
INTRODUCTION

An ecosystem of microorganisms habituates the human 
intestinal tract which is defined as the gut microbiota, com-
posed of bacteria, archaea, virus, and fungi.1 The intestinal 
tract harbors around 1014 bacteria, with the highest amount 
in the colon.2-4 Over 1,000 bacterial species belonging mainly 
to 4 phyla were identified in humans, with each individual 
possessing more than 160 species.5 The collection of all ge-
nomes of the microbiota is termed microbiome, of which the 
number of intestinal microbial genes has been estimated to 
be ~100 times more than that of human genes.1,4,5

Accumulating evidence demonstrated that gut microbiota 

is involved in the maintenance of mucosal homeostasis, with 
an indispensable role in promotion of wound repair and epi-
thelial barrier fortification.6-9 While a symbiotic relationship 
is established between commensal bacteria and the healthy 
host, the presence of an altered gut microbial population or 
the emergence of opportunistic bacteria from commensals 
may contribute to the development of IBD and colorectal 
cancer (CRC).10-13 Patients with IBD had higher risk of devel-
oping cancer later in life, termed colitis-associated CRC.14,15 
It is generally believed the genetic and dietary factors, as well 
as chronic inflammation and altered microbial population 
predispose to tumor development.16-19

DETRIMENTAL AND BENEFICIAL ROLES OF 
BACTERIA IN EXPERIMENTAL MODELS OF CRC

A relationship between commensal bacteria and intes-
tinal carcinogenesis was first suggested in rodent models 
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by Reddy et al. in 1974.20 Germ-free rats showed lower inci-
dence of chemically induced duodenal and colonic tumors 
compared to those raised in conventional husbandry.20 
Reduction of colonic tumor burden was also reported in sev-
eral chemically induced or genetic deficient mouse models 
when derived under germ-free conditions.21-23 It should be 
kept in mind that the physiological relevance of germ-free 
models had been criticized since their mucosal immune 
systems were undeveloped due to the lack of microfloral 
establishment.24-26 Additional evidence of bacterial involve-
ment in carcinogenesis was supported by studies showing 
reduction of tumor load after antibiotic manipulation of gut 
microbiota.22,27 The notion of disease-associated microbes 
originating from commensal-derived opportunistic bacteria 
(termed pathobionts) was shown by evidence of increased 
cancer growth in recipient mice after fecal transplantation 
from high tumor-bearing mouse.28,29 These studies suggested 
the existence of pathobionts with a protumoral characteristic 
in the fecal bacteria population. 

On the other hand, presence of beneficial bacteria (termed 
probionts or probiotics) with tumor-suppressive metabolites 
was also found in experimental models.16,30 Short-chain fatty 
acids (SCFAs) such as butyrate are bacterial metabolites by 
fermentation of dietary fibers. Nutritional studies showed 
that high fiber diets or butyrate in the colon decreased the 
rate of aberrant crypt foci formation and reduced the tumor 
burden in animal models.31,32 A recent study using a gnotobi-
otic mouse model also demonstrated that supplementation 
with high dietary fiber and butyrate-producing bacteria sig-
nificantly decreased colon tumor growth.30

Taken together, intestinal bacteria are involved in tumori-
genesis with both detrimental and beneficial roles. Potential 
tumorigenic bacteria and their underlying mechanisms to 
promote cancer growth will be highlighted in this review. For 
more information on probiotics and cancer, please refer to 
other review articles.33,34

MICROBIOTA DYSBIOSIS AT VARIOUS CANCER 
STAGES

Despite similar fecal bacterial counts between healthy 
subjects and CRC patients,35 a clear difference in the compo-
sition of normal and tumor-associated microbiota was dem-
onstrated. Numerous studies have shown reduction of mi-
crobial diversity in the stool samples and mucosal biopsies 
of patients with IBD36-38 (including CD and UC) and in those 
with CRC.39,40 In contrast, higher diversity and greater num-
bers of bacteria were noted in adenoma biopsies compared 

to healthy mucosa,41,42 suggesting that there existed dynamic 
changes of microbial population throughout the different 
tumor stages. It should be noted these cross-sectional stud-
ies are based on specimens collected at single time points. 
Therefore, the changes in gut microbiota only indicated a 
correlation but did not prove a cause-and-effect relationship 
for tumor formation in CRC patients. 

1. Microbiota in Stool Samples of CRC Patients

The Intestinal microbes are mixed in the outer loose mu-
cus layer and in chyme and feces. Many clinical studies have 
utilized stool samples for analysis of bacterial composition 
as a surrogate for intestinal microflora. Although the fecal 
bacteria may not represent the complete population of gut 
microbiota, this noninvasive approach has been widely 
practiced and conveyed crucial information of the bacterial 
community residing in the intestinal lumen. However, com-
parison of fecal microbiota composition to that of mucosal 
specimens and tumor biopsies may provide a more compre-
hensive view of the changes in the gut ecosystem. 

Four main phyla were identified in the fecal microbiota 
of healthy individuals, including Bacteroidetes, Firmicutes, 
Proteobacteria, and Actinobacteria, with Bacteroidetes and 
Firmicutes being the 2 predominant phyla that constitutes 
more than 90% of the total bacterial population.43,44 The 
percentages of Bacteroidetes and Firmicutes phyla in the 
fecal microbiota of healthy subjects were ~55% and ~40%, re-
spectively.43,44 In CRC patients, these 2 phyla still constitutes 
the largest proportion in the stool microbiota.43,44 Being the 
2 predominant phyla with higher total numbers in the indi-
vidual, it is no doubt that alterations of the bacterial strains in 
the Bacteroidetes and Firmicutes phyla in the fecal popula-
tion are easier to spot compared to other bacteria with lower 
counts. Nevertheless, accumulating evidence indicates that 
some bacteria belonging to the minor phyla in fecal micro-
biota may also play protumoral roles. 

Under the Bacteroidetes phylum, enrichment of genera 
of Porphyromonas and Prevotella was reported in stool 
samples of CRC patients compared to healthy volunteers.44,45 
Conflicting results were shown for the Bacteroides genus; 
increased percentage were reported in CRC patients in 
some studies,35,43 while others found a significant reduction.45 
Among the Bacteroides species, a significant increase of Bac-
teroides fragilis  and a decrease of Bacteroides vulgatus and 
Bacteroides uniformin were found in fecal samples of CRC 
patients.45,46

Under the Firmicutes phylum, increase of Enterococcus 
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and Streptococcus genus and decrease of genera such as 
Faecalibacterium, Roseburia and Eubacterium and of Lach-
nospiraceae family were reported in stool samples of CRC 
patients compared to healthy volunteers.45,47 At the species 
levels, decreases in Ruminococcus obeum , Ruminococcus 
albus , Pseudobutyrivibrio ruminus , Lachnospira pectinos-
chiza , Lachnospira bovis were seen in the fecal microbiota 
of CRC patients.44 One of the common characteristics of 
the decreased bacterial genera and species in CRC patients 
belonging to the Firmicutes phylum is the ability of SCFA 
production.43-45 The altered stool bacterial profiling cor-
responded to the relatively lower levels of fecal butyrate in 
CRC patients compared to control subjects.44 In addition, no 
difference of Lactobacillus was shown in stool samples of 
cancer patients.35,45,46,48

Under the relatively minor phyla in fecal microbiota such 
as Proteobacteria, Actinobacteria and others, higher percent-
ages of the genera of Escherichia (belonging to Proteobacte-
ria phylum) and Fusobacterium (belonging to Fusobacteria 
phylum) were found in the stool samples of CRC patients 
compared to control subjects.43,45,46 The Bifidobacteria genus 
(belonging to Actinobacteria phylum) in fecal samples were 
either increased45 or showed no change35,46 in CRC patients.

2. Microbiota in Tumor Biopsies of CRC Patients

Recent studies have utilized tumor/mucosal biopsies 
and lavage samples instead of fecal samples to validate and 
clarify the dysbiosis of gut microbiome. Data obtained from 
tumor biopsies indicated the alteration in mucosa-associ-
ated bacteria. Accumulating evidence showed distinct pro-
files between mucosal bacteria and fecal microbiota,47,49-51 
whereas microfloral results obtained from mucosal biopsy 
and similar to those of lavage samples.52 For the evaluation 
of mucosal microbiota, tumor tissues are usually compared 
to normal mucosa of healthy individuals or to patient-
matched non-cancerous tissues. One report had shown that 
Proteobacteria was the most predominant phylum (~60%) 
in the gut mucosa of healthy individuals.49 Another study 
showed the predominance of Firmicutes, Bacteroidetes, and 
Proteobacteria , of which the 3 phyla accounts for 80% of the 
microbiota in the control subjects.50 The findings showed 
that fecal microbiota as a surrogate only partially reflect the 
composition of the mucosa-associated bacteria. 

By using mucosal specimens, the genera of Escherichia 
and Fusobacterium were found significantly increased in 
CRC patients compared to healthy controls.49-51 It is note-
worthy that Escherichia and Fusobacterium constitute a 

minority of the healthy stool microbiome,43,44 and are also 
of low percentages (0.22% and 0.01%, respectively) of the 
bacterial population in healthy gut mucosa.49 However, a 15- 
and 1,000-fold increase of the percentage of Escherichia and 
Fusobacterium were noted in the microflora of biopsy tis-
sues of CRC patients compared to that of healthy controls.49 
When comparing patient-matched cancerous samples and 
adjacent non-cancerous tissues, abundance of Fusobacte-
rium was also observed in tumors.49-51 The enrichment of 
Escherichia and Fusobacteria in tumor biopsies is in keeping 
with the findings in stool samples of CRC patients.43,45,46

Higher levels of Bacteroides genus was found in the muco-
sal microbiota of CRC patients than healthy controls.47 When 
comparing microbial composition in tumor biopsies to ad-
jacent non-cancerous tissues, the percentage of Bacteroides 
were decreased in one report50 and increased in another 
study.49 The inconsistent result of Bacteroides in tumor tis-
sues seems to reflect the fecal microbial composition which 
also shows conflicting data in the literatures.35,43,45

Decreased mucosal levels of Firmicutes and Actinobac-
teria phyla were observed in cancerous tissues of CRC 
patients compared to normal mucosa of healthy subjects 
or to adjacent non-cancerous tissues.49,51 A downregulation 
of Lachnospiraceae and Ruminococcaceae was observed 
in cancerous tissues compared to adjacent non-cancerous 
tissues, which also correlated with the finding of decreased 
bacterial genus in fecal samples of CRC patients.45,50 The data 
of mucosa-associated Lactobacillus and Bifidobacterium 
were inconsistent and a few reports showed no difference of 
these bacteria between tumor and control samples.35,48

Overall, the aforementioned studies all pointed to microbi-
ota dysbiosis in fecal and mucosal samples of CRC patients 
despite inconsistency of the wax or wane of particular bacte-
rial taxa. The fecal bacterial profiling only partially reflected 
mucosal microbiota in healthy controls and in CRC. More-
over, a higher ratio of the Proteobacteria and Fusobacteria 
phyla was observed in CRC patients when the analysis was 
based on mucosal specimens. 

POTENTIAL TUMORIGENIC PATHOBIONTS

Clinical studies indicated a positive correlation between 
mucosal bacteria and disease pathogenesis. The gut com-
mensals mostly reside in the intestinal lumen in physiologi-
cal conditions, separated by the inner mucus layer and 
are rarely in direct contact with the epithelial cells.53-56 The 
concept of bacterial adhesion to host epithelial cells was 
first reported in uropathogenic Escherichia coli  in 1908.57 In 
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the past two decades, high numbers of mucosa-associated 
bacteria were reported in clinical studies of IBD and CRC. 
Enrichment of mucosa-associated E. coli  was found in tis-
sue biopsy of patients with CD and CRC.38,58-62 Abundance 
of mucosa-associated Fusobacterium was noted in CRC 
patients compared to healthy individuals.49,50 Invasive strains 
of Fusobacterium nucleatum were also isolated from biopsy 
specimens of CD or acute appendicitis.63-65 Moreover, higher 
levels of enterotoxigenic B. fragilis  were found in colonic tu-
mor samples obtained from patients.66,67 Evidence of the pro-
tumorigenic potentials of E. coli , F. nucleatum, and B. fragilis  
by using experimental models are discussed. The detailed 
experimental protocols of bacterial gavage in in situ  mouse 
CRC models are listed in Table 1,58,68-79 and the advantages 
and caveats of different experimental models are summa-
rized as followed.

1. Escherichia coli

Adherent-invasive E. coli  (AIEC) was first isolated from 
ileal lesions in CD patients.80-84 Although AIEC was unable to 
colonize the intestine of wild type mice, the colitogenic activ-
ity of AIEC was shown in transgenic mice expressing human 
carcinoembryonic antigen-related cell adhesions molecules 
(CEACAMs; a receptor for type-1 pili or fimbriae [fim]).85 The 
data suggested that mucosal colonization of AIEC through 
fimbriae-mediated adhesion was a crucial step for its coli-
togenic ability as a pathobiont.85 However, there remains no 
direct evidence for the involvement of AIEC in colon cancer 
development, except the general link between inflammation 
and tumorigenesis. It is noteworthy that the fimbrial adhesin 
is historically known as a common feature for host coloniza-
tion by various strains of gram-negative bacteria.57 Although 
fimbriae-mediated adhesion also affected bacterial uptake 
or promote proinflammatory response in epithelial cells,57 
it has not been traditionally regarded as a strain-specific 
pathogenic virulence.86,87 Previous studies demonstrated in-
creased tumor burden in human CEACAM-transgenic mice 
after azoxymethane (AOM) injections,88 but did not specify 
the bacterial strains responsible for the fimbriae-dependent 
tumor growth. It remains undetermined whether the adher-
ent or invasive virulence of E. coli  is involved in colorectal 
tumorigenesis. 

A clear evidence of E. coli  involvement in CRC develop-
ment was reported with the use of 3 bacterial strains (i.e., 
NC101, CCR20, and 11G5) which harbors genotoxin-encod-
ing polyketide synthase (pks) pathogenicity islands (Table 
1).68,69,71,72 The colibactin produced by pks+ E. coli  induced 

DNA damage and cellular senescence in intestinal epithelial 
cells.68,69,71,72 The pks+ NC101 strain was a mouse adherent-
invasive E. coli , and the CCR20 and 11G5 strains were clini-
cal isolates from tumor biopsies of CRC patients. Increased 
colonic tumor load was observed by monoassociation of 
E. coli  NC101 in gnotobiotic interleukin 10 (IL-10)–/– mice 
given injections of AOM68,69 and in adenomatous polyposis 
coli (APC)Min/+-IL-10–/– mice.70 Moreover, higher tumor sus-
ceptibility was found after oral gavage of pks+ E. coli  CCR20 
to wild type mice administered AOM/dextran sulfate so-
dium (DSS).71,72 Increased tumor numbers and volume were 
documented in APCMin/+ mice following oral inoculation of 
pks+ E. coli  11G5 compared to the K12 strain.58 Details of 
the experimental design are described as followed and also 
summarized in Table 1. The germ-free IL-10–/– and APCMin/+-
IL-10–/– mice were orally gavaged with 108 colony-forming 
units (CFU) of E. coli  NC101 strain in one bolus for bacte-
rial monoassociation.68-70 For oral gavage of E. coli  CCR20 
strain, the wild type mice were raised on specific pathogen 
free (SPF) conditions and given intraperitoneal injection of 
AOM, followed by pretreatment of streptomycin (a bacte-
ricidal antibiotic to G(–) bacteria to disturb microflora) in 
drinking water for 2 days prior to gavage of 109 CFU of E. coli  
CCR20 to facilitate bacterial colonization, and then subject-
ed to 2 cycles of DSS in drinking water to induce colitis.71,72 
In addition, APCMin/+ raised in SPF conditions were gavaged 
with 108 CFU of E. coli  11G5 strain 3 days after streptomycin 
treatment to facilitate bacterial colonization, and tumors 
were inspected at 7 weeks after infection.58 Due to the nature 
of these intestinal isolated E. coli  which are not pathogens 
per se , microbiota disturbance by antibiotics prior to bacte-
rial gavage or monoassociation in gnotobiotic mice are nec-
essary to facilitate bacterial colonization to understand their 
effects on tumor development. Overall, higher tumor loads 
were found in the mouse groups given pks+ E. coli  compared 
to the pks-deleted bacteria or pks-negative strains, indicating 
a crucial role of pks operon in promoting carcinogenesis.68-71

Other reports have demonstrated that the human CRC-
associated E. coli  (11G5 strain) induced colitis and increased 
crypt cell proliferation in transgenic mice with epithelial 
overexpression of human CEACAM.73 The E. coli  11G5 
strain was gavaged at 2×108 CFU twice a week for 3 weeks 
after streptomycin and 0.25% DSS treatment in the human 
CEACAM-transgenic mice.73 Moreover, the human CRC-
associated E. coli  11G5 triggered the production of cyclo-
oxygenase (COX)-2 in macrophages after phagocytosis in 
vitro , in a pks -independent manner.74 Furthermore, human 
CRC-associated E. coli  obtained from tumor biopsies were 
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composed of genotoxin-positive and -negative populations.89 
The pks+ E. coli  were not adhesive, whereas the highly ad-
herent E. coli  were devoid of known genotoxins but caused 
DNA damage in vitro .89 The findings suggested that aside 
from causing genotoxicity, the induction of tumor-infiltrating 
macrophages and other unknown mechanisms may also 
play indispensable roles in E. coli -driven tumorigenesis. 

2. Fusobacterium nucleatum

Enrichment of F. nucleatum was demonstrated in the stool 
and tissue samples of CRC patients.43,49,50,66,90-92 F. nucleatum 
is known as a commensal G(–) species residing in the oral 
cavity, and has been reported as an invasive strain associ-
ated with inflammatory disease in the mouth such as gingi-
vitis.93,94 Invasive strains of F. nucleatum  were also isolated 
from inflamed biopsy tissues from patients with CD or acute 
appendicitis.63-65

Recent data showed that orogavage of F. nucleatum  in-
creased tumor burden in APCMin/+ mice or in wild type mice 
given AOM/DSS (Table 1).75,76,95 A number of mechanisms 
were proposed by in situ  CRC mouse models, including 

β-catenin and nuclear factor-κB signaling via activation of 
Toll-like receptor 4 (TLR4) (a cell surface innate receptor 
for lipopolysaccharide [LPS]),75,95 and recruitment of tumor-
infiltrating myeloid cells.76 Other studies by using human 
CRC cell lines and a xenograft model showed that FadA 
adhesin expressed on F. nucleatum, via extracellular binding 
to E-cadherin, induced nuclear translocation of β-catenin for 
oncogenic transcription and epithelial hyperproliferation.96,97 
The invasiveness of F. nucleatum was not a requirement for 
its effect on oncogenic transcription but was associated with 
proinflammatory signals which could be indirectly involved 
in cancer development.96 So far, whether F. nucleatum  in-
fection and its pro-tumorigenic ability are associated with 
inflammation is still controversial. Although some reported 
that the histopathological features of colitis and enteritis 
were not induced,76 others showed upregulation of proin-
flammatory cytokines and chemokines following inoculation 
of F. nucleatum.75 It is noteworthy that the in situ CRC model 
was pre-fed with streptomycin (a bactericidal antibiotic to 
G(–) bacteria) to disturb the normal flora, followed by in-
oculation with a very high number of F. nucleatum for a long 
period of time (109 CFU by gavage per day for 20 weeks or 
108 CFU by gavage per day for 8 weeks).75,76 With such a high 
bacterial load given continuously, the roles of F. nucleatum 
as a driver or a passenger for tumorigenesis remain in doubt. 

A recent study demonstrated that gavage of a single strain 
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or multiple strains of F. nucleatum  obtained from clinical 
specimens of CRC patients to gnotobiotic APCMin/+ mice or 
APCMin/+-IL-10–/– mice did not increase colitis severity nor 
enhance colon tumor burden.70 The germ-free mice were 
gavaged weekly with a mixture of 6 F. nucleatum clinical iso-
lates at 108 CFU per strain per mice, or were transferred to 
SPF microbiota prior to gavage of F. nucleatum mixtures and 
sacrificed 16 weeks later to examine tumor growth. However, 
no increase in tumors was observed in either protocols.70 
The inconsistent data of F. nucleatum  suggested that other 
unidentified mechanisms, such as interaction with other 
bacteria, may partly contribute to its protumoral characteris-
tics. 

3. Bacteroides fragilis

A subclass of the human commensal Bacteroides species, 
enterotoxigenic Bacteroides fragilis  (ETBF), was associated 
with acute inflammatory diarrheal disease and CRC in pa-
tients.66,98,99 Increased percentage of B. fragilis  was reported 
in fecal microbiota.45,46 The levels of ETBF and enterotoxin 
gene (bft ) in tumor and stool samples were significantly 
higher in late stages (III/IV) of CRC compared to control 
tissues.66,67,99 Despite reported as an obligate anaerobe, abun-
dant literature showed invasive traits of the G(–) bacteria B. 
fragilis . The most frequent anaerobe isolated in clinical cases 
of peritonitis, intra-abdominal abscess or bacteremia is B. 
fragilis , suggesting its aerotolerance and invasiveness.100-102

Previous studies have demonstrated that ETBF triggered 
colitis and accelerated tumor growth in APCMin/+ mice (Table 
1).77,78 The colonization of ETBF (108 CFU by oral gavage in 
one dose) was facilitated by pretreatment of clindamycin 
(an antibiotic against G(+) bacteria) and streptomycin (an 
antibiotic against G(–) bacteria) or gentamicin (a broad-
spectrum antibiotic) to disturb the gut microbiota.77-79 Fol-
lowing antibiotic manipulation of microbiota, colonization 
with ETBF but not its nontoxigenic counterparts increased 
tumor burden in APCMin/+ mice.77,78 The B. fragilis  enterotoxin 
(also known as fragilysin) acts as a metalloprotease that 
causes oxidative DNA damage, E-cadherin cleavage, epithe-
lial barrier damage, and activation of STAT3/Th17 immune 
responses, and generation of protumoral monocytic my-
eloid suppressor cells.77-79,103,104 Studies in vitro  showed that 
fragilysin stimulated the production of spermine oxidase in 
intestinal epithelial cell lines, suggesting a direct role of the 
enterotoxin on epithelial free radical production and DNA 
damage.78 Taken together, the findings indicated that ETBF 
was a strong colitogenic infectious agent that promoted tu-

morigenesis through both direct and indirect mechanisms. 

UNANSWERED QUESTIONS AND FUTURE 
DIRECTIONS

A number of hints and questions arose through the review 
of protumorigenic pathobionts. The protumorigenic bacte-
ria (e.g., E. coli , F. nucleatum, and B. fragilis) identified so far 
in in situ  CRC models were all G(–) bacteria with mucosal 
colonization characteristics. First, the tumor-promoting bac-
teria are enriched in the mucosa and belong to the category 
of G(–) microbes, indicating that the juxtaposition of G(–) 
bacteria and its wall component (i.e., LPS) recognized by 
mucosal innate receptors are likely to contribute partly to 
the tumor susceptibility.33,105-107 The findings re-emphasized 
the role of abnormal expression or upregulation of epithelial 
immune receptors in tumor predisposition.107-109 Second, 
microbial colonization and active invasion was shown to 
facilitate other commensal bacteria to be internalized into 
epithelium,110-112 and may cause secondary bystanders to 
pass the epithelial barrier through paracellular spaces.113-116 
The active or passive entry of bacteria could further fuel 
inflammation-associated tumor growth or may induce DNA 
damage and hyperproliferative signals in host cells. In addi-
tion, the common features of mucosal colonization among 
protumorigenic bacteria suggest that there may be shared 
adherence/invasion-associated virulence factors to induce 
epithelial damages, which may partly underlie bacterial 
mechanisms of epithelial malignant transformation. Third, 
physiological mucosal defense against pathogen coloniza-
tion and invasion included free radical production117 and 
autophagy of infected organelles in the epithelial cells.118,119 
The mechanisms underlying the incompentent clearance of 
intracellular microbes remain poorly understood. A recent 
paper suggested that increased levels of microRNA 106B 
caused a reduction of autophagy-related gene transcription 
in intestinal epithelia of CD may account for the failure of in-
tracellular bacterial clearance.120 It remains unclear whether 
epithelial recognition of pathobionts derived from commen-
sals may activate suppressive/tolerant or defensive mecha-
nisms. The involvement of epithelial barrier impairment in 
tumorigenesis warrants further studies. 

In summary, it is widely recognized nowadays that intes-
tinal microbiota is involved in colorectal tumorigenesis. Pro-
tumorigenic bacteria (e.g., E. coli  and F. nucleatum ) which 
are not predominant species in fecal microflora are enriched 
in the cancerous tissues, and may promote tumorigenesis 
by expression of genotoxins and virulence factors. Further 
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understanding of the host-microbe interaction and how the 
bacterial factors fit into the genetic and molecular paradigm 
of tumor development will shed light to the development 
of novel microbe-targeting therapy. Specific elimination of 
pathobionts with sparing of beneficial symbionts would be 
the next challenge.
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