LIV ⊆ LI∩ConjV . Suppose then that αC,x ∈
LI∩ConjV , let z ∈ V , assume that [z] ∩ C ̸= ∅ and let u ∈ [z] ∩ C. By definition there exists fz ∈ G

such that yαC,x = yfz , for all y ∈ [z], so ux = uαC,x = ufz . Therefore xf−1
z ∈ C(u), the centraliser of u

in G. As C(u) = ⟨st(u)⟩, and x /∈ st(u) (since u ∈ C) it follows that fz = gz ·x, for some gz ∈ C(u). If

there is an element v ∈ [z]\C ∪ st(x) then v = vαC,x = vfz = vgzx. As x /∈ st(u)∪ st(v), x /∈ supp(vgz),

and since vgzx reduces to v it must be that x commutes with every element of supp(vgz). In particular

x commutes with v, a contradiction. Hence [z] ⊂ C ∪ st(x) and so αC,x in LIV . □

We use the following definitions and results from [7] to show that LIV generates ConjV .

Definition 3.4 ([7]). An elementary vertex conjugating automorphism αC,u, where u ∈ L and C is a

connected component of u, is called a singular conjugating automorphism if |C| = 1. The set of all

singular conjugating automorphisms is denoted LIS = LIS(G).
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To form elements of ConjV from singular conjugating automorphisms we collect them together, as

in the following definition. Note that if x, u ∈ V such that u ≤ x and [u, x] ̸= 1 then no two elements

of [u] commute. Indeed, if z ∈ [u]\{u, x}, then [z, x] = 1 implies x ∈ lk(z) ⊆ st(u), so [x, u] = 1,

a contradiction. Moreover, if [z, u] = 1 then z ∈ lk(u) ⊆ st(x), so [z, x] = 1. Hence no element of

[u]\{u, x} commutes with either u or x. If v and z belong to [u]\{x} with z ̸= u, then [v, z] = 1

implies z ∈ lk(v) ⊆ st(u), and so [u, z] = 1, a contradiction. Therefore, as claimed, no two elements of

[u] commute. In particular, every singleton subset of [u]\{x} is a connected component of x.

Definition 3.5 ([7]). For x, u ∈ V such that u ≤ x and [u, x] ̸= 1, define [u]′ = [u]\{x} and assume

that [u]′ = {v1, . . . , vn}. The conjugating automorphism

α[u]′,x =

n∏
i=1

α{vi},x

is called a collected conjugating automorphism. The set of all collected conjugating automorphisms is

denoted LIC = LIC(G).

From [7, Lemma 3.40 (ii)], LIC ⊆ ConjV . Next we single out some further elementary conjugating

automorphisms which belong to ConjV .

Definition 3.6 ([7]). The set of regular conjugating automorphisms is

LIR = LIR(G)=LIV \LIS .

Proposition 3.7 ([7]). ConjV is generated by LIR ∪LIC .

Theorem 3.8. ConjV is generated by LIV .

Proof. By definition LIR ⊆ LIV so, in the light of Lemma 3.3 and Proposition 3.7, it suffices to

show that LIC ⊆ LIV . Let β ∈ LIC , say β = α[u]′,x, where u, x ∈ V , u ≤ x and [u, x] ̸= 1, and

let [u]′ = [u]\{x}. In this case, for all z ∈ V , either [z] ∩ [u] = ∅ or [z] = [u], in which case

[z] ⊆ [u]′ ∪ st(x), so one of the conditions (i) or (ii) of Definition 3.2 holds. Hence β ∈ LIV . Therefore

LIR ∪LIC ⊆ LIV . □

Lemma 3.9. Let αC,x and αD,x be elements of LIV . Then

(i) αC∩D,x ∈ LIV and

(ii) αC∪D,x ∈ LIV .

Proof. (i) We must check the condition of Definition 3.2 holds when C is replaced by C ∩D. Let

z ∈ V . If [z] ∩ C = ∅ or [z] ∩D = ∅ then [z] ∩ (C ∩D) = ∅, so the conditions hold. Thus we

may assume [z] ∩ C ̸= ∅ and [z] ∩D ̸= ∅, and since αC,x, αD,x ∈ LIV this implies that

[z] ⊆ (C ∪ st(x)) ∩ (D ∪ st(x)) = (C ∩D) ∪ st(x).

Hence, αC∩D,x ∈ LIV .
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(ii) We must check the conditions of Definition 3.2 hold when C is replaced by C ∪D. Suppose

that [z] ∩ (C ∪D) ̸= ∅. Then [z] ∩ C ̸= ∅ or [z] ∩D ̸= ∅. If [z] ∩ C ̸= ∅ then [z] ⊆ C ∪ st(x) ⊆
(C ∪D) ∪ st(x), so αC∪D,x ∈ LIV . A similar argument applies if [z] ∩D ̸= ∅.

□

Given the result of Lemma 3.9 (ii), and the fact that the inner automorphism γy, belongs to LIV ,

for all y ∈ L, the relations C may be regarded as relations between words over the set LIV . We may

therefore state our main theorem.

Theorem 3.10. The subgroup ConjV of Aut(GΓ) has a presentation ⟨LIV | C⟩.

Our proof of this theorem relies on the fact that there is a peak lowering theorem for ConjV .

3.1. Peak lowering compressed automorphisms. The peak lowering theorem of [5] holds for

elements of ConjV , but to use it to prove Theorem 3.10 we must show that the automorphisms that

arise are all in LIV . First we prove some preliminary lemmas.

Lemma 3.11. If αC,x ∈ LIV and D = V \(C ∪ st(x)) then αD,xϵ ∈ LIV for ϵ = ±1.

Proof. To prove this it is necessary only to check that the conditions of Definition 3.2 hold when C is

replaced by D. First note that, for all z ∈ V , either [z] ∩ C = ∅; or [z] ⊆ C ∪ st(x), by definition of

LIV . If [z] ⊆ C ∪ st(x) then [z] ∩D = [z] ∩ (V \(C ∪ st(x))) = ∅.
On the other hand, if [z] ∩ C = ∅ then [z] ⊆ V \(C ∪ st(x)) ∪ st(x) = D ∪ st(x). □

For α = αC,x ∈ Conj define ᾱ = αD,x−1 , where D = V \(C ∪ st(x)); so αᾱ−1 = ᾱ−1α = γx. From

Lemma 3.11, we have α ∈ LIV if and only if ᾱ ∈ LIV .

Lemma 3.12. If π ∈ Aut±(GΓ) and αC,x ∈ LIV then αD,y ∈ LIV , where D = (C ∪ C−1)π ∩ V and

y = xπ.

Proof. It suffices to show that the result holds when π is an inversion or π ∈ Aut(G) . If π = ι is an

inversion and xι = x then αD,y = αC,x, so there is nothing to prove. If xι = x−1 then αD,y = αC,x−1 ,

which is in LIV , if αC,x is. Thus we may assume that π ∈ Aut(GΓ). We must check the conditions of

Definition 3.2 hold when C is replaced by Cπ and x by xπ. Let w, z ∈ V such that wπ = z. Since

π |V is a graph automorphism we have [a]π = [aπ] and st(a)π = st(aπ), for each a ∈ V ; in particular

[z] = [wπ] = [w]π. Suppose that [z] ∩ Cπ ̸= ∅; let u ∈ [z] ∩ Cπ and let v ∈ V such that vπ = u. Then

vπ ∈ [z] ∩ Cπ = [w]π ∩ Cπ implies v ∈ [w] ∩ C, and as αC,x ∈ LIV we have [w] ⊆ C ∪ st(x). Thus

[z] = [w]π ⊆ Cπ ∪ st(x)π = Cπ ∪ st(xπ); the conditions of Definition 3.2 hold, and αD,y ∈ LIV , as

required. □

Lemma 3.13 (cf. [5]). Suppose a, b ∈ L, αD,b ∈ LIV with v(a) /∈ D, v(a) not adjacent to v(b) in Γ

and a ̸= b (possibly a = b−1). Then lkL(a) ∩D = ∅.

Proof. If a = b−1 then certainly lkL(a) ∩D = ∅. Assume then that a ̸= b±1. If x ∈ lkL(a) ∩D then

x ∈ D, and v(a) is adjacent to x but not v(b), so v(a) ∈ D, a contradiction. □
http://dx.doi.org/10.22108/ijgt.2018.104745.1437

http://dx.doi.org/10.22108/ijgt.2018.104745.1437


Int. J. Group Theory 8 no. 3 (2019) 33-42 A. J. AL-Juburie and A. J. Duncan 39

Definition 3.14. Let C be a k-tuple of conjugacy classes of GΓ and let α, β ∈ LIV . If

|Cα−1| ≥ |C|,

|Cα−1| ≥ |Cα−1β|

and one of these inequalities is strict then a−1β is called a peak for C.

Lemma 3.15 (cf. [5], Sublemma 3.21). Let α = αC,a, β = βD,b ∈ LIV and let C be a k-tuple of

conjugacy classes of GΓ. Assume that α−1β is a peak for C and that either

(1) a ∈ lkL(b) or

(2) (C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ ({a} ∩ {b}) = ∅.

Then | Cβ | < | Cα−1 |.

This Lemma is proved, in greater generality, in [5].

Assume α−1β is a peak for a k-tuple of conjugacy classes C. A factorisation

α−1β = δ1 · · · δk

is called peak-lowering if, for all i with 1 ≤ i < k, we have δi ∈ LIV and

|C(δ1 · · · δi)| < |Cα−1|.

Lemma 3.16. Suppose α, β ∈ LIV and C is a k-tuple of conjugacy classes of GΓ. If α−1β is a peak

with respect to C, then there exists a peak-lowering factorisation of α−1β.

Proof. Assume that α = αC,a and β = αD,b ∈ LIV . From the remarks above, ᾱ and β̄ belong to LIV ,

and αᾱ−1 = γa and ββ̄−1 = γb, so

Cα−1 = Cᾱ−1 and Cα−1β = Cα−1β̄.

We claim that if the lemma holds with α or β replaced with ᾱ or β̄ respectively, then it holds as

originally stated. To see this, suppose δ1 · · · δk, with δi ∈ LIV , is a peak-lowering factorisation of

α−1β̄. We have

α−1β = α−1β̄β̄−1β = δ1 · · · δkγb,

and so (since the inner automorphism group is normal) there are elementary inner conjugating auto-

morphisms γ′1, . . . , γ
′
r, such that

α−1β = δ1 · · · δkγb = γ′1 · · · γ′rδ1 · · · δk.

If |Cα−1β̄| < |Cα−1| then α−1β = δ1 · · · δkγb, is a peak-lowering factorisation of α−1β, since inner

automorphisms do not change the length of a conjugacy class. Similarly, if |C| < |Cα−1| then α−1β =

γ′1 · · · γ′rδ1 · · · δk is a peak-lowering factorisation of α−1β.

A similar argument holds if ᾱ−1β has a peak lowering factorisation by elements of LIV , so we may

swap ᾱ for α and β̄ for β as needs be in the proof of this lemma. Also, by the symmetry in the

definition of a peak, we may switch α and β if necessary. We break the proof down into several cases.
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Case(1): a ∈ lkL(b). This implies that a ∈ stL(b), b ∈ stL(a), a ̸= b±1 and, since C ∩ st(a) = ∅ =

D ∩ st(b), that v(a) /∈ D and v(b) /∈ C. Hence, as in relation (C3), we have a factorisation

α−1β = αC,a−1αD,b = αD,bαC,a−1 = βα−1.

By Lemma 3.15, we have |Cβ| < |Cα−1|, so this factorisation is peak-lowering.

Case(2): (C∩D)∪(C∩{b, b−1})∪(D∩{a, a−1})∪({a}∩{b}) = ∅ and a /∈ lkL(b). The first condition

implies that a ̸= b, so either a = b−1 or a ̸= b±1; and we have the following sub-cases.

Sub-case(2a): a = b−1. As in relation (C2), we have a factorisation:

α−1β = αC,bαD,b = αC∪D,b,

and since from Lemma 3.9, αC∪D,b ∈ LIV , this is trivially peak-lowering (having the form α−1β = δ1).

Sub-case(2b): a ̸= b±1. In this case the conditions of (C3) hold and so

α−1β = αC,a−1αD,b = αD,bαC,a−1 = βα−1.

From Lemma 3.15, we have |Cβ| < |Cα−1|, so this factorisation is peak-lowering.

Case(3): (C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ ({a} ∩ {b}) ̸= ∅ and a /∈ lkL(b). To begin with

we show that we may assume that a /∈ (D ∪D−1 ∪ {b}) and b /∈ (C ∪ C−1 ∪ {a}). First, by replacing

β with β̄, if necessary, we may assume a /∈ (D ∪ D−1 ∪ {b}). Assume that b ∈ (C ∪ C−1 ∪ {a}). If

b = a then a ∈ (D ∪D−1 ∪ {b}), a contradiction. Hence b ̸= a. If b = a−1 then a−1 = b ∈ (C ∪ C−1),

again a contradiction. Thus a ̸= b±1 and swapping α with ᾱ we have a /∈ (D ∪ D−1 ∪ {b}) and

b /∈ (C ∪ C−1 ∪ {a}), as required.
Assume then that a /∈ D ∪D−1 ∪ {b} and b /∈ C ∪ C−1 ∪ {a}. From Subcase 4b of Day’s proof of

Lemma 3.8 in [5], we have in this case either

(3.1) |C′αC∩D′,a| < |C′| or |C′αC′∩D,b| < |C′|,

where C′ = Cα−1, C ′ = V \(C ∪ st(a)) and D′ = V \(D ∪ st(b)). If a ̸= b−1 then, from Lemma 3.13,

we have C ∩ lk(b) = ∅ and D ∩ lk(a) = ∅. Thus st(a) ∩D = ∅ and st(b) ∩ C = ∅. By assumption we

now have C ∩D ̸= ∅. Let x ∈ C ∩D and let y be an element of C. There is a path from x to y in C

and this path does not meet st(b); so x ∈ D implies y ∈ D. It follows that C = D. This means that

C ∩D′ = ∅, so αC∩D′,a is the identity map. Similarly (if a ̸= b−1) αC′∩D,b is the identity map. Thus

if a ̸= b−1 we have a contradiction to (3.1); so we may assume a = b−1. In this case, from Lemma

3.11 and Lemma 3.9 (i), αC∩D,a, αC∩D′,a and αC′∩D,a are in LIV and we have α = αC∩D′,aαC∩D,a and

β = αC∩D,a−1αC′∩D,a−1 .

Suppose |C′αC∩D′,a| < |C′|. Then C′αC∩D′,a = Cα−1
C∩D,a and so α−1

C∩D′,aβ is a peak for Cα−1
C∩D,a.

We may apply Case 2a to obtain a peak-lowering factorisation α−1
C∩D′,aβ = α(C∩D′)∪D,b = α−1

C∪D,a
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of this peak, and then α−1
C∩D,aα

−1
C∪D,a is a peak-lowering factorisation of α−1β. A similar argument

applies if |C′| < |C′αC′∩D,b|. □

3.2. Proof of Theorem 3.10.

Theorem 3.10. Our proof is based on Toinet’s [14, Theorem 3.1], which is an adaption of arguments of

McCool [11], using Day’s peak-lowering results for long-range automorphisms of partially commutative

groups [5]. As the proof may be read off from Toinet’s, after suitable substitutions and adjustments

have been made, we do not give full details; which can be found in the proof of Theorem 4.3.15 of [1].

To obtain a proof of the current theorem from Toinet’s, replace H (which we call Conj) by ConjV ,

replace the set of elementary vertex automorphisms S by LIV , and use C in place of R. Instead of

Day’s peak lowering lemma[5, Lemma 3.18] use our Lemma 3.16. Toinet’s proof involves an analysis

of the relators (R1)–(R10) in Day’s presentation, to determine which give rise to relations on words

over LI. The analysis in our version proceeds in the same way, and results in the same list of relations,

but in our case it is necessary to ensure that all the elementary vertex automorphisms which arise

belong to LIV . Once this has been verified there is nothing further to do but apply the arguments of

Toinet’s proof, with the adaptions above.

The relation Toinet initially finds, between elements of ConjV , are (C1) – (C4) above and

(3.2) π−1(αC,a)π = αD,b,

for αC,a ∈ LIV and π in the finite subgroup Aut±(GΓ), where D = (C ∪ C−1)π ∩ V and b = aπ. From

Lemma 3.12, αD,b ∈ LIV , and all other elements of LI arising in the proof then belong to LIV . Finally

the conclusion of this version of the proof is that ConjV has presentation ⟨LIV | C⟩. □

4. GAP Packages

We have written a GAP package AutParCommGrp [2] for the computation of finite presentations for

the automorphism group of a partially commutative group and some subgroups of the automorphism

group. The main functions of the package AutParCommGrp are

• FinitePresentationOfAutParCommGrp(V,E) which computes Day’s presentation of the au-

tomorphism group;

• FinitePresentationOfSubgroupConj(V,E) which computes Toinet’s presentation of the sub-

group Conj and

• FinitePresentationOfSubgroupConjv(V,E) which computes our presentation of the sub-

group ConjV .

All of these have input (V,E), the vertices and edges of the commutation graph of a partially commu-

tative group. Output consists of two sets, gens and rels, the sets of generators and relations of the

presentations computed.
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