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As a great challenge in bioinformatics, enzyme function prediction is a significant step

toward designing novel enzymes and diagnosing enzyme-related diseases. Existing

studies mainly focus on the mono-functional enzyme function prediction. However,

the number of multi-functional enzymes is growing rapidly, which requires novel

computational methods to be developed. In this paper, following our previous work,

DEEPre, which uses deep learning to annotate mono-functional enzyme’s function,

we propose a novel method, mlDEEPre, which is designed specifically for predicting

the functionalities of multi-functional enzymes. By adopting a novel loss function,

associated with the relationship between different labels, and a self-adapted label

assigning threshold, mlDEEPre can accurately and efficiently perform multi-functional

enzyme prediction. Extensive experiments also show that mlDEEPre can outperform the

other methods in predicting whether an enzyme is a mono-functional or a multi-functional

enzyme (mono-functional vs. multi-functional), as well as the main class prediction

across different criteria. Furthermore, due to the flexibility of mlDEEPre and DEEPre,

mlDEEPre can be incorporated into DEEPre seamlessly, which enables the updated

DEEPre to handle both mono-functional and multi-functional predictions without human

intervention.

Keywords: multi-functional enzyme, function prediction, EC number, deep learning, hierarchical classification,

multi-label learning

1. INTRODUCTION

Enzymes, which catalyze reactions in vivo, play a vital role in metabolism in every species.
Predicting enzyme function is an important bioinformatics task, for helping researchers design
more efficient novel enzymes and assisting people in diagnosing enzyme-related diseases
(Hoffmann et al., 2007). To predict enzyme function, a clear and standard enzyme function
ontology should be defined. Currently, the most popular way of standardizing enzyme function
is to use the EC number system (Cornish-Bowden, 2014). An enzyme commission (EC) number is
composed of 4 digits, i.e., EC 3.1.21.4, with the first digit denoting the main class of the enzyme;
and the second digit indicating the subclass of the enzyme, etc. Each further digit defines the
function of an enzyme more specifically, combining with the previous digits. As shown in Figure 1

in Shen and Chou (2007), the label space of the EC system has a tree structure. As an important
bioinformatics task, a number of methods have been proposed to deal with the problem, based on
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structure similarity (Dobson and Doig, 2005; Roy et al., 2012;
Yang et al., 2015), sequence similarity (Tian et al., 2004; Quester
and Schomburg, 2011), or machine learning techniques (des
Jardins et al., 1997; Cai et al., 2003; Shen and Chou, 2007;
Zhou et al., 2007; Li et al., 2018d). Despite the success of
those methods in predicting mono-functional enzyme function
with very high accuracy, seldom have people worked on the
prediction of multi-functional enzyme function, which actually
constitutes a relatively large part of all the enzymes. Until now,
to our knowledge, only five methods (De Ferrari et al., 2012;
Zou et al., 2013; Che et al., 2016; Zou and Xiao, 2016; Amidi
et al., 2017) are able to address that specific type of enzymes.
Among them, De Ferrari et al. (2012) use InterPro signatures
as the features and multi-label k-nearest neighbor (KNN) as
the algorithm. Zou et al. (2013) took advantage of a number
of manually designed features, such as a 20-D feature vector
extracted from the position-specific scoring matrix (PSSM) and
a 188-D feature vector based on the composition and physical-
chemical properties of the protein, and the conventional multi-
label machine learning algorithm. Che et al. (2016) also utilized
features extracted from PSSM, combined with the multi-label
KNN algorithm. Zou and Xiao (2016) deployed three variants of
the famous feature, Pseudo Amino Acid Composition (PseAAC),
and the multi-label KNN algorithm. Amidi et al. (2017) used
the predicted structure information, combined with the sequence
information, as the feature, and multi-label KNN and multi-label
support vector machine (SVM) as the classifier. Despite their
satisfactory performance on a specific dataset, we can find that
all of those algorithms can be improved in two ways. Firstly, all
the methods utilize very specific expert-designed features. It is
both time and knowledge consuming to do so, and the extracted
features can be local minima for this particular problem (Dai
et al., 2017; Li et al., 2018d). The features automatically designed
and extracted from the raw representation of a protein by an
algorithm are more desirable than the human designed features.
Secondly, almost all the aforementioned methods rely on KNN.
KNN is a similarity based algorithm. Unlike the probability based
algorithms, KNN is unable to annotate novel enzymes which do
not have homologs with high sequence similarities in the current
databases. Both the feature design process and the classification
process have great potential to be improved.

On the other hand, deep learning (LeCun et al., 2015), an
end-to-end learning algorithm which wraps the representation
learning and classifier learning into one model, has shown great
potential in the bioinformatics field (Dai et al., 2017; Li et al.,
2018a,d,e; Umarov et al., 2018; Xia et al., 2018), especially in
the enzyme function prediction direction (Li et al., 2018d), in
which the newly proposed deep learning based method, DEEPre
(Li et al., 2018d), has improved the state-of-the-art performance
significantly. In general, Li et al. (2018d) built one deep learning
model for each of the internal nodes in the tree structure of the
EC number system. In particular, for level 0, that is, predicting
whether the input protein sequence is an enzyme or not, there
is one model; for level 1, whose task is to predict the main class
of an enzyme from the six classes, there is one model; for level
2, which predicts the subclass of an enzyme, there are six models
since there are six main classes and we need to build a model for

each of those different main classes. In terms of the deep learning
model architecture, Li et al. (2018d) proposed a novel architecture
which can extract convolutional information and sequential
information from three raw representations (PSSM, sequence
encoding and functional domain encoding) and combine them
together automatically for the downstream classification. They
only fed the very raw encoding of the protein sequence to the
deep learningmodel and themodel is responsible for both feature
extraction and classification. In this way, the algorithm is likely
to find a better hidden feature representation implicitly, which
benefits the classification results.

However, despite the success of DEEPre, the original version
of DEEPre was designed specifically for mono-functional enzyme
function prediction and not capable of handling multi-functional
enzymes. Following the success of DEEPre and its research
direction, we propose a novel hierarchical multi-label deep
learning method, mlDEEPre, for predicting the multi-functional
enzyme functions. In particular, mlDEEPre first predicts whether
an enzyme is a mono-functional enzyme or a multi-functional
enzyme as a binary classification problem. If the enzyme
is a multi-functional enzyme, it will take the input enzyme
sequence and predict its main classes as a multi-label prediction
problem. To equip the deep learning model with multi-label
prediction ability, we adopt the idea of backpropagation for
multilabel learning (BP-MLL) (Zhang and Zhou, 2006) into
the original DEEPre architecture. Meanwhile, since the entire
DEEPre package can also take the main class of the sequence
as input and start the prediction from the second level, after
obtaining the main classes of the multi-functional enzymes, we
can feed the mlDEEPre result to DEEPre, predicting all the four
digits for each function of an enzyme. In this work, we make the
following contributions:

• We extend the capability of DEEPre from mono-functional
enzyme function prediction to multi-functional enzyme
function prediction.

• We propose a novel multi-label deep learning framework
based on BP-MLL which can be useful for other multi-label
prediction problems in bioinformatics.

2. MATERIALS AND METHODS

In this section, we first introduce the dataset used to evaluate the
proposed method (section 2.1) and the needed raw encodings we
feed to the deep learning model (section 2.2). Then, we provide
a big picture of the mlDEEPre method in section 2.3. After that,
we introduce the deep learning architecture used in our method
(section 2.4). Following the model introduction, we describe
how we equip the model with the ability to perform multi-label
prediction (section 2.5 and section 2.6). Finally, we wrap up the
mlDEEPre method and combine it with the original version of
DEEPre (section 2.7).

2.1. Dataset
For the mono-functional enzyme data, we use the dataset from
Li et al. (2018d). As for the multi-functional enzyme data, we use
the dataset from Che et al. (2016). Li et al. (2018d) constructed
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TABLE 1 | Dataset I: 22,168 single-labeled enzymes.

Class EC 1 EC 2 EC 3 EC 4 EC 5 EC 6

Name Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Number 3343 8517 5917 1532 1193 1666

TABLE 2 | Dataset II: 4,076 multi-labeled enzymes.

Number of classes 2 3 4

EC numbers 1 1 1 1 2 2 2 2 3 3 3 4 4 1 1 1 1

2 3 4 2

2 3 4 5 3 4 5 6 4 5 6 5 6 4 6 5 3

4

Number 147 841 63 37 1148 235 38 131 622 22 4 308 34 215 10 211 10

This table shows the number of multi-functional enzymes in the dataset with different EC main class combinations.

TABLE 3 | Dataset II: 1,085 multi-labeled enzymes with 65% sequence similarity cut-off.

Multifunctional enzymes EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 Total

Name Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Before redundancy 1534 1924 2657 1698 616 179 4076

After CD-HIT 386 503 689 473 137 52 1085

a dataset containing 22,168 sequences from UniProt which have
mono-function with 40% sequence similarity filtered by CD-
hit. Che et al. (2016) provided us with 4,076 multi-functional
enzymes. More detailed descriptions of how to construct the
datasets can be referred to Li et al. (2018d) and Che et al. (2016).
Here, we provide the statistics of the mono-functional and the
multi-functional enzyme datasets in Tables 1–3.

2.2. Protein Raw Encoding
Similar to DEEPre (Li et al., 2018d), we use the following three
raw protein encodings to represent a protein sequence, which will
be fed to the deep learning model as inputs.

2.2.1. PSSM
For each protein sequence, we run PSI-BLAST (Altschul et al.,
1997) fromBLAST+ (Camacho et al., 2009) against SWISS-PROT
(Bairoch and Apweiler, 2000), with three iterations and the e-
value as 0.002, to find the sequence homologies. Then we align
those sequences, and for each position in the query protein,
calculate a vector which indicates the appearance frequency of
each amino acid in the alignment. The evolutionary information
of the protein sequence is encoded by an L by 20 matrix.

2.2.2. Sequence One-Hot Encoding
To represent the original protein sequence information, we
use one-hot encoding. For each type of amino acids, we use
a vector composed with nineteen 0s and one 1 to represent
it. For example, ‘A’ is represented as (1, 01, ..., 019) and ‘C’ is
represented as (01, 1, ..., 019). In this way, each position of the
protein sequence is encoded into a vector. Putting those vectors

together, we have an L by 20 matrix to represent the original raw
sequence.

2.2.3. Functional Domain Encoding
This representation encodes the functional domain within a
protein sequence. We use HMMER (Eddy, 2011) to search
a query protein against Pfam (Finn et al., 2016), which is a
functional domain database. If one functional domain is hit, we
use 1 to encode it; otherwise, we use 0 to encode it. Consequently,
we have a vector composed of 0s and 1s to show the functional
domain information of a protein.

2.3. mlDEEPre
The primary task of mlDEEPre is to predict the main classes
of multi-functional enzymes. However, we start from predicting
whether a query enzyme is a multi-functional enzyme or not. As
shown in Figure 1, mlDEEPre has two levels. Given an enzyme
sequence, the first level predicts whether the enzyme is a mono-
functional enzyme or a multi-functional one. If the sequence is
a multi-functional enzyme, the second level of mlDEEPre will
predict the main classes of the enzyme’s multi-functions. The
model architecture of the two levels is discussed in section 2.4
and the specific design for multi-label prediction is discussed in
sections 2.5 and 2.6. mlDEEPre has very close relationship with
the original version of DEEPre, which is discussed in details in
section 2.7.

2.4. Model Architecture
Regarding the deep learning model, we use a similar model
architecture as in Li et al. (2018d). As shown in Figure 2, we adopt

Frontiers in Genetics | www.frontiersin.org 3 January 2019 | Volume 9 | Article 714

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zou et al. mlDEEPre

FIGURE 1 | The hierarchical classification strategy combining DEEPre and mlDEEPre. When we input a protein sequence to the system, we first use DEEPre level 0 to

predict whether the input sequence is an enzyme or not. If it is an enzyme, we use mlDEEPre level 1 to predict whether the enzyme is a mono-functional enzyme or a

multi-functional enzyme. If it is a mono-functional enzyme, DEEPre will take over. If not, we use mlDEEPre to predict that multi-functional enzyme’s main classes.

Inputting the main classes and the sequence to DEEPre, we can obtain the full annotation for each function of the enzyme.

FIGURE 2 | The deep learning model architecture. We use a convolutional neural network component to deal with sequence-length dependent features, such as

PSSM and sequence one-hot encoding, and fully connected neural network component to handle functional domain encoding. After those components, we

concatenate their outputs into one vector, which is fed to a fully connected classifier. We apply a threshold function to the output of the model to obtain the labels of

the input sequence.

convolutional layers for the sequence-length dependent features,
i.e., PSSM and sequence one-hot encoding, to extract useful
information from those encodings. Since functional domain

encoding has already been a high level feature with a fixed length,
we use fully-connected layers to reduce the dimensionality
and further extract information. After those separated layers
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for each feature, we concatenate their outputs and feed the
concatenated vector to a fully connected layer, which can be
considered as the classifier. Training the model in an end-to-
end manner, we are able to optimize the feature extractors (the
layers before concatenation) and the classifiers (the final fully
connected layers) at the same time, resulting in a better hidden
feature representation and thus a classification model with better
performance.

2.5. Multi-Label: Loss Function
Deep learning methods are often suitable for multi-label
classification. As shown in Figure 2, the model’s last layer has
multiple nodes, whose outputs correspond to the predicted
probability of each label. If we use the model to perform
single label classification, we will find the label with the highest
probability score and assign the query with that label. When we
use the model to perform multi-label prediction, we can still use
the predicted probabilities. However, we need to change the way
of assigning labels. Instead of assigning the label with the highest
probability, we may want to assign the labels whose probability
score is higher than a certain threshold so that multiple labels can
be predicted. On the other hand, when we train the model, we
also need to consider the multi-label information in the training
data. One of the most straightforward way of incorporating such
information when training the model is by changing the loss
function to let the model know that we are performing multi-
label prediction using a multi-label dataset. In terms of such
threshold and loss function, we adopt the idea from Zhang and
Zhou (2006), i.e., BP-MLL. We introduce the loss function in this
section in details and discuss the threshold in the next section.

Formally, denote the ith enzyme instance as xi, and its
corresponding label vector as Di. Each element of Di is a binary
value, which indicates whether that enzyme instance belongs to a

certain class. We use d
j
i to denote that element, where j ∈ [ 1, 6]

for our problem. If d
j
i is 1, the enzyme xi belongs to the class j,

0 otherwise. As for a classification problem, the most intuitive
way to define the global error of the network is to measure the
distance between the predicted labels and the real labels of the
training set:

E =

m
∑

i= 1

Ei, (1)

where Ei represents the network error on the instance xi and m
is the size of the training data. For a multi-label classification
problem, we can define Ei as below:

Ei =

Q
∑

j= 1

( li
j − di

j)
2
, (2)

where l
j
i and d

j
i are the actual output and the true label of the

network on xi on the class j, respectively; Q is the total number
of classes, which is 6 in our problem. Using Equation 2, we are
able to incorporate the multi-label information into the model
to a certain degree since all the label information is considered
in that loss function. However, the loss function in Equation 2
assumes that each class label is independent, which ignores any

relationship between different class labels. In reality, one of the
most straightforward relationships between labels is that labels
in Ltruei should have higher ranks than those not in Ltruei , where
Ltruei is set of labels that the instance xi has. Accordingly, we can
use the following function as the loss which considers the rank
relationship between labels:

E =

m
∑

i= 1

Ei =

m
∑

i= 1

1

|Ltruei ||Ltruei |

∑

( k,q)∈Ltruei ×Ltruei

e(−( lki −l
q
i ) ) , (3)

where Ltruei is the complementary set of Ltruei , that is, the label set
which the instance xi does not have, and | • | is the cardinality
measure of a set. From the equation, we can find that ( lki − l

q
i )

measures the difference between the outputs of the network on
the labels belonging to the training instance and the ones not
belonging to it, which is further fed to the exponential function.
When l

q
i happens to be much larger than lki , which causes large

discrepancy, the exponential function can penalize the error
severely. By minimizing Equation 3, we can make the model
output much higher values for the true labels while very small
values for the labels that the training data do not have. Thus,
labels in Ltruei have higher ranks than those not in Ltruei , which
is in agreement with our goal.

2.6. Multi-Label: Threshold
As discussed in the previous section, when we use the model,
to determine and assign the labels, there should be a threshold
t(x), which is applied to the output of the deep learning model,

so that we predict the labels as L
pred
i = {j|l

j
i > t(x), j ∈ [ 1, 6]}.

A straightforward and natural solution of the threshold function
is to set t(x) as a constant. However, that constant threshold
does not consider the difference between different data points.
To solve the problem, Elisseeff and Weston (2002) proposed an
excellent idea to incorporate the information of each single data
point into the threshold, which replaces the constant with a linear
function t(xi) = w⊺ · l(xi) + b, where l(xi) is the output of
the network on the instance xi. In this way, each data point can
have its own threshold, which is more flexible than a constant.
To obtain the threshold function, we need to solve the following
problem:

t(xi) = argmint( |{k|k ∈ Ltruei , lki 6 t}| + |{q|q ∈ Ltruei , l
q
i > t}|) .

(4)
If the solution of Equation 4 is not unique and the solution
composes a segment, the middle value of the value range is
chosen as the threshold. For example, assume the real label and
predicted label set of xi are {1,1,0,0,0,0} and {0.9, 0.8, 0.3, 0.1,
0.1, 0.1}, when 0.3 < t < 0.8, |{k|k ∈ Ltruei , lki 6 t}| +

|{q|q ∈ Ltruei , l
q
i > t}| always takes the minimum value as 0.

Consequently, we choose the middle value of (0.3, 0.8), which is
0.55, as the threshold. In BP-MLL, the solution of the threshold
equation can be obtained through the linear least square method.

To sum up, after we have a well-trained model and the
threshold function parameters, and when we need to use the
model to perform prediction, firstly, we feed the test instance
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to the trained network and get the outputs l(x). Secondly, we
calculate the threshold using t(x) = w⊺ · l(x) + b and apply
the threshold to the output of the model, obtaining the predicted
labels for the enzyme instance x.

2.7. DEEPre and mlDEEPre
Although DEEPre is designed for mono-functional enzyme
function prediction, it is very flexible, being able to predict the
detailed function of an enzyme from the first level or the second
level. For example, if we have already known that an enzyme has
the follow incomplete EC number: 1.-.-.-, we can run DEEPre
from the second level to fulfill the missing digits. Taking into
consideration the enzyme’s feature representation and the fact
that the query sequence is an Oxidoreductase, we run the model
trained specifically for the enzyme with the first EC digit as
1. With such flexibility, we can easily combine mlDEEPre and
DEEPre to predict the detailed functionality of multi-functional
enzymes. Using mlDEEPre, we can predict the main classes of
thosemulti-functional enzymes, such as 2.-.-.- and 3.-.-.-. Feeding
the sequence and the main classes annotation to DEEPre, we are
able to fill in the missing digits for each incomplete annotation
of a multi-functional enzyme. The idea of combining DEEPre
and mlDEEPre is illustrated in Figure 1. Starting from a protein
sequence, we first use level 0 of DEEPre to predict whether the
protein is an enzyme or not. If yes, we use mlDEEPre first level
to predict whether the enzyme is a mono-functional enzyme or
multi-functional enzyme. If that is a mono-functional enzyme,
we will further run DEEPre to get full annotation of that enzyme.
If not, we will run the second level of mlDEEPre to predict the
main classes of the enzyme. For each function, we run DEEPre
to obtain the full annotation. Considering that most multi-
functional enzymes have multiple EC number annotations for
its different functions diverging in the first digit, our method is
efficient and reliable under most circumstances.

3. RESULTS

In this section, we first briefly introduce the methods with which
we are going to compare mlDEEPre (section 3.1). And then, we
define the evaluation criteria for the comparison in details in
section 3.2. After that, we show the performance of our method
in predicting whether an enzyme is a mono-functional enzyme or
a multi-functional enzyme in section 3.3. Furthermore, section
3.4 gives the main classes prediction results of multi-functional
enzymes. Finally, we show our method’s performance on fatty
acid synthase (FAS) function prediction in section 3.5.

3.1. Compared Methods
For mono-function prediction, we compared our method with
Pse-ACC (Chou and Ho, 2006), ACC (Che et al., 2016),
EnzML (De Ferrari et al., 2012), and SVM. Pse-ACC (Chou
and Ho, 2006) is a widely used tool, which predicts the
enzymatic attribute of proteins by considering the functional
domain composition of a given enzyme sequence. In ACC (Che
et al., 2016), the authors utilized autocross-covariance (ACC)
feature representation which consists of two feature models,
autocovariance (AC) and cross-covariance (CC) (Dong et al.,

2009). Another compared method here is EnzML, which can
efficiently utilize the InterPro signatures. All the above three
methods used K-nearest neighbors (KNN) based classification
algorithm as the base classifier. We also compared our method
with a baseline method, which used SVM as the algorithm and
ACC as the features.

For multi-function prediction, as discussed before, until now,
there are only a few works focused on this problem, and all of
them are based on KNN. The key idea of KNN is that similar
instances should share the same labels and we can assign the
labels to a query sequence with the most frequent ones from
its K-most similar instances, the idea of which is shown in
Figure S1. We compared our method with ML-KNN (Zhang
and Zhou, 2007), BR-KNN (Spyromitros et al., 2008), IBLR-
ML (Cheng and Hüllermeier, 2009), GM (Zou and Xiao, 2016),
and SVM-NN (Amidi et al., 2017). In ML-KNN (Zhang and
Zhou, 2007), for each unseen instance, its K-nearest neighbors
in the training set are firstly identified. And then, maximum a
posteriori estimation (MAP) principle is applied to determine
the label set of the unseen instance based on the statistical
information of its neighbor samples. As for Binary Relevance
KNN (BR-KNN) (Spyromitros et al., 2008), it learns M binary
classifiers, one for each class. In terms of instance-based learning
and logistic regression (IBLR) (Cheng and Hüllermeier, 2009),
it combines instance-based learning and logistic regression with
ML-KNN. For the above three methods, the ACC (Dong et al.,
2009) is used as the feature representation. Furthermore, Zou and
Xiao (2016) utilized ML-KNN and a different feature extraction
model, Grey Model (GM) (Lin et al., 2011), to perform the task.
The last method is SVM-NN (Amidi et al., 2017). In this method,
the authors combined structural and amino acid sequence
information together, investigating two fusion approaches both
in the feature level and the algorithm level (SVM and KNN),
resulting in a method for general enzymatic function prediction.

3.2. Evaluation Criteria
3.2.1. Single-Label Measurement
Given multi-label and mono-label test datasets S = {( xi, L

true
i ) },

the binary classifier performance is evaluated by the four criteria:
accuracy, precision, recall, and F1-score, which are defined
below:

Accuracy = B(TPj, FPj,TNj, FNj) =
TPj + TNj

TPj + FPj + TNj + FNj
,

(5)

Precision = B(TPj, FPj,TNj, FNj) =
TPj

TPj + FPj
, (6)

Recall = B(TPj, FPj,TNj, FNj) =
TPj

TPj + FNj
, (7)

F1− score =
2 ∗ Precision ∗ Recall

Precision+ Recall
, (8)

in which B(TPj, FPj,TNj, FNj) represents the binary
classification indicator; TPj indicates the number of true
positive instance; TNj is the number of true negative instance;
FPj stands for the number of false positive instances; and FNj

represents the number of false negative instances.
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3.2.2. Multi-Label Measurement
Regarding the multi-label classification evaluation, the
measurement criteria cannot be exactly the same as those
in single-label classification. The assessment method is much
more complicated in multi-label learning. The previous works
(Chou and Ho, 2006; Zhang and Zhou, 2007) have defined
various metrics, including example-based and label-based
metrics. For example-based methods, the classification results
for each instance are calculated first. After that, the average value
for the entire dataset is obtained. For label-based metrics, the
binary classification results for each class are calculated first, and
then the average value for all classes is given. Here, we adopt
both example-based and label-based methods. The metrics that
have been utilized to assess the performance of mlDEEPre are
described below:

3.2.2.1. Hamming-loss
Hamming-loss evaluates the frequency of incorrect prediction of
an instance-label pair. This index is averaged over all classes and
the entire dataset. The smaller hamming loss is, the better the
performance of the classifier is. It is defined as follows:

Hamming − loss =
1

N

N
∑

i= 1

1

6
|L

pred
i 1Ltruei |1, (9)

where1 is symmetric difference between two sets, |•|1 represents
l1-norm, and N is the number of example enzymes.

3.2.2.2. Subset accuracy
Subset accuracy is the strictest evaluation in multi-label
classification. For each sample, the entire set of labels must
be correctly predicted, otherwise the subset accuracy for that
instance is equal to 0. In literature, it is also known as zero-one-
loss:

Subset accuracy =
1

N

N
∑

i= 1

δ( L
pred
i , Ltruei ), (10)

where δ is the Kronecker delta:










δ( L
pred
i , Ltruei ) = 1, if and only if all the labels in L

pred
i

are equal to those in Ltruei ,

δ( L
pred
i , Ltruei ) = 0, otherwise.

(11)
Opposite to hamming-loss, and just as the following Macro and
Micro methods, the higher the subset accuracy is, the better the
performance is.

3.2.2.3. Macro-precision, Macro-recall, Macro-F1-score
Macro-precision, Macro-recall, and Macro-F1-score, which have
been used in multi-label classification, calculate precision,
recall, and F1-score separately for each class. The Macro-
average method is straightforward: just take the average of the
precision and recall of the system on different classes. When
we want to evaluate system performance on different datasets,
macro-averaged metrics are the best choice:

Macro− precision =
1

6

6
∑

j= 1

TPj

TPj + FPj
, (12)

Macro− recall =
1

6

6
∑

j= 1

TPj

TPj + FNj
, (13)

Macro− F1− score =
2

6

6
∑

j= 1

Macro− precisionj ×Macro− recallj

Macro− precisionj +Macro− recallj
.

(14)

3.2.2.4. Micro-precision, Micro-recall, Micro-F1-score
RegardingMicro-precision, Micro-recall, andMicro-F1-score, in
Micro-average methods, we sum up the individual TP, FP, TN,
and FN of the system for different sets and then apply them to get
the statistics. The Micro-metrics pay more attention to whether
the enzymes are correctly classified, regardless their original
distribution. Thus, in case of the dataset size being variable,
Micro-averaged indexes are the better choice:

Micro− precision =

∑6
j= 1 TPj

∑6
j= 1 TPj +

∑6
j= 1 FPj

, (15)

Micro− recall =

∑6
j= 1 TPj

∑6
j= 1 TPj +

∑6
j= 1 FNj

, (16)

Micro− F1− score = 2 ·
Micro− precision×Micro− recall

Micro− precision+Micro− recall
. (17)

3.3. Mono-Functional vs. Multi-Functional
Prediction
In this section, we describe the performance of the proposed
method in predicting whether an enzyme is a mono-functional
or multi-function enzyme. The training and testing datasets used
in this work are shown in Tables 1, 3. It is worthy pointing
out that the data are imbalanced, with 22,168 mono-functional
enzymes and 1085 multi-functional enzymes. In this work, we
employed penalized models to overcome the imbalance, forcing
the model to pay more attention to the multi-functional class.
We ran the model 30 times on a GPU node with 32 CPU cores
and one GTX 1080 Ti card, each time with 70% of all the data
as training data and 30% as testing data. The average training

FIGURE 3 | The mono-functional enzyme VS multi-functional enzyme

classification testing performance of different models. Performance lower than

0.6 are not shown in the figure.
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time is 11 h for 40 epochs and the average testing time for one
batch is < 1 min. We show the comparison results, both the
average and the standard deviation, in Figure 3. As suggested
by Figure 3, our method can outperform all the other methods
consistently across different criteria. Besides, our method is very
stable, with the standard deviation of accuracy being as low
as 0.09.

3.4. Multi-Functional Enzyme Main Classes
Prediction
Similar to the experiments in section 3.3, we also ran the model
30 times on a GPU node with 32 CPU cores and one GTX 1080
Ti card, each time with 70% of all the data as training data
and 30% as testing data. The average training time is about 14
h for 40 epochs and the average testing time for one batch is
around one minute. Using the criteria for multi-label learning
that have been discussed in section 3.2, we evaluated mlDEEPre
and compared it with other models introduced in section
3.1, obtaining the performance results shown in Table 4 and
Figure 4. According to Hamming-loss, the proposed multi-label
model, mlDEEPre, predicts 97.6% of all the actual main classes
in the test dataset correctly, with the corresponding standard
deviation being 2.7%, which outperforms all the other methods.

TABLE 4 | The multi-functional classification performance of mlDEEPre on dataset

II shown in Table 3.

Hamming-loss Subset accuracy Macro-precision Macro-recall

3.3 ± 0.4% 82.6 ± 2.7% 96.7 ± 0.3% 96.4 ± 0.6%

Macro-F1 Micro-precision Micro-recall Micro-F1

96.5 ± 0.5% 96.7 ± 0.4% 95.1 ± 1.6% 96.2 ± 0.8%

FIGURE 4 | The multi-functional classification testing performance of different

models. Performance lower than 0.65 are not shown in the figure.

Furthermore, we also compared our method with the other
methods using other criteria. Although, because SVM-NN is
good at predicting those rare class labels caused by imbalanced
training samples (only 52 sequences belonging to class 6), the
performance of SVM-NN (84.7%) is slightly better than that
of mlDEEPre (82.6%) and GA (80.8 %) in subset accuracy,
mlDEEPre performs better than all the other methods in term
of all the other criteria, including Macro-precision, Macro-recall,
Macro-F1, Micro-precision, Micro-recall, and Micro-F1.

3.5. Case Study: FAS
Fatty acid synthase (FAS) is a homodimeric multi-functional
enzyme that performs the anabolic conversion of dietary
carbohydrate or proteins to fatty acids (Chakravarty et al., 2004).
Many human cancers can cause high level expression of FAS.
Meanwhile, the regulation of human FAS in a variety of cancers
makes FAS a candidate target for anticancer therapy (Camassei
et al., 2003). FAS subunit alpha includes two parts, reductase
and synthase, whose EC number are 1 and 2, respectively. To
assess our model’s ability in predicting the whole EC number sets
of certain multi-functional enzyme sequences, we excluded the
FAS sequences from the training data and fed those sequences
to our model during testing. The outputs of our network show
that mlDEEPre can exactly predict FAS’s main classes which
are Oxidorreductase and Transferase, being consistent with the
experimental results. Furthermore, the integration of mlDEEPre
and DEEPre can annotate the two sets of FAS’s EC numbers
correctly.

4. DISCUSSION

In this paper, based on multi-label deep learning, we propose
a novel method, mlDEEPre, to annotate the functionality of
multi-functional enzymes. It works seemlessly with DEEPre,
which enables DEEPre to perform mono-functional enzyme and
multi-functional enzyme function predictions at the same time
automatically. Despite of the state-of-the-art performance of
mlDEEPre, this tool can still be improved in the following ways.
Firstly, when designing the tool, we assume that the multiple
functions of an enzyme diverge in the main class. Although that
assumption holds under most circumstances, it is inevitable that
there are some enzymes with different sub-class or even subsub-
class functions. Those kind of enzymes need to be investigated in
the future. Secondly, we also assume that the EC system remains
static. Although the EC system is stable most of the time, it is a
dynamic system if we exam it over a long time period, and the
number of classes can increase as we discover more enzymes,
whichmay invalidate the previous classifier. In machine learning,
this problem is called class incremental learning (Li et al., 2018b).
In the future, efforts will be made to enable the system to perform
enzyme function prediction in dynamic labeling space. Finally,
since much of the performance gain of mlDEEPre is contributed
to the superior performance of deep learning in handling
classification problems, some recent works in investigating the
nature of deep learning (Soudry et al., 2017; Li et al., 2018c) can be
helpful for further improving the performance of deep learning
and thus the performance of mlDEEPre. We believe that the idea
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ofmlDEEPre, combiningmulti-label learning with deep learning,
can be helpful for solving other similar bioinformatics problems.
For example, it has the potential to be applied to predict the
properties of antibiotic-resistant genes (ARG) in multidrug-
resistant pathogens (Zhu et al., 2013; Cao et al., 2018), perform
classification of multicomponent transporter system (Saier et al.,
2015), and predict CRISPR-Cas9 gene editing off-target regions
(Fu et al., 2013; Pattanayak et al., 2013; Lin and Wong, 2018;
Zhang et al., 2018).
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